PhysicsWorld.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Mutex.h"
  29. #include "PhysicsEvents.h"
  30. #include "PhysicsUtils.h"
  31. #include "PhysicsWorld.h"
  32. #include "Profiler.h"
  33. #include "Ray.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "Sort.h"
  38. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  41. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  42. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  43. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  44. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  45. extern ContactAddedCallback gContactAddedCallback;
  46. namespace Urho3D
  47. {
  48. const char* PHYSICS_CATEGORY = "Physics";
  49. extern const char* SUBSYSTEM_CATEGORY;
  50. static const int MAX_SOLVER_ITERATIONS = 256;
  51. static const int DEFAULT_FPS = 60;
  52. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  53. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  54. {
  55. return lhs.distance_ < rhs.distance_;
  56. }
  57. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  58. {
  59. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  60. }
  61. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  62. {
  63. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  64. }
  65. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  66. {
  67. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  68. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  69. cp.m_combinedRestitution = colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  70. return true;
  71. }
  72. /// Callback for physics world queries.
  73. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  74. {
  75. /// Construct.
  76. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  77. {
  78. }
  79. /// Add a contact result.
  80. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObjectWrapper *colObj0Wrap, int, int, const btCollisionObjectWrapper *colObj1Wrap, int, int)
  81. {
  82. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  83. if (body && !result_.Contains(body))
  84. result_.Push(body);
  85. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  86. if (body && !result_.Contains(body))
  87. result_.Push(body);
  88. return 0.0f;
  89. }
  90. /// Found rigid bodies.
  91. PODVector<RigidBody*>& result_;
  92. };
  93. PhysicsWorld::PhysicsWorld(Context* context) :
  94. Component(context),
  95. collisionConfiguration_(0),
  96. collisionDispatcher_(0),
  97. broadphase_(0),
  98. solver_(0),
  99. world_(0),
  100. fps_(DEFAULT_FPS),
  101. timeAcc_(0.0f),
  102. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  103. interpolation_(true),
  104. internalEdge_(true),
  105. applyingTransforms_(false),
  106. debugRenderer_(0),
  107. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  108. {
  109. gContactAddedCallback = CustomMaterialCombinerCallback;
  110. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  111. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  112. broadphase_ = new btDbvtBroadphase();
  113. solver_ = new btSequentialImpulseConstraintSolver();
  114. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  115. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  116. world_->getDispatchInfo().m_useContinuous = true;
  117. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  118. world_->setDebugDrawer(this);
  119. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  120. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  121. }
  122. PhysicsWorld::~PhysicsWorld()
  123. {
  124. if (scene_)
  125. {
  126. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  127. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  128. (*i)->ReleaseConstraint();
  129. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  130. (*i)->ReleaseBody();
  131. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  132. (*i)->ReleaseShape();
  133. }
  134. delete world_;
  135. world_ = 0;
  136. delete solver_;
  137. solver_ = 0;
  138. delete broadphase_;
  139. broadphase_ = 0;
  140. delete collisionDispatcher_;
  141. collisionDispatcher_ = 0;
  142. delete collisionConfiguration_;
  143. collisionConfiguration_ = 0;
  144. }
  145. void PhysicsWorld::RegisterObject(Context* context)
  146. {
  147. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  148. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  149. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  150. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_INT, "Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  151. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  152. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  153. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Internal Edge Utility", internalEdge_, true, AM_DEFAULT);
  154. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  155. }
  156. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  157. {
  158. if (debugRenderer_)
  159. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  160. else
  161. return false;
  162. }
  163. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  164. {
  165. if (debugRenderer_)
  166. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  167. }
  168. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  169. {
  170. if (debug)
  171. {
  172. PROFILE(PhysicsDrawDebug);
  173. debugRenderer_ = debug;
  174. debugDepthTest_ = depthTest;
  175. world_->debugDrawWorld();
  176. debugRenderer_ = 0;
  177. }
  178. }
  179. void PhysicsWorld::reportErrorWarning(const char* warningString)
  180. {
  181. LOGWARNING("Physics: " + String(warningString));
  182. }
  183. void PhysicsWorld::Update(float timeStep)
  184. {
  185. PROFILE(UpdatePhysics);
  186. float internalTimeStep = 1.0f / fps_;
  187. delayedWorldTransforms_.Clear();
  188. if (interpolation_)
  189. {
  190. int maxSubSteps = (int)(timeStep * fps_) + 1;
  191. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  192. }
  193. else
  194. {
  195. timeAcc_ += timeStep;
  196. while (timeAcc_ >= internalTimeStep)
  197. {
  198. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  199. timeAcc_ -= internalTimeStep;
  200. }
  201. }
  202. // Apply delayed (parented) world transforms now
  203. while (!delayedWorldTransforms_.Empty())
  204. {
  205. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  206. i != delayedWorldTransforms_.End(); ++i)
  207. {
  208. const DelayedWorldTransform& transform = i->second_;
  209. // If parent's transform has already been assigned, can proceed
  210. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  211. {
  212. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  213. delayedWorldTransforms_.Erase(i);
  214. }
  215. }
  216. }
  217. }
  218. void PhysicsWorld::UpdateCollisions()
  219. {
  220. world_->performDiscreteCollisionDetection();
  221. }
  222. void PhysicsWorld::SetFps(int fps)
  223. {
  224. fps_ = Clamp(fps, 1, 1000);
  225. MarkNetworkUpdate();
  226. }
  227. void PhysicsWorld::SetGravity(Vector3 gravity)
  228. {
  229. world_->setGravity(ToBtVector3(gravity));
  230. MarkNetworkUpdate();
  231. }
  232. void PhysicsWorld::SetNumIterations(int num)
  233. {
  234. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  235. world_->getSolverInfo().m_numIterations = num;
  236. MarkNetworkUpdate();
  237. }
  238. void PhysicsWorld::SetInterpolation(bool enable)
  239. {
  240. interpolation_ = enable;
  241. }
  242. void PhysicsWorld::SetInternalEdge(bool enable)
  243. {
  244. internalEdge_ = enable;
  245. MarkNetworkUpdate();
  246. }
  247. void PhysicsWorld::SetSplitImpulse(bool enable)
  248. {
  249. world_->getSolverInfo().m_splitImpulse = enable;
  250. MarkNetworkUpdate();
  251. }
  252. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  253. {
  254. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  255. MarkNetworkUpdate();
  256. }
  257. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  258. {
  259. PROFILE(PhysicsRaycast);
  260. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  261. maxDistance * ray.direction_));
  262. rayCallback.m_collisionFilterGroup = (short)0xffff;
  263. rayCallback.m_collisionFilterMask = collisionMask;
  264. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  265. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  266. {
  267. PhysicsRaycastResult newResult;
  268. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  269. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  270. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  271. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  272. result.Push(newResult);
  273. }
  274. Sort(result.Begin(), result.End(), CompareRaycastResults);
  275. }
  276. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  277. {
  278. PROFILE(PhysicsRaycastSingle);
  279. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  280. maxDistance * ray.direction_));
  281. rayCallback.m_collisionFilterGroup = (short)0xffff;
  282. rayCallback.m_collisionFilterMask = collisionMask;
  283. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  284. if (rayCallback.hasHit())
  285. {
  286. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  287. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  288. result.distance_ = (result.position_ - ray.origin_).Length();
  289. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  290. }
  291. else
  292. {
  293. result.position_ = Vector3::ZERO;
  294. result.normal_ = Vector3::ZERO;
  295. result.distance_ = M_INFINITY;
  296. result.body_ = 0;
  297. }
  298. }
  299. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  300. {
  301. PROFILE(PhysicsSphereCast);
  302. btSphereShape shape(radius);
  303. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  304. maxDistance * ray.direction_));
  305. convexCallback.m_collisionFilterGroup = (short)0xffff;
  306. convexCallback.m_collisionFilterMask = collisionMask;
  307. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  308. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  309. if (convexCallback.hasHit())
  310. {
  311. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  312. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  313. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  314. result.distance_ = (result.position_ - ray.origin_).Length();
  315. }
  316. else
  317. {
  318. result.body_ = 0;
  319. result.position_ = Vector3::ZERO;
  320. result.normal_ = Vector3::ZERO;
  321. result.distance_ = M_INFINITY;
  322. }
  323. }
  324. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  325. {
  326. PROFILE(PhysicsSphereQuery);
  327. result.Clear();
  328. btSphereShape sphereShape(sphere.radius_);
  329. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  330. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  331. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  332. tempRigidBody->activate();
  333. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  334. PhysicsQueryCallback callback(result);
  335. world_->contactTest(tempRigidBody, callback);
  336. world_->removeRigidBody(tempRigidBody);
  337. delete tempRigidBody;
  338. }
  339. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  340. {
  341. PROFILE(PhysicsBoxQuery);
  342. result.Clear();
  343. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  344. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  345. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  346. tempRigidBody->activate();
  347. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  348. PhysicsQueryCallback callback(result);
  349. world_->contactTest(tempRigidBody, callback);
  350. world_->removeRigidBody(tempRigidBody);
  351. delete tempRigidBody;
  352. }
  353. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  354. {
  355. PROFILE(GetCollidingBodies);
  356. result.Clear();
  357. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  358. i != currentCollisions_.End(); ++i)
  359. {
  360. if (i->first_.first_ == body)
  361. result.Push(i->first_.second_);
  362. else if (i->first_.second_ == body)
  363. result.Push(i->first_.first_);
  364. }
  365. }
  366. Vector3 PhysicsWorld::GetGravity() const
  367. {
  368. return ToVector3(world_->getGravity());
  369. }
  370. int PhysicsWorld::GetNumIterations() const
  371. {
  372. return world_->getSolverInfo().m_numIterations;
  373. }
  374. bool PhysicsWorld::GetSplitImpulse() const
  375. {
  376. return world_->getSolverInfo().m_splitImpulse != 0;
  377. }
  378. void PhysicsWorld::AddRigidBody(RigidBody* body)
  379. {
  380. rigidBodies_.Push(body);
  381. }
  382. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  383. {
  384. rigidBodies_.Remove(body);
  385. }
  386. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  387. {
  388. collisionShapes_.Push(shape);
  389. }
  390. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  391. {
  392. collisionShapes_.Remove(shape);
  393. }
  394. void PhysicsWorld::AddConstraint(Constraint* constraint)
  395. {
  396. constraints_.Push(constraint);
  397. }
  398. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  399. {
  400. constraints_.Remove(constraint);
  401. }
  402. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  403. {
  404. delayedWorldTransforms_[transform.rigidBody_] = transform;
  405. }
  406. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  407. {
  408. DebugRenderer* debug = GetComponent<DebugRenderer>();
  409. DrawDebugGeometry(debug, depthTest);
  410. }
  411. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  412. {
  413. debugRenderer_ = debug;
  414. }
  415. void PhysicsWorld::SetDebugDepthTest(bool enable)
  416. {
  417. debugDepthTest_ = enable;
  418. }
  419. void PhysicsWorld::CleanupGeometryCache()
  420. {
  421. // Remove cached shapes whose only reference is the cache itself
  422. for (HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  423. i != geometryCache_.End();)
  424. {
  425. HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  426. if (current->second_.Refs() == 1)
  427. geometryCache_.Erase(current);
  428. }
  429. }
  430. void PhysicsWorld::OnNodeSet(Node* node)
  431. {
  432. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  433. if (node)
  434. {
  435. scene_ = GetScene();
  436. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  437. }
  438. }
  439. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  440. {
  441. using namespace SceneSubsystemUpdate;
  442. Update(eventData[P_TIMESTEP].GetFloat());
  443. }
  444. void PhysicsWorld::PreStep(float timeStep)
  445. {
  446. // Send pre-step event
  447. using namespace PhysicsPreStep;
  448. VariantMap eventData;
  449. eventData[P_WORLD] = (void*)this;
  450. eventData[P_TIMESTEP] = timeStep;
  451. SendEvent(E_PHYSICSPRESTEP, eventData);
  452. // Start profiling block for the actual simulation step
  453. #ifdef ENABLE_PROFILING
  454. Profiler* profiler = GetSubsystem<Profiler>();
  455. if (profiler)
  456. profiler->BeginBlock("StepSimulation");
  457. #endif
  458. }
  459. void PhysicsWorld::PostStep(float timeStep)
  460. {
  461. #ifdef ENABLE_PROFILING
  462. Profiler* profiler = GetSubsystem<Profiler>();
  463. if (profiler)
  464. profiler->EndBlock();
  465. #endif
  466. SendCollisionEvents();
  467. // Send post-step event
  468. using namespace PhysicsPreStep;
  469. VariantMap eventData;
  470. eventData[P_WORLD] = (void*)this;
  471. eventData[P_TIMESTEP] = timeStep;
  472. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  473. }
  474. void PhysicsWorld::SendCollisionEvents()
  475. {
  476. PROFILE(SendCollisionEvents);
  477. currentCollisions_.Clear();
  478. int numManifolds = collisionDispatcher_->getNumManifolds();
  479. if (numManifolds)
  480. {
  481. VariantMap physicsCollisionData;
  482. VariantMap nodeCollisionData;
  483. VectorBuffer contacts;
  484. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  485. for (int i = 0; i < numManifolds; ++i)
  486. {
  487. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  488. int numContacts = contactManifold->getNumContacts();
  489. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  490. if (!numContacts)
  491. continue;
  492. const btCollisionObject* objectA = contactManifold->getBody0();
  493. const btCollisionObject* objectB = contactManifold->getBody1();
  494. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  495. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  496. // If it's not a rigidbody, maybe a ghost object
  497. if (!bodyA || !bodyB)
  498. continue;
  499. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  500. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  501. continue;
  502. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  503. continue;
  504. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  505. !bodyA->IsActive() && !bodyB->IsActive())
  506. continue;
  507. WeakPtr<RigidBody> bodyWeakA(bodyA);
  508. WeakPtr<RigidBody> bodyWeakB(bodyB);
  509. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  510. if (bodyA < bodyB)
  511. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  512. else
  513. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  514. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  515. // objects during collision event handling
  516. currentCollisions_[bodyPair] = contactManifold;
  517. }
  518. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  519. i != currentCollisions_.End(); ++i)
  520. {
  521. RigidBody* bodyA = i->first_.first_;
  522. RigidBody* bodyB = i->first_.second_;
  523. if (!bodyA || !bodyB)
  524. continue;
  525. btPersistentManifold* contactManifold = i->second_;
  526. int numContacts = contactManifold->getNumContacts();
  527. Node* nodeA = bodyA->GetNode();
  528. Node* nodeB = bodyB->GetNode();
  529. WeakPtr<Node> nodeWeakA(nodeA);
  530. WeakPtr<Node> nodeWeakB(nodeB);
  531. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  532. bool newCollision = !previousCollisions_.Contains(i->first_);
  533. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  534. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  535. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  536. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  537. physicsCollisionData[PhysicsCollision::P_PHANTOM] = phantom;
  538. contacts.Clear();
  539. for (int j = 0; j < numContacts; ++j)
  540. {
  541. btManifoldPoint& point = contactManifold->getContactPoint(j);
  542. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  543. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  544. contacts.WriteFloat(point.m_distance1);
  545. contacts.WriteFloat(point.m_appliedImpulse);
  546. }
  547. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  548. // Send separate collision start event if collision is new
  549. if (newCollision)
  550. {
  551. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData);
  552. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  553. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  554. continue;
  555. }
  556. // Then send the ongoing collision event
  557. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  558. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  559. continue;
  560. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  561. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  562. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  563. nodeCollisionData[NodeCollision::P_PHANTOM] = phantom;
  564. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  565. if (newCollision)
  566. {
  567. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  568. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  569. continue;
  570. }
  571. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData);
  572. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  573. continue;
  574. contacts.Clear();
  575. for (int j = 0; j < numContacts; ++j)
  576. {
  577. btManifoldPoint& point = contactManifold->getContactPoint(j);
  578. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  579. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  580. contacts.WriteFloat(point.m_distance1);
  581. contacts.WriteFloat(point.m_appliedImpulse);
  582. }
  583. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  584. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  585. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  586. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  587. if (newCollision)
  588. {
  589. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  590. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  591. continue;
  592. }
  593. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData);
  594. }
  595. }
  596. // Send collision end events as applicable
  597. {
  598. VariantMap physicsCollisionData;
  599. VariantMap nodeCollisionData;
  600. physicsCollisionData[PhysicsCollisionEnd::P_WORLD] = (void*)this;
  601. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  602. {
  603. if (!currentCollisions_.Contains(i->first_))
  604. {
  605. RigidBody* bodyA = i->first_.first_;
  606. RigidBody* bodyB = i->first_.second_;
  607. if (!bodyA || !bodyB)
  608. continue;
  609. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  610. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  611. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  612. continue;
  613. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  614. continue;
  615. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  616. !bodyA->IsActive() && !bodyB->IsActive())
  617. continue;
  618. Node* nodeA = bodyA->GetNode();
  619. Node* nodeB = bodyB->GetNode();
  620. WeakPtr<Node> nodeWeakA(nodeA);
  621. WeakPtr<Node> nodeWeakB(nodeB);
  622. physicsCollisionData[PhysicsCollisionEnd::P_BODYA] = (void*)bodyA;
  623. physicsCollisionData[PhysicsCollisionEnd::P_BODYB] = (void*)bodyB;
  624. physicsCollisionData[PhysicsCollisionEnd::P_NODEA] = (void*)nodeA;
  625. physicsCollisionData[PhysicsCollisionEnd::P_NODEB] = (void*)nodeB;
  626. physicsCollisionData[PhysicsCollisionEnd::P_PHANTOM] = phantom;
  627. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData);
  628. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  629. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  630. continue;
  631. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyA;
  632. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeB;
  633. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyB;
  634. nodeCollisionData[NodeCollisionEnd::P_PHANTOM] = phantom;
  635. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  636. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  637. continue;
  638. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyB;
  639. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeA;
  640. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyA;
  641. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  642. }
  643. }
  644. }
  645. previousCollisions_ = currentCollisions_;
  646. }
  647. void RegisterPhysicsLibrary(Context* context)
  648. {
  649. CollisionShape::RegisterObject(context);
  650. RigidBody::RegisterObject(context);
  651. Constraint::RegisterObject(context);
  652. PhysicsWorld::RegisterObject(context);
  653. }
  654. }