View.cpp 100 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "OcclusionBuffer.h"
  31. #include "Octree.h"
  32. #include "Renderer.h"
  33. #include "ResourceCache.h"
  34. #include "PostProcess.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderVariation.h"
  38. #include "Skybox.h"
  39. #include "Sort.h"
  40. #include "Technique.h"
  41. #include "Texture2D.h"
  42. #include "TextureCube.h"
  43. #include "VertexBuffer.h"
  44. #include "View.h"
  45. #include "WorkQueue.h"
  46. #include "Zone.h"
  47. #include "DebugNew.h"
  48. static const Vector3 directions[] =
  49. {
  50. Vector3(1.0f, 0.0f, 0.0f),
  51. Vector3(-1.0f, 0.0f, 0.0f),
  52. Vector3(0.0f, 1.0f, 0.0f),
  53. Vector3(0.0f, -1.0f, 0.0f),
  54. Vector3(0.0f, 0.0f, 1.0f),
  55. Vector3(0.0f, 0.0f, -1.0f)
  56. };
  57. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  58. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  59. /// %Frustum octree query for shadowcasters.
  60. class ShadowCasterOctreeQuery : public OctreeQuery
  61. {
  62. public:
  63. /// Construct with frustum and query parameters.
  64. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  65. unsigned viewMask = DEFAULT_VIEWMASK) :
  66. OctreeQuery(result, drawableFlags, viewMask),
  67. frustum_(frustum)
  68. {
  69. }
  70. /// Intersection test for an octant.
  71. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  72. {
  73. if (inside)
  74. return INSIDE;
  75. else
  76. return frustum_.IsInside(box);
  77. }
  78. /// Intersection test for drawables.
  79. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  80. {
  81. while (start != end)
  82. {
  83. Drawable* drawable = *start;
  84. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->GetCastShadows() && drawable->IsVisible() &&
  85. (drawable->GetViewMask() & viewMask_))
  86. {
  87. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  88. result_.Push(drawable);
  89. }
  90. ++start;
  91. }
  92. }
  93. /// Frustum.
  94. Frustum frustum_;
  95. };
  96. /// %Frustum octree query for zones and occluders.
  97. class ZoneOccluderOctreeQuery : public OctreeQuery
  98. {
  99. public:
  100. /// Construct with frustum and query parameters.
  101. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  102. unsigned viewMask = DEFAULT_VIEWMASK) :
  103. OctreeQuery(result, drawableFlags, viewMask),
  104. frustum_(frustum)
  105. {
  106. }
  107. /// Intersection test for an octant.
  108. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  109. {
  110. if (inside)
  111. return INSIDE;
  112. else
  113. return frustum_.IsInside(box);
  114. }
  115. /// Intersection test for drawables.
  116. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  117. {
  118. while (start != end)
  119. {
  120. Drawable* drawable = *start;
  121. unsigned char flags = drawable->GetDrawableFlags();
  122. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && drawable->IsVisible() &&
  123. (drawable->GetViewMask() & viewMask_))
  124. {
  125. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  126. result_.Push(drawable);
  127. }
  128. ++start;
  129. }
  130. }
  131. /// Frustum.
  132. Frustum frustum_;
  133. };
  134. /// %Frustum octree query with occlusion.
  135. class OccludedFrustumOctreeQuery : public OctreeQuery
  136. {
  137. public:
  138. /// Construct with frustum, occlusion buffer and query parameters.
  139. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  140. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  141. OctreeQuery(result, drawableFlags, viewMask),
  142. frustum_(frustum),
  143. buffer_(buffer)
  144. {
  145. }
  146. /// Intersection test for an octant.
  147. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  148. {
  149. if (inside)
  150. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  151. else
  152. {
  153. Intersection result = frustum_.IsInside(box);
  154. if (result != OUTSIDE && !buffer_->IsVisible(box))
  155. result = OUTSIDE;
  156. return result;
  157. }
  158. }
  159. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  160. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  161. {
  162. while (start != end)
  163. {
  164. Drawable* drawable = *start;
  165. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->IsVisible() &&
  166. (drawable->GetViewMask() & viewMask_))
  167. {
  168. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  169. result_.Push(drawable);
  170. }
  171. ++start;
  172. }
  173. }
  174. /// Frustum.
  175. Frustum frustum_;
  176. /// Occlusion buffer.
  177. OcclusionBuffer* buffer_;
  178. };
  179. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  180. {
  181. View* view = reinterpret_cast<View*>(item->aux_);
  182. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  183. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  184. OcclusionBuffer* buffer = view->occlusionBuffer_;
  185. const Matrix3x4& viewMatrix = view->camera_->GetInverseWorldTransform();
  186. while (start != end)
  187. {
  188. Drawable* drawable = *start++;
  189. drawable->UpdateBatches(view->frame_);
  190. // If draw distance non-zero, check it
  191. float maxDistance = drawable->GetDrawDistance();
  192. if ((maxDistance <= 0.0f || drawable->GetDistance() <= maxDistance) && (!buffer || !drawable->IsOccludee() ||
  193. buffer->IsVisible(drawable->GetWorldBoundingBox())))
  194. {
  195. drawable->MarkInView(view->frame_);
  196. // For geometries, clear lights, find new zone if necessary and calculate view space Z range
  197. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  198. {
  199. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  200. Vector3 center = geomBox.Center();
  201. float viewCenterZ = viewMatrix.m20_ * center.x_ + viewMatrix.m21_ * center.y_ + viewMatrix.m22_ * center.z_ +
  202. viewMatrix.m23_;
  203. Vector3 edge = geomBox.Size() * 0.5f;
  204. float viewEdgeZ = fabsf(viewMatrix.m20_) * edge.x_ + fabsf(viewMatrix.m21_) * edge.y_ + fabsf(viewMatrix.m22_) *
  205. edge.z_;
  206. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  207. drawable->ClearLights();
  208. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  209. view->FindZone(drawable, threadIndex);
  210. }
  211. }
  212. }
  213. }
  214. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  215. {
  216. View* view = reinterpret_cast<View*>(item->aux_);
  217. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  218. view->ProcessLight(*query, threadIndex);
  219. }
  220. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  221. {
  222. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  223. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  224. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  225. while (start != end)
  226. {
  227. Drawable* drawable = *start;
  228. drawable->UpdateGeometry(frame);
  229. ++start;
  230. }
  231. }
  232. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  233. {
  234. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  235. queue->SortFrontToBack();
  236. }
  237. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  238. {
  239. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  240. queue->SortBackToFront();
  241. }
  242. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  243. {
  244. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  245. start->litBatches_.SortFrontToBack();
  246. }
  247. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  248. {
  249. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  250. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  251. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  252. }
  253. OBJECTTYPESTATIC(View);
  254. View::View(Context* context) :
  255. Object(context),
  256. graphics_(GetSubsystem<Graphics>()),
  257. renderer_(GetSubsystem<Renderer>()),
  258. octree_(0),
  259. camera_(0),
  260. cameraZone_(0),
  261. farClipZone_(0),
  262. renderTarget_(0)
  263. {
  264. frame_.camera_ = 0;
  265. // Create octree query vector for each thread
  266. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  267. }
  268. View::~View()
  269. {
  270. }
  271. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  272. {
  273. Scene* scene = viewport->GetScene();
  274. Camera* camera = viewport->GetCamera();
  275. if (!scene || !camera || !camera->GetNode())
  276. return false;
  277. // If scene is loading asynchronously, it is incomplete and should not be rendered
  278. if (scene->IsAsyncLoading())
  279. return false;
  280. Octree* octree = scene->GetComponent<Octree>();
  281. if (!octree)
  282. return false;
  283. renderMode_ = renderer_->GetRenderMode();
  284. octree_ = octree;
  285. camera_ = camera;
  286. cameraNode_ = camera->GetNode();
  287. renderTarget_ = renderTarget;
  288. // Get active post-processing effects on the viewport
  289. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  290. postProcesses_.Clear();
  291. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  292. {
  293. PostProcess* effect = i->Get();
  294. if (effect && effect->IsActive())
  295. postProcesses_.Push(*i);
  296. }
  297. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  298. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  299. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  300. const IntRect& rect = viewport->GetRect();
  301. if (rect != IntRect::ZERO)
  302. {
  303. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  304. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  305. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  306. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  307. }
  308. else
  309. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  310. viewSize_ = IntVector2(viewRect_.right_ - viewRect_.left_, viewRect_.bottom_ - viewRect_.top_);
  311. rtSize_ = IntVector2(rtWidth, rtHeight);
  312. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  313. #ifdef USE_OPENGL
  314. if (renderTarget_)
  315. {
  316. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  317. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  318. }
  319. #endif
  320. drawShadows_ = renderer_->GetDrawShadows();
  321. materialQuality_ = renderer_->GetMaterialQuality();
  322. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  323. // Set possible quality overrides from the camera
  324. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  325. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  326. materialQuality_ = QUALITY_LOW;
  327. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  328. drawShadows_ = false;
  329. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  330. maxOccluderTriangles_ = 0;
  331. return true;
  332. }
  333. void View::Update(const FrameInfo& frame)
  334. {
  335. if (!camera_ || !octree_)
  336. return;
  337. frame_.camera_ = camera_;
  338. frame_.timeStep_ = frame.timeStep_;
  339. frame_.frameNumber_ = frame.frameNumber_;
  340. frame_.viewSize_ = viewSize_;
  341. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  342. // Clear screen buffers, geometry, light, occluder & batch lists
  343. screenBuffers_.Clear();
  344. geometries_.Clear();
  345. shadowGeometries_.Clear();
  346. lights_.Clear();
  347. zones_.Clear();
  348. occluders_.Clear();
  349. baseQueue_.Clear(maxSortedInstances);
  350. preAlphaQueue_.Clear(maxSortedInstances);
  351. gbufferQueue_.Clear(maxSortedInstances);
  352. alphaQueue_.Clear(maxSortedInstances);
  353. postAlphaQueue_.Clear(maxSortedInstances);
  354. vertexLightQueues_.Clear();
  355. // Do not update if camera projection is illegal
  356. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  357. if (!camera_->IsProjectionValid())
  358. return;
  359. // Set automatic aspect ratio if required
  360. if (camera_->GetAutoAspectRatio())
  361. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  362. GetDrawables();
  363. GetBatches();
  364. UpdateGeometries();
  365. }
  366. void View::Render()
  367. {
  368. if (!octree_ || !camera_)
  369. return;
  370. // Allocate screen buffers for post-processing and blitting as necessary
  371. AllocateScreenBuffers();
  372. // Forget parameter sources from the previous view
  373. graphics_->ClearParameterSources();
  374. // If stream offset is supported, write all instance transforms to a single large buffer
  375. // Else we must lock the instance buffer for each batch group
  376. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  377. PrepareInstancingBuffer();
  378. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  379. // again to ensure correct projection will be used
  380. if (camera_->GetAutoAspectRatio())
  381. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  382. graphics_->SetColorWrite(true);
  383. graphics_->SetFillMode(FILL_SOLID);
  384. // Bind the face selection and indirection cube maps for point light shadows
  385. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  386. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  387. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  388. // ie. when using deferred rendering and/or doing post-processing
  389. if (renderTarget_)
  390. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  391. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  392. // as a render texture produced on Direct3D9
  393. #ifdef USE_OPENGL
  394. if (renderTarget_)
  395. camera_->SetFlipVertical(true);
  396. #endif
  397. // Render
  398. if (renderMode_ == RENDER_FORWARD)
  399. RenderBatchesForward();
  400. else
  401. RenderBatchesDeferred();
  402. #ifdef USE_OPENGL
  403. camera_->SetFlipVertical(false);
  404. #endif
  405. graphics_->SetViewTexture(0);
  406. graphics_->SetScissorTest(false);
  407. graphics_->SetStencilTest(false);
  408. graphics_->ResetStreamFrequencies();
  409. // Run post-processes or framebuffer blitting now
  410. if (screenBuffers_.Size())
  411. {
  412. if (postProcesses_.Size())
  413. RunPostProcesses();
  414. else
  415. BlitFramebuffer();
  416. }
  417. // If this is a main view, draw the associated debug geometry now
  418. if (!renderTarget_)
  419. {
  420. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  421. if (debug)
  422. {
  423. debug->SetView(camera_);
  424. debug->Render();
  425. }
  426. }
  427. // "Forget" the camera, octree and zone after rendering
  428. camera_ = 0;
  429. octree_ = 0;
  430. cameraZone_ = 0;
  431. farClipZone_ = 0;
  432. occlusionBuffer_ = 0;
  433. frame_.camera_ = 0;
  434. }
  435. void View::GetDrawables()
  436. {
  437. PROFILE(GetDrawables);
  438. WorkQueue* queue = GetSubsystem<WorkQueue>();
  439. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  440. // Get zones and occluders first
  441. {
  442. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE);
  443. octree_->GetDrawables(query);
  444. }
  445. highestZonePriority_ = M_MIN_INT;
  446. int bestPriority = M_MIN_INT;
  447. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  448. // Get default zone first in case we do not have zones defined
  449. Zone* defaultZone = renderer_->GetDefaultZone();
  450. cameraZone_ = farClipZone_ = defaultZone;
  451. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  452. {
  453. Drawable* drawable = *i;
  454. unsigned char flags = drawable->GetDrawableFlags();
  455. if (flags & DRAWABLE_ZONE)
  456. {
  457. Zone* zone = static_cast<Zone*>(drawable);
  458. zones_.Push(zone);
  459. int priority = zone->GetPriority();
  460. if (priority > highestZonePriority_)
  461. highestZonePriority_ = priority;
  462. if (zone->IsInside(cameraPos) && priority > bestPriority)
  463. {
  464. cameraZone_ = zone;
  465. bestPriority = priority;
  466. }
  467. }
  468. else
  469. occluders_.Push(drawable);
  470. }
  471. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  472. cameraZoneOverride_ = cameraZone_->GetOverride();
  473. if (!cameraZoneOverride_)
  474. {
  475. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  476. bestPriority = M_MIN_INT;
  477. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  478. {
  479. int priority = (*i)->GetPriority();
  480. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  481. {
  482. farClipZone_ = *i;
  483. bestPriority = priority;
  484. }
  485. }
  486. }
  487. if (farClipZone_ == defaultZone)
  488. farClipZone_ = cameraZone_;
  489. // If occlusion in use, get & render the occluders
  490. occlusionBuffer_ = 0;
  491. if (maxOccluderTriangles_ > 0)
  492. {
  493. UpdateOccluders(occluders_, camera_);
  494. if (occluders_.Size())
  495. {
  496. PROFILE(DrawOcclusion);
  497. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  498. DrawOccluders(occlusionBuffer_, occluders_);
  499. }
  500. }
  501. // Get lights and geometries. Coarse occlusion for octants is used at this point
  502. if (occlusionBuffer_)
  503. {
  504. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  505. DRAWABLE_LIGHT);
  506. octree_->GetDrawables(query);
  507. }
  508. else
  509. {
  510. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  511. octree_->GetDrawables(query);
  512. }
  513. // Check drawable occlusion and find zones for moved drawables in worker threads
  514. {
  515. WorkItem item;
  516. item.workFunction_ = CheckVisibilityWork;
  517. item.aux_ = this;
  518. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  519. while (start != tempDrawables.End())
  520. {
  521. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  522. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  523. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  524. item.start_ = &(*start);
  525. item.end_ = &(*end);
  526. queue->AddWorkItem(item);
  527. start = end;
  528. }
  529. queue->Complete();
  530. }
  531. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  532. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  533. sceneBox_.defined_ = false;
  534. minZ_ = M_INFINITY;
  535. maxZ_ = 0.0f;
  536. const Matrix3x4& view = camera_->GetInverseWorldTransform();
  537. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  538. {
  539. Drawable* drawable = tempDrawables[i];
  540. if (!drawable->IsInView(frame_))
  541. continue;
  542. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  543. {
  544. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  545. if (drawable->GetType() != Skybox::GetTypeStatic())
  546. {
  547. sceneBox_.Merge(drawable->GetWorldBoundingBox());
  548. minZ_ = Min(minZ_, drawable->GetMinZ());
  549. maxZ_ = Max(maxZ_, drawable->GetMaxZ());
  550. }
  551. geometries_.Push(drawable);
  552. }
  553. else
  554. {
  555. Light* light = static_cast<Light*>(drawable);
  556. // Skip lights which are so dim that they can not contribute to a rendertarget
  557. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  558. lights_.Push(light);
  559. }
  560. }
  561. if (minZ_ == M_INFINITY)
  562. minZ_ = 0.0f;
  563. // Sort the lights to brightest/closest first
  564. for (unsigned i = 0; i < lights_.Size(); ++i)
  565. {
  566. Light* light = lights_[i];
  567. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  568. light->SetLightQueue(0);
  569. }
  570. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  571. }
  572. void View::GetBatches()
  573. {
  574. WorkQueue* queue = GetSubsystem<WorkQueue>();
  575. PODVector<Light*> vertexLights;
  576. // Process lit geometries and shadow casters for each light
  577. {
  578. PROFILE(ProcessLights);
  579. lightQueryResults_.Resize(lights_.Size());
  580. WorkItem item;
  581. item.workFunction_ = ProcessLightWork;
  582. item.aux_ = this;
  583. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  584. {
  585. LightQueryResult& query = lightQueryResults_[i];
  586. query.light_ = lights_[i];
  587. item.start_ = &query;
  588. queue->AddWorkItem(item);
  589. }
  590. // Ensure all lights have been processed before proceeding
  591. queue->Complete();
  592. }
  593. // Build light queues and lit batches
  594. {
  595. PROFILE(GetLightBatches);
  596. // Preallocate light queues: per-pixel lights which have lit geometries
  597. unsigned numLightQueues = 0;
  598. unsigned usedLightQueues = 0;
  599. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  600. {
  601. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  602. ++numLightQueues;
  603. }
  604. lightQueues_.Resize(numLightQueues);
  605. maxLightsDrawables_.Clear();
  606. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  607. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  608. {
  609. LightQueryResult& query = *i;
  610. // If light has no affected geometries, no need to process further
  611. if (query.litGeometries_.Empty())
  612. continue;
  613. Light* light = query.light_;
  614. // Per-pixel light
  615. if (!light->GetPerVertex())
  616. {
  617. unsigned shadowSplits = query.numSplits_;
  618. // Initialize light queue and store it to the light so that it can be found later
  619. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  620. light->SetLightQueue(&lightQueue);
  621. lightQueue.light_ = light;
  622. lightQueue.shadowMap_ = 0;
  623. lightQueue.litBatches_.Clear(maxSortedInstances);
  624. lightQueue.volumeBatches_.Clear();
  625. // Allocate shadow map now
  626. if (shadowSplits > 0)
  627. {
  628. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  629. // If did not manage to get a shadow map, convert the light to unshadowed
  630. if (!lightQueue.shadowMap_)
  631. shadowSplits = 0;
  632. }
  633. // Setup shadow batch queues
  634. lightQueue.shadowSplits_.Resize(shadowSplits);
  635. for (unsigned j = 0; j < shadowSplits; ++j)
  636. {
  637. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  638. Camera* shadowCamera = query.shadowCameras_[j];
  639. shadowQueue.shadowCamera_ = shadowCamera;
  640. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  641. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  642. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  643. // Setup the shadow split viewport and finalize shadow camera parameters
  644. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  645. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  646. // Loop through shadow casters
  647. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  648. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  649. {
  650. Drawable* drawable = *k;
  651. if (!drawable->IsInView(frame_, false))
  652. {
  653. drawable->MarkInView(frame_, false);
  654. shadowGeometries_.Push(drawable);
  655. }
  656. Zone* zone = GetZone(drawable);
  657. const Vector<SourceBatch>& batches = drawable->GetBatches();
  658. for (unsigned l = 0; l < batches.Size(); ++l)
  659. {
  660. const SourceBatch& srcBatch = batches[l];
  661. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  662. if (!srcBatch.geometry_ || !tech)
  663. continue;
  664. Pass* pass = tech->GetPass(PASS_SHADOW);
  665. // Skip if material has no shadow pass
  666. if (!pass)
  667. continue;
  668. Batch destBatch(srcBatch);
  669. destBatch.pass_ = pass;
  670. destBatch.camera_ = shadowCamera;
  671. destBatch.zone_ = zone;
  672. destBatch.lightQueue_ = &lightQueue;
  673. AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech);
  674. }
  675. }
  676. }
  677. // Process lit geometries
  678. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  679. {
  680. Drawable* drawable = *j;
  681. drawable->AddLight(light);
  682. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  683. if (!drawable->GetMaxLights())
  684. GetLitBatches(drawable, lightQueue);
  685. else
  686. maxLightsDrawables_.Insert(drawable);
  687. }
  688. // In deferred modes, store the light volume batch now
  689. if (renderMode_ != RENDER_FORWARD)
  690. {
  691. Batch volumeBatch;
  692. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  693. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  694. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  695. volumeBatch.camera_ = camera_;
  696. volumeBatch.lightQueue_ = &lightQueue;
  697. volumeBatch.distance_ = light->GetDistance();
  698. volumeBatch.material_ = 0;
  699. volumeBatch.pass_ = 0;
  700. volumeBatch.zone_ = 0;
  701. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  702. lightQueue.volumeBatches_.Push(volumeBatch);
  703. }
  704. }
  705. // Per-vertex light
  706. else
  707. {
  708. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  709. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  710. {
  711. Drawable* drawable = *j;
  712. drawable->AddVertexLight(light);
  713. }
  714. }
  715. }
  716. }
  717. // Process drawables with limited per-pixel light count
  718. if (maxLightsDrawables_.Size())
  719. {
  720. PROFILE(GetMaxLightsBatches);
  721. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  722. {
  723. Drawable* drawable = *i;
  724. drawable->LimitLights();
  725. const PODVector<Light*>& lights = drawable->GetLights();
  726. for (unsigned i = 0; i < lights.Size(); ++i)
  727. {
  728. Light* light = lights[i];
  729. // Find the correct light queue again
  730. LightBatchQueue* queue = light->GetLightQueue();
  731. if (queue)
  732. GetLitBatches(drawable, *queue);
  733. }
  734. }
  735. }
  736. // Build base pass batches
  737. {
  738. PROFILE(GetBaseBatches);
  739. hasZeroLightMask_ = false;
  740. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  741. {
  742. Drawable* drawable = *i;
  743. Zone* zone = GetZone(drawable);
  744. const Vector<SourceBatch>& batches = drawable->GetBatches();
  745. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  746. if (!drawableVertexLights.Empty())
  747. drawable->LimitVertexLights();
  748. for (unsigned j = 0; j < batches.Size(); ++j)
  749. {
  750. const SourceBatch& srcBatch = batches[j];
  751. // Check here if the material refers to a rendertarget texture with camera(s) attached
  752. // Only check this for the main view (null rendertarget)
  753. if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  754. CheckMaterialForAuxView(srcBatch.material_);
  755. // If already has a lit base pass, skip (forward rendering only)
  756. if (j < 32 && drawable->HasBasePass(j))
  757. continue;
  758. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  759. if (!srcBatch.geometry_ || !tech)
  760. continue;
  761. Batch destBatch(srcBatch);
  762. destBatch.camera_ = camera_;
  763. destBatch.zone_ = zone;
  764. destBatch.isBase_ = true;
  765. destBatch.pass_ = 0;
  766. destBatch.lightMask_ = GetLightMask(drawable);
  767. // In deferred modes check for G-buffer and material passes first
  768. if (renderMode_ == RENDER_PREPASS)
  769. {
  770. destBatch.pass_ = tech->GetPass(PASS_PREPASS);
  771. if (destBatch.pass_)
  772. {
  773. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  774. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  775. hasZeroLightMask_ = true;
  776. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  777. AddBatchToQueue(gbufferQueue_, destBatch, tech, destBatch.lightMask_ == (zone->GetLightMask() & 0xff));
  778. destBatch.pass_ = tech->GetPass(PASS_MATERIAL);
  779. }
  780. }
  781. if (renderMode_ == RENDER_DEFERRED)
  782. destBatch.pass_ = tech->GetPass(PASS_DEFERRED);
  783. // Next check for forward unlit base pass
  784. if (!destBatch.pass_)
  785. destBatch.pass_ = tech->GetPass(PASS_BASE);
  786. if (destBatch.pass_)
  787. {
  788. // Check for vertex lights (both forward unlit, light pre-pass material pass, and deferred G-buffer)
  789. if (!drawableVertexLights.Empty())
  790. {
  791. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  792. // them to prevent double-lighting
  793. if (renderMode_ != RENDER_FORWARD && destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  794. {
  795. vertexLights.Clear();
  796. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  797. {
  798. if (drawableVertexLights[i]->GetPerVertex())
  799. vertexLights.Push(drawableVertexLights[i]);
  800. }
  801. }
  802. else
  803. vertexLights = drawableVertexLights;
  804. if (!vertexLights.Empty())
  805. {
  806. // Find a vertex light queue. If not found, create new
  807. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  808. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  809. if (i == vertexLightQueues_.End())
  810. {
  811. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  812. i->second_.light_ = 0;
  813. i->second_.shadowMap_ = 0;
  814. i->second_.vertexLights_ = vertexLights;
  815. }
  816. destBatch.lightQueue_ = &(i->second_);
  817. }
  818. }
  819. // Check whether batch is opaque or transparent
  820. if (destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  821. {
  822. if (destBatch.pass_->GetType() != PASS_DEFERRED)
  823. AddBatchToQueue(baseQueue_, destBatch, tech);
  824. else
  825. {
  826. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  827. AddBatchToQueue(gbufferQueue_, destBatch, tech, destBatch.lightMask_ == (destBatch.zone_->GetLightMask() & 0xff));
  828. }
  829. }
  830. else
  831. {
  832. // Transparent batches can not be instanced
  833. AddBatchToQueue(alphaQueue_, destBatch, tech, false);
  834. }
  835. continue;
  836. }
  837. // If no pass found so far, finally check for pre-alpha / post-alpha custom passes
  838. destBatch.pass_ = tech->GetPass(PASS_PREALPHA);
  839. if (destBatch.pass_)
  840. {
  841. AddBatchToQueue(preAlphaQueue_, destBatch, tech);
  842. continue;
  843. }
  844. destBatch.pass_ = tech->GetPass(PASS_POSTALPHA);
  845. if (destBatch.pass_)
  846. {
  847. // Post-alpha pass is treated similarly as alpha, and is not instanced
  848. AddBatchToQueue(postAlphaQueue_, destBatch, tech, false);
  849. continue;
  850. }
  851. }
  852. }
  853. }
  854. }
  855. void View::UpdateGeometries()
  856. {
  857. PROFILE(SortAndUpdateGeometry);
  858. WorkQueue* queue = GetSubsystem<WorkQueue>();
  859. // Sort batches
  860. {
  861. WorkItem item;
  862. item.workFunction_ = SortBatchQueueFrontToBackWork;
  863. item.start_ = &baseQueue_;
  864. queue->AddWorkItem(item);
  865. item.start_ = &preAlphaQueue_;
  866. queue->AddWorkItem(item);
  867. if (renderMode_ != RENDER_FORWARD)
  868. {
  869. item.start_ = &gbufferQueue_;
  870. queue->AddWorkItem(item);
  871. }
  872. item.workFunction_ = SortBatchQueueBackToFrontWork;
  873. item.start_ = &alphaQueue_;
  874. queue->AddWorkItem(item);
  875. item.start_ = &postAlphaQueue_;
  876. queue->AddWorkItem(item);
  877. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  878. {
  879. item.workFunction_ = SortLightQueueWork;
  880. item.start_ = &(*i);
  881. queue->AddWorkItem(item);
  882. if (i->shadowSplits_.Size())
  883. {
  884. item.workFunction_ = SortShadowQueueWork;
  885. queue->AddWorkItem(item);
  886. }
  887. }
  888. }
  889. // Update geometries. Split into threaded and non-threaded updates.
  890. {
  891. nonThreadedGeometries_.Clear();
  892. threadedGeometries_.Clear();
  893. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  894. {
  895. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  896. if (type == UPDATE_MAIN_THREAD)
  897. nonThreadedGeometries_.Push(*i);
  898. else if (type == UPDATE_WORKER_THREAD)
  899. threadedGeometries_.Push(*i);
  900. }
  901. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  902. {
  903. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  904. if (type == UPDATE_MAIN_THREAD)
  905. nonThreadedGeometries_.Push(*i);
  906. else if (type == UPDATE_WORKER_THREAD)
  907. threadedGeometries_.Push(*i);
  908. }
  909. if (threadedGeometries_.Size())
  910. {
  911. WorkItem item;
  912. item.workFunction_ = UpdateDrawableGeometriesWork;
  913. item.aux_ = const_cast<FrameInfo*>(&frame_);
  914. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  915. while (start != threadedGeometries_.End())
  916. {
  917. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  918. if (end - start > DRAWABLES_PER_WORK_ITEM)
  919. end = start + DRAWABLES_PER_WORK_ITEM;
  920. item.start_ = &(*start);
  921. item.end_ = &(*end);
  922. queue->AddWorkItem(item);
  923. start = end;
  924. }
  925. }
  926. // While the work queue is processed, update non-threaded geometries
  927. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  928. (*i)->UpdateGeometry(frame_);
  929. }
  930. // Finally ensure all threaded work has completed
  931. queue->Complete();
  932. }
  933. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  934. {
  935. Light* light = lightQueue.light_;
  936. Zone* zone = GetZone(drawable);
  937. const Vector<SourceBatch>& batches = drawable->GetBatches();
  938. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  939. // Shadows on transparencies can only be rendered if shadow maps are not reused
  940. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  941. bool allowLitBase = light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  942. for (unsigned i = 0; i < batches.Size(); ++i)
  943. {
  944. const SourceBatch& srcBatch = batches[i];
  945. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  946. if (!srcBatch.geometry_ || !tech)
  947. continue;
  948. // Do not create pixel lit forward passes for materials that render into the G-buffer
  949. if ((renderMode_ == RENDER_PREPASS && tech->HasPass(PASS_PREPASS)) || (renderMode_ == RENDER_DEFERRED &&
  950. tech->HasPass(PASS_DEFERRED)))
  951. continue;
  952. Batch destBatch(srcBatch);
  953. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  954. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  955. if (i < 32 && allowLitBase)
  956. {
  957. destBatch.pass_ = tech->GetPass(PASS_LITBASE);
  958. if (destBatch.pass_)
  959. {
  960. destBatch.isBase_ = true;
  961. drawable->SetBasePass(i);
  962. }
  963. else
  964. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  965. }
  966. else
  967. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  968. // Skip if material does not receive light at all
  969. if (!destBatch.pass_)
  970. continue;
  971. destBatch.camera_ = camera_;
  972. destBatch.lightQueue_ = &lightQueue;
  973. destBatch.zone_ = zone;
  974. // Check from the ambient pass whether the object is opaque or transparent
  975. Pass* ambientPass = tech->GetPass(PASS_BASE);
  976. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  977. AddBatchToQueue(lightQueue.litBatches_, destBatch, tech);
  978. else
  979. {
  980. // Transparent batches can not be instanced
  981. AddBatchToQueue(alphaQueue_, destBatch, tech, false, allowTransparentShadows);
  982. }
  983. }
  984. }
  985. void View::RenderBatchesForward()
  986. {
  987. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  988. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  989. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  990. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  991. // If not reusing shadowmaps, render all of them first
  992. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  993. {
  994. PROFILE(RenderShadowMaps);
  995. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  996. {
  997. if (i->shadowMap_)
  998. RenderShadowMap(*i);
  999. }
  1000. }
  1001. graphics_->SetRenderTarget(0, renderTarget);
  1002. graphics_->SetDepthStencil(depthStencil);
  1003. graphics_->SetViewport(viewRect_);
  1004. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1005. // Render opaque object unlit base pass
  1006. if (!baseQueue_.IsEmpty())
  1007. {
  1008. PROFILE(RenderBase);
  1009. baseQueue_.Draw(graphics_, renderer_);
  1010. }
  1011. // Render shadow maps + opaque objects' additive lighting
  1012. if (!lightQueues_.Empty())
  1013. {
  1014. PROFILE(RenderLights);
  1015. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1016. {
  1017. // If reusing shadowmaps, render each of them before the lit batches
  1018. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1019. {
  1020. RenderShadowMap(*i);
  1021. graphics_->SetRenderTarget(0, renderTarget);
  1022. graphics_->SetDepthStencil(depthStencil);
  1023. graphics_->SetViewport(viewRect_);
  1024. }
  1025. i->litBatches_.Draw(i->light_, graphics_, renderer_);
  1026. }
  1027. }
  1028. graphics_->SetScissorTest(false);
  1029. graphics_->SetStencilTest(false);
  1030. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1031. graphics_->SetAlphaTest(false);
  1032. graphics_->SetBlendMode(BLEND_REPLACE);
  1033. graphics_->SetColorWrite(true);
  1034. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1035. graphics_->SetDepthWrite(false);
  1036. graphics_->SetScissorTest(false);
  1037. graphics_->SetStencilTest(false);
  1038. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1039. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1040. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  1041. DrawFullscreenQuad(camera_, false);
  1042. // Render pre-alpha custom pass
  1043. if (!preAlphaQueue_.IsEmpty())
  1044. {
  1045. PROFILE(RenderPreAlpha);
  1046. preAlphaQueue_.Draw(graphics_, renderer_);
  1047. }
  1048. // Render transparent objects (both base passes & additive lighting)
  1049. if (!alphaQueue_.IsEmpty())
  1050. {
  1051. PROFILE(RenderAlpha);
  1052. alphaQueue_.Draw(graphics_, renderer_, true);
  1053. }
  1054. // Render post-alpha custom pass
  1055. if (!postAlphaQueue_.IsEmpty())
  1056. {
  1057. PROFILE(RenderPostAlpha);
  1058. postAlphaQueue_.Draw(graphics_, renderer_);
  1059. }
  1060. // Resolve multisampled backbuffer now if necessary
  1061. if (resolve)
  1062. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  1063. }
  1064. void View::RenderBatchesDeferred()
  1065. {
  1066. // If not reusing shadowmaps, render all of them first
  1067. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1068. {
  1069. PROFILE(RenderShadowMaps);
  1070. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1071. {
  1072. if (i->shadowMap_)
  1073. RenderShadowMap(*i);
  1074. }
  1075. }
  1076. bool hwDepth = graphics_->GetHardwareDepthSupport();
  1077. // In light prepass mode the albedo buffer is used for light accumulation instead
  1078. Texture2D* albedoBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1079. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1080. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  1081. Graphics::GetLinearDepthFormat());
  1082. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  1083. RenderSurface* depthStencil = hwDepth ? depthBuffer->GetRenderSurface() : renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  1084. if (renderMode_ == RENDER_PREPASS)
  1085. {
  1086. graphics_->SetRenderTarget(0, normalBuffer);
  1087. if (!hwDepth)
  1088. graphics_->SetRenderTarget(1, depthBuffer);
  1089. }
  1090. else
  1091. {
  1092. graphics_->SetRenderTarget(0, renderTarget);
  1093. graphics_->SetRenderTarget(1, albedoBuffer);
  1094. graphics_->SetRenderTarget(2, normalBuffer);
  1095. if (!hwDepth)
  1096. graphics_->SetRenderTarget(3, depthBuffer);
  1097. }
  1098. graphics_->SetDepthStencil(depthStencil);
  1099. graphics_->SetViewport(viewRect_);
  1100. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1101. // Render G-buffer batches
  1102. if (!gbufferQueue_.IsEmpty())
  1103. {
  1104. PROFILE(RenderGBuffer);
  1105. gbufferQueue_.Draw(graphics_, renderer_, false, true);
  1106. }
  1107. // Clear the light accumulation buffer (light pre-pass only.) However, skip the clear if the first light is a directional
  1108. // light with full mask
  1109. RenderSurface* lightRenderTarget = renderMode_ == RENDER_PREPASS ? albedoBuffer->GetRenderSurface() : renderTarget;
  1110. if (renderMode_ == RENDER_PREPASS)
  1111. {
  1112. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  1113. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  1114. graphics_->SetRenderTarget(0, lightRenderTarget);
  1115. graphics_->ResetRenderTarget(1);
  1116. graphics_->SetDepthStencil(depthStencil);
  1117. graphics_->SetViewport(viewRect_);
  1118. if (!optimizeLightBuffer)
  1119. graphics_->Clear(CLEAR_COLOR);
  1120. }
  1121. else
  1122. {
  1123. graphics_->ResetRenderTarget(1);
  1124. graphics_->ResetRenderTarget(2);
  1125. graphics_->ResetRenderTarget(3);
  1126. }
  1127. // Render shadow maps + light volumes
  1128. if (!lightQueues_.Empty())
  1129. {
  1130. PROFILE(RenderLights);
  1131. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1132. {
  1133. // If reusing shadowmaps, render each of them before the lit batches
  1134. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1135. {
  1136. RenderShadowMap(*i);
  1137. graphics_->SetRenderTarget(0, lightRenderTarget);
  1138. graphics_->SetDepthStencil(depthStencil);
  1139. graphics_->SetViewport(viewRect_);
  1140. }
  1141. if (renderMode_ == RENDER_DEFERRED)
  1142. graphics_->SetTexture(TU_ALBEDOBUFFER, albedoBuffer);
  1143. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  1144. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  1145. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1146. {
  1147. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1148. i->volumeBatches_[j].Draw(graphics_, renderer_);
  1149. }
  1150. }
  1151. }
  1152. graphics_->SetTexture(TU_ALBEDOBUFFER, 0);
  1153. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  1154. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  1155. if (renderMode_ == RENDER_PREPASS)
  1156. {
  1157. graphics_->SetRenderTarget(0, renderTarget);
  1158. graphics_->SetDepthStencil(depthStencil);
  1159. graphics_->SetViewport(viewRect_);
  1160. }
  1161. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1162. graphics_->SetAlphaTest(false);
  1163. graphics_->SetBlendMode(BLEND_REPLACE);
  1164. graphics_->SetColorWrite(true);
  1165. graphics_->SetDepthTest(CMP_ALWAYS);
  1166. graphics_->SetDepthWrite(false);
  1167. graphics_->SetScissorTest(false);
  1168. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  1169. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1170. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1171. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  1172. DrawFullscreenQuad(camera_, false);
  1173. // Render opaque objects with deferred lighting result (light pre-pass only)
  1174. if (!baseQueue_.IsEmpty())
  1175. {
  1176. PROFILE(RenderBase);
  1177. graphics_->SetTexture(TU_LIGHTBUFFER, renderMode_ == RENDER_PREPASS ? albedoBuffer : 0);
  1178. baseQueue_.Draw(graphics_, renderer_);
  1179. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1180. }
  1181. // Render pre-alpha custom pass
  1182. if (!preAlphaQueue_.IsEmpty())
  1183. {
  1184. PROFILE(RenderPreAlpha);
  1185. preAlphaQueue_.Draw(graphics_, renderer_);
  1186. }
  1187. // Render transparent objects (both base passes & additive lighting)
  1188. if (!alphaQueue_.IsEmpty())
  1189. {
  1190. PROFILE(RenderAlpha);
  1191. alphaQueue_.Draw(graphics_, renderer_, true);
  1192. }
  1193. // Render post-alpha custom pass
  1194. if (!postAlphaQueue_.IsEmpty())
  1195. {
  1196. PROFILE(RenderPostAlpha);
  1197. postAlphaQueue_.Draw(graphics_, renderer_);
  1198. }
  1199. }
  1200. void View::AllocateScreenBuffers()
  1201. {
  1202. unsigned neededBuffers = 0;
  1203. #ifdef USE_OPENGL
  1204. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1205. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1206. if (renderMode_ != RENDER_FORWARD && (!renderTarget_ || (renderMode_ == RENDER_DEFERRED &&
  1207. renderTarget_->GetParentTexture()->GetFormat() != Graphics::GetRGBAFormat())))
  1208. neededBuffers = 1;
  1209. #endif
  1210. unsigned postProcessPasses = 0;
  1211. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1212. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1213. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1214. if (postProcessPasses)
  1215. neededBuffers = Min((int)postProcessPasses, 2);
  1216. unsigned format = Graphics::GetRGBFormat();
  1217. #ifdef USE_OPENGL
  1218. if (renderMode_ == RENDER_DEFERRED)
  1219. format = Graphics::GetRGBAFormat();
  1220. #endif
  1221. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1222. for (unsigned i = 0; i < neededBuffers; ++i)
  1223. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true));
  1224. }
  1225. void View::BlitFramebuffer()
  1226. {
  1227. // Blit the final image to destination rendertarget
  1228. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1229. graphics_->SetAlphaTest(false);
  1230. graphics_->SetBlendMode(BLEND_REPLACE);
  1231. graphics_->SetDepthTest(CMP_ALWAYS);
  1232. graphics_->SetDepthWrite(true);
  1233. graphics_->SetScissorTest(false);
  1234. graphics_->SetStencilTest(false);
  1235. graphics_->SetRenderTarget(0, renderTarget_);
  1236. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1237. graphics_->SetViewport(viewRect_);
  1238. String shaderName = "CopyFramebuffer";
  1239. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1240. float rtWidth = (float)rtSize_.x_;
  1241. float rtHeight = (float)rtSize_.y_;
  1242. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1243. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1244. #ifdef USE_OPENGL
  1245. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1246. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1247. #else
  1248. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1249. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1250. #endif
  1251. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1252. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1253. DrawFullscreenQuad(camera_, false);
  1254. }
  1255. void View::RunPostProcesses()
  1256. {
  1257. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1258. // Ping-pong buffer indices for read and write
  1259. unsigned readRtIndex = 0;
  1260. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1261. graphics_->SetAlphaTest(false);
  1262. graphics_->SetBlendMode(BLEND_REPLACE);
  1263. graphics_->SetDepthTest(CMP_ALWAYS);
  1264. graphics_->SetScissorTest(false);
  1265. graphics_->SetStencilTest(false);
  1266. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1267. {
  1268. PostProcess* effect = postProcesses_[i];
  1269. // For each effect, rendertargets can be re-used. Allocate them now
  1270. renderer_->SaveScreenBufferAllocations();
  1271. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1272. HashMap<StringHash, Texture2D*> renderTargets;
  1273. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1274. renderTargetInfos.End(); ++j)
  1275. {
  1276. unsigned width = j->second_.size_.x_;
  1277. unsigned height = j->second_.size_.y_;
  1278. if (j->second_.sizeDivisor_)
  1279. {
  1280. width = viewSize_.x_ / width;
  1281. height = viewSize_.y_ / height;
  1282. }
  1283. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1284. }
  1285. // Run each effect pass
  1286. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1287. {
  1288. PostProcessPass* pass = effect->GetPass(j);
  1289. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1290. bool swapBuffers = false;
  1291. // Write depth on the last pass only
  1292. graphics_->SetDepthWrite(lastPass);
  1293. // Set output rendertarget
  1294. RenderSurface* rt = 0;
  1295. String output = pass->GetOutput().ToLower();
  1296. if (output == "viewport")
  1297. {
  1298. if (!lastPass)
  1299. {
  1300. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1301. swapBuffers = true;
  1302. }
  1303. else
  1304. rt = renderTarget_;
  1305. graphics_->SetRenderTarget(0, rt);
  1306. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1307. graphics_->SetViewport(viewRect_);
  1308. }
  1309. else
  1310. {
  1311. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1312. if (k != renderTargets.End())
  1313. rt = k->second_->GetRenderSurface();
  1314. else
  1315. continue; // Skip pass if rendertarget can not be found
  1316. graphics_->SetRenderTarget(0, rt);
  1317. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1318. graphics_->SetViewport(IntRect(0, 0, rt->GetWidth(), rt->GetHeight()));
  1319. }
  1320. // Set shaders, shader parameters and textures
  1321. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1322. renderer_->GetPixelShader(pass->GetPixelShader()));
  1323. const HashMap<StringHash, Vector4>& globalParameters = effect->GetShaderParameters();
  1324. for (HashMap<StringHash, Vector4>::ConstIterator k = globalParameters.Begin(); k != globalParameters.End(); ++k)
  1325. graphics_->SetShaderParameter(k->first_, k->second_);
  1326. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1327. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1328. graphics_->SetShaderParameter(k->first_, k->second_);
  1329. float rtWidth = (float)rtSize_.x_;
  1330. float rtHeight = (float)rtSize_.y_;
  1331. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1332. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1333. #ifdef USE_OPENGL
  1334. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1335. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1336. #else
  1337. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1338. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1339. #endif
  1340. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1341. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1342. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1343. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator k = renderTargetInfos.Begin(); k !=
  1344. renderTargetInfos.End(); ++k)
  1345. {
  1346. String invSizeName = k->second_.name_ + "InvSize";
  1347. String offsetsName = k->second_.name_ + "Offsets";
  1348. float width = (float)renderTargets[k->first_]->GetWidth();
  1349. float height = (float)renderTargets[k->first_]->GetHeight();
  1350. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1351. #ifdef USE_OPENGL
  1352. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1353. #else
  1354. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1355. #endif
  1356. }
  1357. const String* textureNames = pass->GetTextures();
  1358. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1359. {
  1360. if (!textureNames[k].Empty())
  1361. {
  1362. // Texture may either refer to a rendertarget or to a texture resource
  1363. if (!textureNames[k].Compare("viewport", false))
  1364. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1365. else
  1366. {
  1367. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1368. if (l != renderTargets.End())
  1369. graphics_->SetTexture(k, l->second_);
  1370. else
  1371. {
  1372. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1373. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1374. if (texture)
  1375. graphics_->SetTexture(k, texture);
  1376. else
  1377. pass->SetTexture((TextureUnit)k, String());
  1378. }
  1379. }
  1380. }
  1381. }
  1382. DrawFullscreenQuad(camera_, false);
  1383. // Swap the ping-pong buffer sides now if necessary
  1384. if (swapBuffers)
  1385. Swap(readRtIndex, writeRtIndex);
  1386. }
  1387. // Forget the rendertargets allocated during this effect
  1388. renderer_->RestoreScreenBufferAllocations();
  1389. }
  1390. }
  1391. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1392. {
  1393. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1394. float halfViewSize = camera->GetHalfViewSize();
  1395. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1396. Vector3 cameraPos = camera->GetNode()->GetWorldPosition();
  1397. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1398. {
  1399. Drawable* occluder = *i;
  1400. bool erase = false;
  1401. if (!occluder->IsInView(frame_, false))
  1402. occluder->UpdateBatches(frame_);
  1403. // Check occluder's draw distance (in main camera view)
  1404. float maxDistance = occluder->GetDrawDistance();
  1405. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1406. {
  1407. // Check that occluder is big enough on the screen
  1408. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1409. float diagonal = box.Size().Length();
  1410. float compare;
  1411. if (!camera->IsOrthographic())
  1412. compare = diagonal * halfViewSize / occluder->GetDistance();
  1413. else
  1414. compare = diagonal * invOrthoSize;
  1415. if (compare < occluderSizeThreshold_)
  1416. erase = true;
  1417. else
  1418. {
  1419. // Store amount of triangles divided by screen size as a sorting key
  1420. // (best occluders are big and have few triangles)
  1421. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1422. }
  1423. }
  1424. else
  1425. erase = true;
  1426. if (erase)
  1427. i = occluders.Erase(i);
  1428. else
  1429. ++i;
  1430. }
  1431. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1432. if (occluders.Size())
  1433. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1434. }
  1435. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1436. {
  1437. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1438. buffer->Clear();
  1439. for (unsigned i = 0; i < occluders.Size(); ++i)
  1440. {
  1441. Drawable* occluder = occluders[i];
  1442. if (i > 0)
  1443. {
  1444. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1445. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1446. continue;
  1447. }
  1448. // Check for running out of triangles
  1449. if (!occluder->DrawOcclusion(buffer))
  1450. break;
  1451. }
  1452. buffer->BuildDepthHierarchy();
  1453. }
  1454. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1455. {
  1456. Light* light = query.light_;
  1457. LightType type = light->GetLightType();
  1458. const Frustum& frustum = camera_->GetFrustum();
  1459. // Check if light should be shadowed
  1460. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1461. // If shadow distance non-zero, check it
  1462. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1463. isShadowed = false;
  1464. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1465. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1466. query.litGeometries_.Clear();
  1467. switch (type)
  1468. {
  1469. case LIGHT_DIRECTIONAL:
  1470. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1471. {
  1472. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1473. query.litGeometries_.Push(geometries_[i]);
  1474. }
  1475. break;
  1476. case LIGHT_SPOT:
  1477. {
  1478. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1479. octree_->GetDrawables(octreeQuery);
  1480. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1481. {
  1482. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1483. query.litGeometries_.Push(tempDrawables[i]);
  1484. }
  1485. }
  1486. break;
  1487. case LIGHT_POINT:
  1488. {
  1489. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1490. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1491. octree_->GetDrawables(octreeQuery);
  1492. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1493. {
  1494. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1495. query.litGeometries_.Push(tempDrawables[i]);
  1496. }
  1497. }
  1498. break;
  1499. }
  1500. // If no lit geometries or not shadowed, no need to process shadow cameras
  1501. if (query.litGeometries_.Empty() || !isShadowed)
  1502. {
  1503. query.numSplits_ = 0;
  1504. return;
  1505. }
  1506. // Determine number of shadow cameras and setup their initial positions
  1507. SetupShadowCameras(query);
  1508. // Process each split for shadow casters
  1509. query.shadowCasters_.Clear();
  1510. for (unsigned i = 0; i < query.numSplits_; ++i)
  1511. {
  1512. Camera* shadowCamera = query.shadowCameras_[i];
  1513. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1514. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1515. // For point light check that the face is visible: if not, can skip the split
  1516. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1517. continue;
  1518. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1519. if (type == LIGHT_DIRECTIONAL)
  1520. {
  1521. if (minZ_ > query.shadowFarSplits_[i])
  1522. continue;
  1523. if (maxZ_ < query.shadowNearSplits_[i])
  1524. continue;
  1525. }
  1526. // Reuse lit geometry query for all except directional lights
  1527. if (type == LIGHT_DIRECTIONAL)
  1528. {
  1529. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1530. camera_->GetViewMask());
  1531. octree_->GetDrawables(query);
  1532. }
  1533. // Check which shadow casters actually contribute to the shadowing
  1534. ProcessShadowCasters(query, tempDrawables, i);
  1535. }
  1536. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1537. // only cost has been the shadow camera setup & queries
  1538. if (query.shadowCasters_.Empty())
  1539. query.numSplits_ = 0;
  1540. }
  1541. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1542. {
  1543. Light* light = query.light_;
  1544. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1545. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1546. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1547. const Matrix4& lightProj = shadowCamera->GetProjection();
  1548. LightType type = light->GetLightType();
  1549. query.shadowCasterBox_[splitIndex].defined_ = false;
  1550. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1551. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1552. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1553. Frustum lightViewFrustum;
  1554. if (type != LIGHT_DIRECTIONAL)
  1555. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1556. else
  1557. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1558. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1559. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1560. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1561. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1562. return;
  1563. BoundingBox lightViewBox;
  1564. BoundingBox lightProjBox;
  1565. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1566. {
  1567. Drawable* drawable = *i;
  1568. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1569. // Check for that first
  1570. if (!drawable->GetCastShadows())
  1571. continue;
  1572. // For point light, check that this drawable is inside the split shadow camera frustum
  1573. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1574. continue;
  1575. // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several
  1576. // times. However, this should not cause problems as no scene modification happens at this point.
  1577. if (!drawable->IsInView(frame_, false))
  1578. drawable->UpdateBatches(frame_);
  1579. // Check shadow distance
  1580. float maxShadowDistance = drawable->GetShadowDistance();
  1581. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1582. continue;
  1583. // Check shadow mask
  1584. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1585. continue;
  1586. // Project shadow caster bounding box to light view space for visibility check
  1587. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1588. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1589. {
  1590. // Merge to shadow caster bounding box and add to the list
  1591. if (type == LIGHT_DIRECTIONAL)
  1592. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1593. else
  1594. {
  1595. lightProjBox = lightViewBox.Projected(lightProj);
  1596. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1597. }
  1598. query.shadowCasters_.Push(drawable);
  1599. }
  1600. }
  1601. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1602. }
  1603. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1604. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1605. {
  1606. if (shadowCamera->IsOrthographic())
  1607. {
  1608. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1609. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1610. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1611. }
  1612. else
  1613. {
  1614. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1615. if (drawable->IsInView(frame_))
  1616. return true;
  1617. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1618. Vector3 center = lightViewBox.Center();
  1619. Ray extrusionRay(center, center.Normalized());
  1620. float extrusionDistance = shadowCamera->GetFarClip();
  1621. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1622. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1623. float sizeFactor = extrusionDistance / originalDistance;
  1624. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1625. // than necessary, so the test will be conservative
  1626. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1627. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1628. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1629. lightViewBox.Merge(extrudedBox);
  1630. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1631. }
  1632. }
  1633. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1634. {
  1635. unsigned width = shadowMap->GetWidth();
  1636. unsigned height = shadowMap->GetHeight();
  1637. int maxCascades = renderer_->GetMaxShadowCascades();
  1638. // Due to instruction count limits, deferred modes in SM2.0 can only support up to 3 cascades
  1639. #ifndef USE_OPENGL
  1640. if (renderMode_ != RENDER_FORWARD && !graphics_->GetSM3Support())
  1641. maxCascades = Max(maxCascades, 3);
  1642. #endif
  1643. switch (light->GetLightType())
  1644. {
  1645. case LIGHT_DIRECTIONAL:
  1646. if (maxCascades == 1)
  1647. return IntRect(0, 0, width, height);
  1648. else if (maxCascades == 2)
  1649. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1650. else
  1651. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1652. (splitIndex / 2 + 1) * height / 2);
  1653. case LIGHT_SPOT:
  1654. return IntRect(0, 0, width, height);
  1655. case LIGHT_POINT:
  1656. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1657. (splitIndex / 2 + 1) * height / 3);
  1658. }
  1659. return IntRect();
  1660. }
  1661. void View::SetupShadowCameras(LightQueryResult& query)
  1662. {
  1663. Light* light = query.light_;
  1664. LightType type = light->GetLightType();
  1665. int splits = 0;
  1666. if (type == LIGHT_DIRECTIONAL)
  1667. {
  1668. const CascadeParameters& cascade = light->GetShadowCascade();
  1669. float nearSplit = camera_->GetNearClip();
  1670. float farSplit;
  1671. while (splits < renderer_->GetMaxShadowCascades())
  1672. {
  1673. // If split is completely beyond camera far clip, we are done
  1674. if (nearSplit > camera_->GetFarClip())
  1675. break;
  1676. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1677. if (farSplit <= nearSplit)
  1678. break;
  1679. // Setup the shadow camera for the split
  1680. Camera* shadowCamera = renderer_->GetShadowCamera();
  1681. query.shadowCameras_[splits] = shadowCamera;
  1682. query.shadowNearSplits_[splits] = nearSplit;
  1683. query.shadowFarSplits_[splits] = farSplit;
  1684. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1685. nearSplit = farSplit;
  1686. ++splits;
  1687. }
  1688. }
  1689. if (type == LIGHT_SPOT)
  1690. {
  1691. Camera* shadowCamera = renderer_->GetShadowCamera();
  1692. query.shadowCameras_[0] = shadowCamera;
  1693. Node* cameraNode = shadowCamera->GetNode();
  1694. Node* lightNode = light->GetNode();
  1695. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1696. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1697. shadowCamera->SetFarClip(light->GetRange());
  1698. shadowCamera->SetFov(light->GetFov());
  1699. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1700. splits = 1;
  1701. }
  1702. if (type == LIGHT_POINT)
  1703. {
  1704. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1705. {
  1706. Camera* shadowCamera = renderer_->GetShadowCamera();
  1707. query.shadowCameras_[i] = shadowCamera;
  1708. Node* cameraNode = shadowCamera->GetNode();
  1709. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1710. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1711. cameraNode->SetDirection(directions[i]);
  1712. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1713. shadowCamera->SetFarClip(light->GetRange());
  1714. shadowCamera->SetFov(90.0f);
  1715. shadowCamera->SetAspectRatio(1.0f);
  1716. }
  1717. splits = MAX_CUBEMAP_FACES;
  1718. }
  1719. query.numSplits_ = splits;
  1720. }
  1721. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1722. {
  1723. Node* shadowCameraNode = shadowCamera->GetNode();
  1724. Node* lightNode = light->GetNode();
  1725. float extrusionDistance = camera_->GetFarClip();
  1726. const FocusParameters& parameters = light->GetShadowFocus();
  1727. // Calculate initial position & rotation
  1728. Vector3 lightWorldDirection = lightNode->GetWorldRotation() * Vector3::FORWARD;
  1729. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1730. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1731. // Calculate main camera shadowed frustum in light's view space
  1732. farSplit = Min(farSplit, camera_->GetFarClip());
  1733. // Use the scene Z bounds to limit frustum size if applicable
  1734. if (parameters.focus_)
  1735. {
  1736. nearSplit = Max(minZ_, nearSplit);
  1737. farSplit = Min(maxZ_, farSplit);
  1738. }
  1739. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1740. Polyhedron frustumVolume;
  1741. frustumVolume.Define(splitFrustum);
  1742. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1743. if (parameters.focus_)
  1744. {
  1745. BoundingBox litGeometriesBox;
  1746. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1747. {
  1748. Drawable* drawable = geometries_[i];
  1749. // Skip skyboxes as they have undefinedly large bounding box size
  1750. if (drawable->GetType() == Skybox::GetTypeStatic())
  1751. continue;
  1752. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1753. (GetLightMask(drawable) & light->GetLightMask()))
  1754. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1755. }
  1756. if (litGeometriesBox.defined_)
  1757. {
  1758. frustumVolume.Clip(litGeometriesBox);
  1759. // If volume became empty, restore it to avoid zero size
  1760. if (frustumVolume.Empty())
  1761. frustumVolume.Define(splitFrustum);
  1762. }
  1763. }
  1764. // Transform frustum volume to light space
  1765. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1766. frustumVolume.Transform(lightView);
  1767. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1768. BoundingBox shadowBox;
  1769. if (!parameters.nonUniform_)
  1770. shadowBox.Define(Sphere(frustumVolume));
  1771. else
  1772. shadowBox.Define(frustumVolume);
  1773. shadowCamera->SetOrthographic(true);
  1774. shadowCamera->SetAspectRatio(1.0f);
  1775. shadowCamera->SetNearClip(0.0f);
  1776. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1777. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1778. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1779. }
  1780. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1781. const BoundingBox& shadowCasterBox)
  1782. {
  1783. const FocusParameters& parameters = light->GetShadowFocus();
  1784. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1785. LightType type = light->GetLightType();
  1786. if (type == LIGHT_DIRECTIONAL)
  1787. {
  1788. BoundingBox shadowBox;
  1789. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1790. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1791. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1792. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1793. // Requantize and snap to shadow map texels
  1794. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1795. }
  1796. if (type == LIGHT_SPOT)
  1797. {
  1798. if (parameters.focus_)
  1799. {
  1800. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1801. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1802. float viewSize = Max(viewSizeX, viewSizeY);
  1803. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1804. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1805. float quantize = parameters.quantize_ * invOrthoSize;
  1806. float minView = parameters.minView_ * invOrthoSize;
  1807. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1808. if (viewSize < 1.0f)
  1809. shadowCamera->SetZoom(1.0f / viewSize);
  1810. }
  1811. }
  1812. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1813. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1814. if (shadowCamera->GetZoom() >= 1.0f)
  1815. {
  1816. if (light->GetLightType() != LIGHT_POINT)
  1817. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1818. else
  1819. {
  1820. #ifdef USE_OPENGL
  1821. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1822. #else
  1823. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1824. #endif
  1825. }
  1826. }
  1827. }
  1828. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1829. const BoundingBox& viewBox)
  1830. {
  1831. Node* shadowCameraNode = shadowCamera->GetNode();
  1832. const FocusParameters& parameters = light->GetShadowFocus();
  1833. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1834. float minX = viewBox.min_.x_;
  1835. float minY = viewBox.min_.y_;
  1836. float maxX = viewBox.max_.x_;
  1837. float maxY = viewBox.max_.y_;
  1838. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1839. Vector2 viewSize(maxX - minX, maxY - minY);
  1840. // Quantize size to reduce swimming
  1841. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1842. if (parameters.nonUniform_)
  1843. {
  1844. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1845. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1846. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1847. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1848. }
  1849. else if (parameters.focus_)
  1850. {
  1851. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1852. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1853. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1854. viewSize.y_ = viewSize.x_;
  1855. }
  1856. shadowCamera->SetOrthoSize(viewSize);
  1857. // Center shadow camera to the view space bounding box
  1858. Vector3 pos(shadowCameraNode->GetWorldPosition());
  1859. Quaternion rot(shadowCameraNode->GetWorldRotation());
  1860. Vector3 adjust(center.x_, center.y_, 0.0f);
  1861. shadowCameraNode->Translate(rot * adjust);
  1862. // If the shadow map viewport is known, snap to whole texels
  1863. if (shadowMapWidth > 0.0f)
  1864. {
  1865. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  1866. // Take into account that shadow map border will not be used
  1867. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1868. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1869. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1870. shadowCameraNode->Translate(rot * snap);
  1871. }
  1872. }
  1873. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1874. {
  1875. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1876. int bestPriority = M_MIN_INT;
  1877. Zone* newZone = 0;
  1878. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  1879. // (possibly incorrect) and must be re-evaluated on the next frame
  1880. bool temporary = !camera_->GetFrustum().IsInside(center);
  1881. // First check if the last zone remains a conclusive result
  1882. Zone* lastZone = drawable->GetLastZone();
  1883. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1884. lastZone->GetPriority() >= highestZonePriority_)
  1885. newZone = lastZone;
  1886. else
  1887. {
  1888. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1889. {
  1890. Zone* zone = *i;
  1891. int priority = zone->GetPriority();
  1892. if (zone->IsInside(center) && (drawable->GetZoneMask() & zone->GetZoneMask()) && priority > bestPriority)
  1893. {
  1894. newZone = zone;
  1895. bestPriority = priority;
  1896. }
  1897. }
  1898. }
  1899. drawable->SetZone(newZone, temporary);
  1900. }
  1901. Zone* View::GetZone(Drawable* drawable)
  1902. {
  1903. if (cameraZoneOverride_)
  1904. return cameraZone_;
  1905. Zone* drawableZone = drawable->GetZone();
  1906. return drawableZone ? drawableZone : cameraZone_;
  1907. }
  1908. unsigned View::GetLightMask(Drawable* drawable)
  1909. {
  1910. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1911. }
  1912. unsigned View::GetShadowMask(Drawable* drawable)
  1913. {
  1914. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1915. }
  1916. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1917. {
  1918. unsigned long long hash = 0;
  1919. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1920. hash += (unsigned long long)(*i);
  1921. return hash;
  1922. }
  1923. Technique* View::GetTechnique(Drawable* drawable, Material* material)
  1924. {
  1925. if (!material)
  1926. {
  1927. const Vector<TechniqueEntry>& techniques = renderer_->GetDefaultMaterial()->GetTechniques();
  1928. return techniques.Size() ? techniques[0].technique_ : (Technique*)0;
  1929. }
  1930. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1931. // If only one technique, no choice
  1932. if (techniques.Size() == 1)
  1933. return techniques[0].technique_;
  1934. else
  1935. {
  1936. float lodDistance = drawable->GetLodDistance();
  1937. // Check for suitable technique. Techniques should be ordered like this:
  1938. // Most distant & highest quality
  1939. // Most distant & lowest quality
  1940. // Second most distant & highest quality
  1941. // ...
  1942. for (unsigned i = 0; i < techniques.Size(); ++i)
  1943. {
  1944. const TechniqueEntry& entry = techniques[i];
  1945. Technique* tech = entry.technique_;
  1946. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1947. continue;
  1948. if (lodDistance >= entry.lodDistance_)
  1949. return tech;
  1950. }
  1951. // If no suitable technique found, fallback to the last
  1952. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  1953. }
  1954. }
  1955. void View::CheckMaterialForAuxView(Material* material)
  1956. {
  1957. const SharedPtr<Texture>* textures = material->GetTextures();
  1958. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1959. {
  1960. // Have to check cube & 2D textures separately
  1961. Texture* texture = textures[i];
  1962. if (texture)
  1963. {
  1964. if (texture->GetType() == Texture2D::GetTypeStatic())
  1965. {
  1966. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1967. RenderSurface* target = tex2D->GetRenderSurface();
  1968. if (target)
  1969. {
  1970. Viewport* viewport = target->GetViewport();
  1971. if (viewport->GetScene() && viewport->GetCamera())
  1972. renderer_->AddView(target, viewport);
  1973. }
  1974. }
  1975. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1976. {
  1977. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1978. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1979. {
  1980. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1981. if (target)
  1982. {
  1983. Viewport* viewport = target->GetViewport();
  1984. if (viewport->GetScene() && viewport->GetCamera())
  1985. renderer_->AddView(target, viewport);
  1986. }
  1987. }
  1988. }
  1989. }
  1990. }
  1991. // Set frame number so that we can early-out next time we come across this material on the same frame
  1992. material->MarkForAuxView(frame_.frameNumber_);
  1993. }
  1994. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  1995. {
  1996. if (!batch.material_)
  1997. batch.material_ = renderer_->GetDefaultMaterial();
  1998. // Convert to instanced if possible
  1999. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  2000. batch.geometryType_ = GEOM_INSTANCED;
  2001. if (batch.geometryType_ == GEOM_INSTANCED)
  2002. {
  2003. HashMap<BatchGroupKey, BatchGroup>* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_;
  2004. BatchGroupKey key(batch);
  2005. HashMap<BatchGroupKey, BatchGroup>::Iterator i = groups->Find(key);
  2006. if (i == groups->End())
  2007. {
  2008. // Create a new group based on the batch
  2009. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2010. BatchGroup newGroup(batch);
  2011. newGroup.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2012. groups->Insert(MakePair(key, newGroup));
  2013. }
  2014. else
  2015. i->second_.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2016. }
  2017. else
  2018. {
  2019. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2020. batch.CalculateSortKey();
  2021. batchQueue.batches_.Push(batch);
  2022. }
  2023. }
  2024. void View::PrepareInstancingBuffer()
  2025. {
  2026. PROFILE(PrepareInstancingBuffer);
  2027. unsigned totalInstances = 0;
  2028. totalInstances += baseQueue_.GetNumInstances(renderer_);
  2029. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  2030. if (renderMode_ != RENDER_FORWARD)
  2031. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  2032. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2033. {
  2034. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2035. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  2036. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  2037. }
  2038. // If fail to set buffer size, fall back to per-group locking
  2039. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2040. {
  2041. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2042. unsigned freeIndex = 0;
  2043. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  2044. if (lockedData)
  2045. {
  2046. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2047. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2048. if (renderMode_ != RENDER_FORWARD)
  2049. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2050. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2051. {
  2052. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2053. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2054. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2055. }
  2056. instancingBuffer->Unlock();
  2057. }
  2058. }
  2059. }
  2060. void View::SetupLightVolumeBatch(Batch& batch)
  2061. {
  2062. Light* light = batch.lightQueue_->light_;
  2063. LightType type = light->GetLightType();
  2064. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2065. float lightDist;
  2066. // Use replace blend mode for the first pre-pass light volume, and additive for the rest
  2067. graphics_->SetAlphaTest(false);
  2068. graphics_->SetBlendMode(renderMode_ == RENDER_PREPASS && light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  2069. graphics_->SetDepthWrite(false);
  2070. if (type != LIGHT_DIRECTIONAL)
  2071. {
  2072. if (type == LIGHT_POINT)
  2073. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2074. else
  2075. lightDist = light->GetFrustum().Distance(cameraPos);
  2076. // Draw front faces if not inside light volume
  2077. if (lightDist < camera_->GetNearClip() * 2.0f)
  2078. {
  2079. renderer_->SetCullMode(CULL_CW, camera_);
  2080. graphics_->SetDepthTest(CMP_GREATER);
  2081. }
  2082. else
  2083. {
  2084. renderer_->SetCullMode(CULL_CCW, camera_);
  2085. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2086. }
  2087. }
  2088. else
  2089. {
  2090. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2091. // refresh the directional light's model transform before rendering
  2092. light->GetVolumeTransform(camera_);
  2093. graphics_->SetCullMode(CULL_NONE);
  2094. graphics_->SetDepthTest(CMP_ALWAYS);
  2095. }
  2096. graphics_->SetScissorTest(false);
  2097. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2098. }
  2099. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  2100. {
  2101. Light* quadDirLight = renderer_->GetQuadDirLight();
  2102. Matrix3x4 model(quadDirLight->GetDirLightTransform(camera, nearQuad));
  2103. graphics_->SetCullMode(CULL_NONE);
  2104. graphics_->SetShaderParameter(VSP_MODEL, model);
  2105. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  2106. graphics_->ClearTransformSources();
  2107. renderer_->GetLightGeometry(quadDirLight)->Draw(graphics_);
  2108. }
  2109. void View::RenderShadowMap(const LightBatchQueue& queue)
  2110. {
  2111. PROFILE(RenderShadowMap);
  2112. Texture2D* shadowMap = queue.shadowMap_;
  2113. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2114. graphics_->SetColorWrite(false);
  2115. graphics_->SetStencilTest(false);
  2116. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2117. graphics_->SetDepthStencil(shadowMap);
  2118. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2119. graphics_->Clear(CLEAR_DEPTH);
  2120. // Set shadow depth bias
  2121. BiasParameters parameters = queue.light_->GetShadowBias();
  2122. // Adjust the light's constant depth bias according to global shadow map resolution
  2123. /// \todo Should remove this adjustment and find a more flexible solution
  2124. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2125. if (shadowMapSize <= 512)
  2126. parameters.constantBias_ *= 2.0f;
  2127. else if (shadowMapSize >= 2048)
  2128. parameters.constantBias_ *= 0.5f;
  2129. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2130. // Render each of the splits
  2131. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2132. {
  2133. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2134. if (!shadowQueue.shadowBatches_.IsEmpty())
  2135. {
  2136. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2137. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  2138. // However, do not do this for point lights, which need to render continuously across cube faces
  2139. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  2140. if (queue.light_->GetLightType() != LIGHT_POINT)
  2141. {
  2142. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  2143. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  2144. graphics_->SetScissorTest(true, zoomRect, false);
  2145. }
  2146. else
  2147. graphics_->SetScissorTest(false);
  2148. // Draw instanced and non-instanced shadow casters
  2149. shadowQueue.shadowBatches_.Draw(graphics_, renderer_);
  2150. }
  2151. }
  2152. graphics_->SetColorWrite(true);
  2153. graphics_->SetDepthBias(0.0f, 0.0f);
  2154. }
  2155. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2156. {
  2157. // If using the backbuffer, return the backbuffer depth-stencil
  2158. if (!renderTarget)
  2159. return 0;
  2160. // Then check for linked depth-stencil
  2161. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2162. // Finally get one from Renderer
  2163. if (!depthStencil)
  2164. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2165. return depthStencil;
  2166. }