Light.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561
  1. //
  2. // Copyright (c) 2008-2015 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Graphics/Camera.h"
  23. #include "../Core/Context.h"
  24. #include "../Graphics/DebugRenderer.h"
  25. #include "../Graphics/Graphics.h"
  26. #include "../Graphics/Light.h"
  27. #include "../Scene/Node.h"
  28. #include "../Graphics/OctreeQuery.h"
  29. #include "../Core/Profiler.h"
  30. #include "../Resource/ResourceCache.h"
  31. #include "../Graphics/Texture2D.h"
  32. #include "../Graphics/TextureCube.h"
  33. #include "../DebugNew.h"
  34. namespace Urho3D
  35. {
  36. extern const char* SCENE_CATEGORY;
  37. static const LightType DEFAULT_LIGHTTYPE = LIGHT_POINT;
  38. static const float DEFAULT_RANGE = 10.0f;
  39. static const float DEFAULT_LIGHT_FOV = 30.0f;
  40. static const float DEFAULT_SPECULARINTENSITY = 1.0f;
  41. static const float DEFAULT_BRIGHTNESS = 1.0f;
  42. static const float DEFAULT_CONSTANTBIAS = 0.0002f;
  43. static const float DEFAULT_SLOPESCALEDBIAS = 0.5f;
  44. static const float DEFAULT_BIASAUTOADJUST = 1.0f;
  45. static const float DEFAULT_SHADOWFADESTART = 0.8f;
  46. static const float DEFAULT_SHADOWQUANTIZE = 0.5f;
  47. static const float DEFAULT_SHADOWMINVIEW = 3.0f;
  48. static const float DEFAULT_SHADOWNEARFARRATIO = 0.002f;
  49. static const float DEFAULT_SHADOWSPLIT = 1000.0f;
  50. static const char* typeNames[] =
  51. {
  52. "Directional",
  53. "Spot",
  54. "Point",
  55. 0
  56. };
  57. void BiasParameters::Validate()
  58. {
  59. constantBias_ = Clamp(constantBias_, -1.0f, 1.0f);
  60. slopeScaledBias_ = Clamp(slopeScaledBias_, -16.0f, 16.0f);
  61. }
  62. void CascadeParameters::Validate()
  63. {
  64. for (unsigned i = 0; i < MAX_CASCADE_SPLITS; ++i)
  65. splits_[i] = Max(splits_[i], 0.0f);
  66. fadeStart_ = Clamp(fadeStart_, M_EPSILON, 1.0f);
  67. }
  68. void FocusParameters::Validate()
  69. {
  70. quantize_ = Max(quantize_, SHADOW_MIN_QUANTIZE);
  71. minView_ = Max(minView_, SHADOW_MIN_VIEW);
  72. }
  73. Light::Light(Context* context) :
  74. Drawable(context, DRAWABLE_LIGHT),
  75. lightType_(DEFAULT_LIGHTTYPE),
  76. shadowBias_(BiasParameters(DEFAULT_CONSTANTBIAS, DEFAULT_SLOPESCALEDBIAS)),
  77. shadowCascade_(CascadeParameters(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f, DEFAULT_SHADOWFADESTART)),
  78. shadowFocus_(FocusParameters(true, true, true, DEFAULT_SHADOWQUANTIZE, DEFAULT_SHADOWMINVIEW)),
  79. lightQueue_(0),
  80. specularIntensity_(DEFAULT_SPECULARINTENSITY),
  81. brightness_(DEFAULT_BRIGHTNESS),
  82. range_(DEFAULT_RANGE),
  83. fov_(DEFAULT_LIGHT_FOV),
  84. aspectRatio_(1.0f),
  85. fadeDistance_(0.0f),
  86. shadowFadeDistance_(0.0f),
  87. shadowIntensity_(0.0f),
  88. shadowResolution_(1.0f),
  89. shadowNearFarRatio_(DEFAULT_SHADOWNEARFARRATIO),
  90. perVertex_(false)
  91. {
  92. }
  93. Light::~Light()
  94. {
  95. }
  96. void Light::RegisterObject(Context* context)
  97. {
  98. context->RegisterFactory<Light>(SCENE_CATEGORY);
  99. ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT);
  100. ENUM_ACCESSOR_ATTRIBUTE("Light Type", GetLightType, SetLightType, LightType, typeNames, DEFAULT_LIGHTTYPE, AM_DEFAULT);
  101. ACCESSOR_ATTRIBUTE("Color", GetColor, SetColor, Color, Color::WHITE, AM_DEFAULT);
  102. ACCESSOR_ATTRIBUTE("Specular Intensity", GetSpecularIntensity, SetSpecularIntensity, float, DEFAULT_SPECULARINTENSITY, AM_DEFAULT);
  103. ACCESSOR_ATTRIBUTE("Brightness Multiplier", GetBrightness, SetBrightness, float, DEFAULT_BRIGHTNESS, AM_DEFAULT);
  104. ACCESSOR_ATTRIBUTE("Range", GetRange, SetRange, float, DEFAULT_RANGE, AM_DEFAULT);
  105. ACCESSOR_ATTRIBUTE("Spot FOV", GetFov, SetFov, float, DEFAULT_LIGHT_FOV, AM_DEFAULT);
  106. ACCESSOR_ATTRIBUTE("Spot Aspect Ratio", GetAspectRatio, SetAspectRatio, float, 1.0f, AM_DEFAULT);
  107. MIXED_ACCESSOR_ATTRIBUTE("Attenuation Texture", GetRampTextureAttr, SetRampTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  108. MIXED_ACCESSOR_ATTRIBUTE("Light Shape Texture", GetShapeTextureAttr, SetShapeTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  109. ACCESSOR_ATTRIBUTE("Can Be Occluded", IsOccludee, SetOccludee, bool, true, AM_DEFAULT);
  110. ATTRIBUTE("Cast Shadows", bool, castShadows_, false, AM_DEFAULT);
  111. ATTRIBUTE("Per Vertex", bool, perVertex_, false, AM_DEFAULT);
  112. ACCESSOR_ATTRIBUTE("Draw Distance", GetDrawDistance, SetDrawDistance, float, 0.0f, AM_DEFAULT);
  113. ACCESSOR_ATTRIBUTE("Fade Distance", GetFadeDistance, SetFadeDistance, float, 0.0f, AM_DEFAULT);
  114. ACCESSOR_ATTRIBUTE("Shadow Distance", GetShadowDistance, SetShadowDistance, float, 0.0f, AM_DEFAULT);
  115. ACCESSOR_ATTRIBUTE("Shadow Fade Distance", GetShadowFadeDistance, SetShadowFadeDistance, float, 0.0f, AM_DEFAULT);
  116. ACCESSOR_ATTRIBUTE("Shadow Intensity", GetShadowIntensity, SetShadowIntensity, float, 0.0f, AM_DEFAULT);
  117. ACCESSOR_ATTRIBUTE("Shadow Resolution", GetShadowResolution, SetShadowResolution, float, 1.0f, AM_DEFAULT);
  118. ATTRIBUTE("Focus To Scene", bool, shadowFocus_.focus_, true, AM_DEFAULT);
  119. ATTRIBUTE("Non-uniform View", bool, shadowFocus_.nonUniform_, true, AM_DEFAULT);
  120. ATTRIBUTE("Auto-Reduce Size", bool, shadowFocus_.autoSize_, true, AM_DEFAULT);
  121. ATTRIBUTE("CSM Splits", Vector4, shadowCascade_.splits_, Vector4(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f), AM_DEFAULT);
  122. ATTRIBUTE("CSM Fade Start", float, shadowCascade_.fadeStart_, DEFAULT_SHADOWFADESTART, AM_DEFAULT);
  123. ATTRIBUTE("CSM Bias Auto Adjust", float, shadowCascade_.biasAutoAdjust_, DEFAULT_BIASAUTOADJUST, AM_DEFAULT);
  124. ATTRIBUTE("View Size Quantize", float, shadowFocus_.quantize_, DEFAULT_SHADOWQUANTIZE, AM_DEFAULT);
  125. ATTRIBUTE("View Size Minimum", float, shadowFocus_.minView_, DEFAULT_SHADOWMINVIEW, AM_DEFAULT);
  126. ATTRIBUTE("Depth Constant Bias", float, shadowBias_.constantBias_, DEFAULT_CONSTANTBIAS, AM_DEFAULT);
  127. ATTRIBUTE("Depth Slope Bias", float, shadowBias_.slopeScaledBias_, DEFAULT_SLOPESCALEDBIAS, AM_DEFAULT);
  128. ATTRIBUTE("Near/Farclip Ratio", float, shadowNearFarRatio_, DEFAULT_SHADOWNEARFARRATIO, AM_DEFAULT);
  129. ATTRIBUTE("View Mask", int, viewMask_, DEFAULT_VIEWMASK, AM_DEFAULT);
  130. ATTRIBUTE("Light Mask", int, lightMask_, DEFAULT_LIGHTMASK, AM_DEFAULT);
  131. }
  132. void Light::OnSetAttribute(const AttributeInfo& attr, const Variant& src)
  133. {
  134. Serializable::OnSetAttribute(attr, src);
  135. // Validate the bias, cascade & focus parameters
  136. if (attr.offset_ >= offsetof(Light, shadowBias_) && attr.offset_ < (offsetof(Light, shadowBias_) + sizeof(BiasParameters)))
  137. shadowBias_.Validate();
  138. else if (attr.offset_ >= offsetof(Light, shadowCascade_) && attr.offset_ < (offsetof(Light, shadowCascade_) + sizeof(CascadeParameters)))
  139. shadowCascade_.Validate();
  140. else if (attr.offset_ >= offsetof(Light, shadowFocus_) && attr.offset_ < (offsetof(Light, shadowFocus_) + sizeof(FocusParameters)))
  141. shadowFocus_.Validate();
  142. }
  143. void Light::ProcessRayQuery(const RayOctreeQuery& query, PODVector<RayQueryResult>& results)
  144. {
  145. // Do not record a raycast result for a directional light, as it would block all other results
  146. if (lightType_ == LIGHT_DIRECTIONAL)
  147. return;
  148. float distance;
  149. switch (query.level_)
  150. {
  151. case RAY_AABB:
  152. Drawable::ProcessRayQuery(query, results);
  153. return;
  154. case RAY_OBB:
  155. {
  156. Matrix3x4 inverse(node_->GetWorldTransform().Inverse());
  157. Ray localRay = query.ray_.Transformed(inverse);
  158. distance = localRay.HitDistance(GetWorldBoundingBox().Transformed(inverse));
  159. if (distance >= query.maxDistance_)
  160. return;
  161. }
  162. break;
  163. case RAY_TRIANGLE:
  164. if (lightType_ == LIGHT_SPOT)
  165. {
  166. distance = query.ray_.HitDistance(GetFrustum());
  167. if (distance >= query.maxDistance_)
  168. return;
  169. }
  170. else
  171. {
  172. distance = query.ray_.HitDistance(Sphere(node_->GetWorldPosition(), range_));
  173. if (distance >= query.maxDistance_)
  174. return;
  175. }
  176. break;
  177. }
  178. // If the code reaches here then we have a hit
  179. RayQueryResult result;
  180. result.position_ = query.ray_.origin_ + distance * query.ray_.direction_;
  181. result.normal_ = -query.ray_.direction_;
  182. result.distance_ = distance;
  183. result.drawable_ = this;
  184. result.node_ = node_;
  185. result.subObject_ = M_MAX_UNSIGNED;
  186. results.Push(result);
  187. }
  188. void Light::UpdateBatches(const FrameInfo& frame)
  189. {
  190. switch (lightType_)
  191. {
  192. case LIGHT_DIRECTIONAL:
  193. // Directional light affects the whole scene, so it is always "closest"
  194. distance_ = 0.0f;
  195. break;
  196. default:
  197. distance_ = frame.camera_->GetDistance(node_->GetWorldPosition());
  198. break;
  199. }
  200. }
  201. void Light::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  202. {
  203. Color color = GetEffectiveColor();
  204. if (debug && IsEnabledEffective())
  205. {
  206. switch (lightType_)
  207. {
  208. case LIGHT_DIRECTIONAL:
  209. {
  210. Vector3 start = node_->GetWorldPosition();
  211. Vector3 end = start + node_->GetWorldDirection() * 10.f;
  212. for (int i = -1; i < 2; ++i)
  213. {
  214. for (int j = -1; j < 2; ++j)
  215. {
  216. Vector3 offset = Vector3::UP * (5.f * i) + Vector3::RIGHT * (5.f * j);
  217. debug->AddSphere(Sphere(start + offset, 0.1f), color, depthTest);
  218. debug->AddLine(start + offset, end + offset, color, depthTest);
  219. }
  220. }
  221. }
  222. break;
  223. case LIGHT_SPOT:
  224. debug->AddFrustum(GetFrustum(), color, depthTest);
  225. break;
  226. case LIGHT_POINT:
  227. debug->AddSphere(Sphere(node_->GetWorldPosition(), range_), color, depthTest);
  228. break;
  229. }
  230. }
  231. }
  232. void Light::SetLightType(LightType type)
  233. {
  234. lightType_ = type;
  235. OnMarkedDirty(node_);
  236. MarkNetworkUpdate();
  237. }
  238. void Light::SetPerVertex(bool enable)
  239. {
  240. perVertex_ = enable;
  241. MarkNetworkUpdate();
  242. }
  243. void Light::SetColor(const Color& color)
  244. {
  245. color_ = Color(color.r_, color.g_, color.b_, 1.0f);
  246. MarkNetworkUpdate();
  247. }
  248. void Light::SetSpecularIntensity(float intensity)
  249. {
  250. specularIntensity_ = Max(intensity, 0.0f);
  251. MarkNetworkUpdate();
  252. }
  253. void Light::SetBrightness(float brightness)
  254. {
  255. brightness_ = brightness;
  256. MarkNetworkUpdate();
  257. }
  258. void Light::SetRange(float range)
  259. {
  260. range_ = Max(range, 0.0f);
  261. OnMarkedDirty(node_);
  262. MarkNetworkUpdate();
  263. }
  264. void Light::SetFov(float fov)
  265. {
  266. fov_ = Clamp(fov, 0.0f, M_MAX_FOV);
  267. OnMarkedDirty(node_);
  268. MarkNetworkUpdate();
  269. }
  270. void Light::SetAspectRatio(float aspectRatio)
  271. {
  272. aspectRatio_ = Max(aspectRatio, M_EPSILON);
  273. OnMarkedDirty(node_);
  274. MarkNetworkUpdate();
  275. }
  276. void Light::SetShadowNearFarRatio(float nearFarRatio)
  277. {
  278. shadowNearFarRatio_ = Clamp(nearFarRatio, 0.0f, 0.5f);
  279. MarkNetworkUpdate();
  280. }
  281. void Light::SetFadeDistance(float distance)
  282. {
  283. fadeDistance_ = Max(distance, 0.0f);
  284. MarkNetworkUpdate();
  285. }
  286. void Light::SetShadowBias(const BiasParameters& parameters)
  287. {
  288. shadowBias_ = parameters;
  289. shadowBias_.Validate();
  290. MarkNetworkUpdate();
  291. }
  292. void Light::SetShadowCascade(const CascadeParameters& parameters)
  293. {
  294. shadowCascade_ = parameters;
  295. shadowCascade_.Validate();
  296. MarkNetworkUpdate();
  297. }
  298. void Light::SetShadowFocus(const FocusParameters& parameters)
  299. {
  300. shadowFocus_ = parameters;
  301. shadowFocus_.Validate();
  302. MarkNetworkUpdate();
  303. }
  304. void Light::SetShadowFadeDistance(float distance)
  305. {
  306. shadowFadeDistance_ = Max(distance, 0.0f);
  307. MarkNetworkUpdate();
  308. }
  309. void Light::SetShadowIntensity(float intensity)
  310. {
  311. shadowIntensity_ = Clamp(intensity, 0.0f, 1.0f);
  312. MarkNetworkUpdate();
  313. }
  314. void Light::SetShadowResolution(float resolution)
  315. {
  316. shadowResolution_ = Clamp(resolution, 0.125f, 1.0f);
  317. MarkNetworkUpdate();
  318. }
  319. void Light::SetRampTexture(Texture* texture)
  320. {
  321. rampTexture_ = texture;
  322. MarkNetworkUpdate();
  323. }
  324. void Light::SetShapeTexture(Texture* texture)
  325. {
  326. shapeTexture_ = texture;
  327. MarkNetworkUpdate();
  328. }
  329. Frustum Light::GetFrustum() const
  330. {
  331. // Note: frustum is unaffected by node or parent scale
  332. Matrix3x4 frustumTransform(node_ ? Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), 1.0f) :
  333. Matrix3x4::IDENTITY);
  334. Frustum ret;
  335. ret.Define(fov_, aspectRatio_, 1.0f, M_MIN_NEARCLIP, range_, frustumTransform);
  336. return ret;
  337. }
  338. int Light::GetNumShadowSplits() const
  339. {
  340. int ret = 1;
  341. if (shadowCascade_.splits_[1] > shadowCascade_.splits_[0])
  342. {
  343. ++ret;
  344. if (shadowCascade_.splits_[2] > shadowCascade_.splits_[1])
  345. {
  346. ++ret;
  347. if (shadowCascade_.splits_[3] > shadowCascade_.splits_[2])
  348. ++ret;
  349. }
  350. }
  351. return Min(ret, MAX_CASCADE_SPLITS);
  352. }
  353. const Matrix3x4& Light::GetVolumeTransform(Camera* camera)
  354. {
  355. if (!node_)
  356. return Matrix3x4::IDENTITY;
  357. switch (lightType_)
  358. {
  359. case LIGHT_DIRECTIONAL:
  360. {
  361. Matrix3x4 quadTransform;
  362. Vector3 near, far;
  363. // Position the directional light quad in halfway between far & near planes to prevent depth clipping
  364. camera->GetFrustumSize(near, far);
  365. quadTransform.SetTranslation(Vector3(0.0f, 0.0f, (camera->GetNearClip() + camera->GetFarClip()) * 0.5f));
  366. quadTransform.SetScale(Vector3(far.x_, far.y_, 1.0f)); // Will be oversized, but doesn't matter (gets frustum clipped)
  367. volumeTransform_ = camera->GetEffectiveWorldTransform() * quadTransform;
  368. break;
  369. }
  370. case LIGHT_SPOT:
  371. {
  372. float yScale = tanf(fov_ * M_DEGTORAD * 0.5f) * range_;
  373. float xScale = aspectRatio_ * yScale;
  374. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), Vector3(xScale, yScale, range_));
  375. }
  376. break;
  377. case LIGHT_POINT:
  378. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), Quaternion::IDENTITY, range_);
  379. break;
  380. }
  381. return volumeTransform_;
  382. }
  383. void Light::SetRampTextureAttr(const ResourceRef& value)
  384. {
  385. ResourceCache* cache = GetSubsystem<ResourceCache>();
  386. rampTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  387. }
  388. void Light::SetShapeTextureAttr(const ResourceRef& value)
  389. {
  390. ResourceCache* cache = GetSubsystem<ResourceCache>();
  391. shapeTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  392. }
  393. ResourceRef Light::GetRampTextureAttr() const
  394. {
  395. return GetResourceRef(rampTexture_, Texture2D::GetTypeStatic());
  396. }
  397. ResourceRef Light::GetShapeTextureAttr() const
  398. {
  399. return GetResourceRef(shapeTexture_, lightType_ == LIGHT_POINT ? TextureCube::GetTypeStatic() : Texture2D::GetTypeStatic());
  400. }
  401. void Light::OnWorldBoundingBoxUpdate()
  402. {
  403. switch (lightType_)
  404. {
  405. case LIGHT_DIRECTIONAL:
  406. // Directional light always sets humongous bounding box not affected by transform
  407. worldBoundingBox_.Define(-M_LARGE_VALUE, M_LARGE_VALUE);
  408. break;
  409. case LIGHT_SPOT:
  410. // Frustum is already transformed into world space
  411. worldBoundingBox_.Define(GetFrustum());
  412. break;
  413. case LIGHT_POINT:
  414. {
  415. const Vector3& center = node_->GetWorldPosition();
  416. Vector3 edge(range_, range_, range_);
  417. worldBoundingBox_.Define(center - edge, center + edge);
  418. }
  419. break;
  420. }
  421. }
  422. void Light::SetIntensitySortValue(float distance)
  423. {
  424. // When sorting lights globally, give priority to directional lights so that they will be combined into the ambient pass
  425. if (!IsNegative())
  426. {
  427. if (lightType_ != LIGHT_DIRECTIONAL)
  428. sortValue_ = Max(distance, M_MIN_NEARCLIP) / GetIntensityDivisor();
  429. else
  430. sortValue_ = M_EPSILON / GetIntensityDivisor();
  431. }
  432. else
  433. {
  434. // Give extra priority to negative lights in the global sorting order so that they're handled first, right after ambient.
  435. // Positive lights are added after them
  436. if (lightType_ != LIGHT_DIRECTIONAL)
  437. sortValue_ = -Max(distance, M_MIN_NEARCLIP) * GetIntensityDivisor();
  438. else
  439. sortValue_ = -M_LARGE_VALUE * GetIntensityDivisor();
  440. }
  441. }
  442. void Light::SetIntensitySortValue(const BoundingBox& box)
  443. {
  444. // When sorting lights for object's maximum light cap, give priority based on attenuation and intensity
  445. switch (lightType_)
  446. {
  447. case LIGHT_DIRECTIONAL:
  448. sortValue_ = 1.0f / GetIntensityDivisor();
  449. break;
  450. case LIGHT_SPOT:
  451. {
  452. Vector3 centerPos = box.Center();
  453. Vector3 lightPos = node_->GetWorldPosition();
  454. Vector3 lightDir = node_->GetWorldDirection();
  455. Ray lightRay(lightPos, lightDir);
  456. Vector3 centerProj = lightRay.Project(centerPos);
  457. float centerDistance = (centerProj - lightPos).Length();
  458. Ray centerRay(centerProj, centerPos - centerProj);
  459. float centerAngle = centerRay.HitDistance(box) / centerDistance;
  460. // Check if a corner of the bounding box is closer to the light ray than the center, use its angle in that case
  461. Vector3 cornerPos = centerPos + box.HalfSize() * Vector3(centerPos.x_ < centerProj.x_ ? 1.0f : -1.0f,
  462. centerPos.y_ < centerProj.y_ ? 1.0f : -1.0f, centerPos.z_ < centerProj.z_ ? 1.0f : -1.0f);
  463. Vector3 cornerProj = lightRay.Project(cornerPos);
  464. float cornerDistance = (cornerProj - lightPos).Length();
  465. float cornerAngle = (cornerPos - cornerProj).Length() / cornerDistance;
  466. float spotAngle = Min(centerAngle, cornerAngle);
  467. float maxAngle = tanf(fov_ * M_DEGTORAD * 0.5f);
  468. float spotFactor = Min(spotAngle / maxAngle, 1.0f);
  469. // We do not know the actual range attenuation ramp, so take only spot attenuation into account
  470. float att = Max(1.0f - spotFactor * spotFactor, M_EPSILON);
  471. sortValue_ = 1.0f / GetIntensityDivisor(att);
  472. }
  473. break;
  474. case LIGHT_POINT:
  475. {
  476. Vector3 centerPos = box.Center();
  477. Vector3 lightPos = node_->GetWorldPosition();
  478. Vector3 lightDir = (centerPos - lightPos).Normalized();
  479. Ray lightRay(lightPos, lightDir);
  480. float distance = lightRay.HitDistance(box);
  481. float normDistance = distance / range_;
  482. float att = Max(1.0f - normDistance * normDistance, M_EPSILON);
  483. sortValue_ = 1.0f / GetIntensityDivisor(att);
  484. }
  485. break;
  486. }
  487. }
  488. void Light::SetLightQueue(LightBatchQueue* queue)
  489. {
  490. lightQueue_ = queue;
  491. }
  492. }