PhysicsWorld.cpp 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968
  1. //
  2. // Copyright (c) 2008-2015 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Mutex.h"
  25. #include "../Core/Profiler.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Graphics/Model.h"
  28. #include "../IO/Log.h"
  29. #include "../Math/Ray.h"
  30. #include "../Physics/CollisionShape.h"
  31. #include "../Physics/Constraint.h"
  32. #include "../Physics/PhysicsEvents.h"
  33. #include "../Physics/PhysicsUtils.h"
  34. #include "../Physics/PhysicsWorld.h"
  35. #include "../Physics/RigidBody.h"
  36. #include "../Scene/Scene.h"
  37. #include "../Scene/SceneEvents.h"
  38. #include <Bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <Bullet/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <Bullet/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  41. #include <Bullet/BulletCollision/CollisionShapes/btBoxShape.h>
  42. #include <Bullet/BulletCollision/CollisionShapes/btSphereShape.h>
  43. #include <Bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  44. #include <Bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  45. extern ContactAddedCallback gContactAddedCallback;
  46. namespace Urho3D
  47. {
  48. const char* PHYSICS_CATEGORY = "Physics";
  49. extern const char* SUBSYSTEM_CATEGORY;
  50. static const int MAX_SOLVER_ITERATIONS = 256;
  51. static const int DEFAULT_FPS = 60;
  52. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  53. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  54. {
  55. return lhs.distance_ < rhs.distance_;
  56. }
  57. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  58. {
  59. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  60. }
  61. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  62. {
  63. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  64. }
  65. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  66. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  67. {
  68. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  69. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  70. cp.m_combinedRestitution =
  71. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  72. return true;
  73. }
  74. /// Callback for physics world queries.
  75. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  76. {
  77. /// Construct.
  78. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) :
  79. result_(result),
  80. collisionMask_(collisionMask)
  81. {
  82. }
  83. /// Add a contact result.
  84. virtual btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  85. const btCollisionObjectWrapper* colObj1Wrap, int, int)
  86. {
  87. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  88. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  89. result_.Push(body);
  90. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  91. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  92. result_.Push(body);
  93. return 0.0f;
  94. }
  95. /// Found rigid bodies.
  96. PODVector<RigidBody*>& result_;
  97. /// Collision mask for the query.
  98. unsigned collisionMask_;
  99. };
  100. PhysicsWorld::PhysicsWorld(Context* context) :
  101. Component(context),
  102. collisionConfiguration_(0),
  103. collisionDispatcher_(0),
  104. broadphase_(0),
  105. solver_(0),
  106. world_(0),
  107. fps_(DEFAULT_FPS),
  108. maxSubSteps_(0),
  109. timeAcc_(0.0f),
  110. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  111. updateEnabled_(true),
  112. interpolation_(true),
  113. internalEdge_(true),
  114. applyingTransforms_(false),
  115. debugRenderer_(0),
  116. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  117. {
  118. gContactAddedCallback = CustomMaterialCombinerCallback;
  119. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  120. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  121. broadphase_ = new btDbvtBroadphase();
  122. solver_ = new btSequentialImpulseConstraintSolver();
  123. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  124. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  125. world_->getDispatchInfo().m_useContinuous = true;
  126. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  127. world_->setDebugDrawer(this);
  128. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  129. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  130. }
  131. PhysicsWorld::~PhysicsWorld()
  132. {
  133. if (scene_)
  134. {
  135. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  136. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  137. (*i)->ReleaseConstraint();
  138. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  139. (*i)->ReleaseBody();
  140. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  141. (*i)->ReleaseShape();
  142. }
  143. delete world_;
  144. world_ = 0;
  145. delete solver_;
  146. solver_ = 0;
  147. delete broadphase_;
  148. broadphase_ = 0;
  149. delete collisionDispatcher_;
  150. collisionDispatcher_ = 0;
  151. delete collisionConfiguration_;
  152. collisionConfiguration_ = 0;
  153. }
  154. void PhysicsWorld::RegisterObject(Context* context)
  155. {
  156. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  157. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  158. URHO3D_ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  159. URHO3D_ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  160. URHO3D_ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  161. URHO3D_ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  162. URHO3D_ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  163. URHO3D_ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  164. URHO3D_ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  165. }
  166. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  167. {
  168. if (debugRenderer_)
  169. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  170. else
  171. return false;
  172. }
  173. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  174. {
  175. if (debugRenderer_)
  176. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  177. }
  178. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  179. {
  180. if (debug)
  181. {
  182. URHO3D_PROFILE(PhysicsDrawDebug);
  183. debugRenderer_ = debug;
  184. debugDepthTest_ = depthTest;
  185. world_->debugDrawWorld();
  186. debugRenderer_ = 0;
  187. }
  188. }
  189. void PhysicsWorld::reportErrorWarning(const char* warningString)
  190. {
  191. URHO3D_LOGWARNING("Physics: " + String(warningString));
  192. }
  193. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  194. const btVector3& color)
  195. {
  196. }
  197. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  198. {
  199. }
  200. void PhysicsWorld::Update(float timeStep)
  201. {
  202. URHO3D_PROFILE(UpdatePhysics);
  203. float internalTimeStep = 1.0f / fps_;
  204. int maxSubSteps = (int)(timeStep * fps_) + 1;
  205. if (maxSubSteps_ < 0)
  206. {
  207. internalTimeStep = timeStep;
  208. maxSubSteps = 1;
  209. }
  210. else if (maxSubSteps_ > 0)
  211. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  212. delayedWorldTransforms_.Clear();
  213. if (interpolation_)
  214. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  215. else
  216. {
  217. timeAcc_ += timeStep;
  218. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  219. {
  220. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  221. timeAcc_ -= internalTimeStep;
  222. --maxSubSteps;
  223. }
  224. }
  225. // Apply delayed (parented) world transforms now
  226. while (!delayedWorldTransforms_.Empty())
  227. {
  228. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  229. i != delayedWorldTransforms_.End(); ++i)
  230. {
  231. const DelayedWorldTransform& transform = i->second_;
  232. // If parent's transform has already been assigned, can proceed
  233. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  234. {
  235. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  236. delayedWorldTransforms_.Erase(i);
  237. }
  238. }
  239. }
  240. }
  241. void PhysicsWorld::UpdateCollisions()
  242. {
  243. world_->performDiscreteCollisionDetection();
  244. }
  245. void PhysicsWorld::SetFps(int fps)
  246. {
  247. fps_ = (unsigned)Clamp(fps, 1, 1000);
  248. MarkNetworkUpdate();
  249. }
  250. void PhysicsWorld::SetGravity(const Vector3& gravity)
  251. {
  252. world_->setGravity(ToBtVector3(gravity));
  253. MarkNetworkUpdate();
  254. }
  255. void PhysicsWorld::SetMaxSubSteps(int num)
  256. {
  257. maxSubSteps_ = num;
  258. MarkNetworkUpdate();
  259. }
  260. void PhysicsWorld::SetNumIterations(int num)
  261. {
  262. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  263. world_->getSolverInfo().m_numIterations = num;
  264. MarkNetworkUpdate();
  265. }
  266. void PhysicsWorld::SetUpdateEnabled(bool enable)
  267. {
  268. updateEnabled_ = enable;
  269. }
  270. void PhysicsWorld::SetInterpolation(bool enable)
  271. {
  272. interpolation_ = enable;
  273. }
  274. void PhysicsWorld::SetInternalEdge(bool enable)
  275. {
  276. internalEdge_ = enable;
  277. MarkNetworkUpdate();
  278. }
  279. void PhysicsWorld::SetSplitImpulse(bool enable)
  280. {
  281. world_->getSolverInfo().m_splitImpulse = enable;
  282. MarkNetworkUpdate();
  283. }
  284. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  285. {
  286. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  287. MarkNetworkUpdate();
  288. }
  289. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  290. {
  291. URHO3D_PROFILE(PhysicsRaycast);
  292. if (maxDistance >= M_INFINITY)
  293. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  294. btCollisionWorld::AllHitsRayResultCallback
  295. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  296. rayCallback.m_collisionFilterGroup = (short)0xffff;
  297. rayCallback.m_collisionFilterMask = (short)collisionMask;
  298. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  299. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  300. {
  301. PhysicsRaycastResult newResult;
  302. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  303. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  304. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  305. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  306. result.Push(newResult);
  307. }
  308. Sort(result.Begin(), result.End(), CompareRaycastResults);
  309. }
  310. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  311. {
  312. URHO3D_PROFILE(PhysicsRaycastSingle);
  313. if (maxDistance >= M_INFINITY)
  314. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  315. btCollisionWorld::ClosestRayResultCallback
  316. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  317. rayCallback.m_collisionFilterGroup = (short)0xffff;
  318. rayCallback.m_collisionFilterMask = (short)collisionMask;
  319. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  320. if (rayCallback.hasHit())
  321. {
  322. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  323. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  324. result.distance_ = (result.position_ - ray.origin_).Length();
  325. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  326. }
  327. else
  328. {
  329. result.position_ = Vector3::ZERO;
  330. result.normal_ = Vector3::ZERO;
  331. result.distance_ = M_INFINITY;
  332. result.body_ = 0;
  333. }
  334. }
  335. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  336. {
  337. URHO3D_PROFILE(PhysicsSphereCast);
  338. if (maxDistance >= M_INFINITY)
  339. URHO3D_LOGWARNING("Infinite maxDistance in physics sphere cast is not supported");
  340. btSphereShape shape(radius);
  341. btCollisionWorld::ClosestConvexResultCallback
  342. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  343. convexCallback.m_collisionFilterGroup = (short)0xffff;
  344. convexCallback.m_collisionFilterMask = (short)collisionMask;
  345. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  346. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  347. if (convexCallback.hasHit())
  348. {
  349. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  350. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  351. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  352. result.distance_ = (result.position_ - ray.origin_).Length();
  353. }
  354. else
  355. {
  356. result.body_ = 0;
  357. result.position_ = Vector3::ZERO;
  358. result.normal_ = Vector3::ZERO;
  359. result.distance_ = M_INFINITY;
  360. }
  361. }
  362. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  363. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  364. {
  365. if (!shape || !shape->GetCollisionShape())
  366. {
  367. URHO3D_LOGERROR("Null collision shape for convex cast");
  368. result.body_ = 0;
  369. result.position_ = Vector3::ZERO;
  370. result.normal_ = Vector3::ZERO;
  371. result.distance_ = M_INFINITY;
  372. return;
  373. }
  374. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  375. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  376. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  377. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  378. short group = 0;
  379. if (proxy)
  380. {
  381. group = proxy->m_collisionFilterGroup;
  382. proxy->m_collisionFilterGroup = 0;
  383. }
  384. // Take the shape's offset position & rotation into account
  385. Node* shapeNode = shape->GetNode();
  386. Matrix3x4 startTransform(startPos, startRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  387. Matrix3x4 endTransform(endPos, endRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  388. Vector3 effectiveStartPos = startTransform * shape->GetPosition();
  389. Vector3 effectiveEndPos = endTransform * shape->GetPosition();
  390. Quaternion effectiveStartRot = startRot * shape->GetRotation();
  391. Quaternion effectiveEndRot = endRot * shape->GetRotation();
  392. ConvexCast(result, shape->GetCollisionShape(), effectiveStartPos, effectiveStartRot, effectiveEndPos, effectiveEndRot, collisionMask);
  393. // Restore the collision group
  394. if (proxy)
  395. proxy->m_collisionFilterGroup = group;
  396. }
  397. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  398. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  399. {
  400. if (!shape)
  401. {
  402. URHO3D_LOGERROR("Null collision shape for convex cast");
  403. result.body_ = 0;
  404. result.position_ = Vector3::ZERO;
  405. result.normal_ = Vector3::ZERO;
  406. result.distance_ = M_INFINITY;
  407. return;
  408. }
  409. if (!shape->isConvex())
  410. {
  411. URHO3D_LOGERROR("Can not use non-convex collision shape for convex cast");
  412. result.body_ = 0;
  413. result.position_ = Vector3::ZERO;
  414. result.normal_ = Vector3::ZERO;
  415. result.distance_ = M_INFINITY;
  416. return;
  417. }
  418. URHO3D_PROFILE(PhysicsConvexCast);
  419. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  420. convexCallback.m_collisionFilterGroup = (short)0xffff;
  421. convexCallback.m_collisionFilterMask = (short)collisionMask;
  422. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  423. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  424. convexCallback);
  425. if (convexCallback.hasHit())
  426. {
  427. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  428. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  429. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  430. result.distance_ = convexCallback.m_closestHitFraction * (endPos - startPos).Length();
  431. }
  432. else
  433. {
  434. result.body_ = 0;
  435. result.position_ = Vector3::ZERO;
  436. result.normal_ = Vector3::ZERO;
  437. result.distance_ = M_INFINITY;
  438. }
  439. }
  440. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  441. {
  442. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  443. i != triMeshCache_.End();)
  444. {
  445. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  446. if (current->first_.first_ == model)
  447. triMeshCache_.Erase(current);
  448. }
  449. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  450. i != convexCache_.End();)
  451. {
  452. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  453. if (current->first_.first_ == model)
  454. convexCache_.Erase(current);
  455. }
  456. }
  457. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  458. {
  459. URHO3D_PROFILE(PhysicsSphereQuery);
  460. result.Clear();
  461. btSphereShape sphereShape(sphere.radius_);
  462. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  463. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  464. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  465. tempRigidBody->activate();
  466. world_->addRigidBody(tempRigidBody);
  467. PhysicsQueryCallback callback(result, collisionMask);
  468. world_->contactTest(tempRigidBody, callback);
  469. world_->removeRigidBody(tempRigidBody);
  470. delete tempRigidBody;
  471. }
  472. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  473. {
  474. URHO3D_PROFILE(PhysicsBoxQuery);
  475. result.Clear();
  476. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  477. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  478. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  479. tempRigidBody->activate();
  480. world_->addRigidBody(tempRigidBody);
  481. PhysicsQueryCallback callback(result, collisionMask);
  482. world_->contactTest(tempRigidBody, callback);
  483. world_->removeRigidBody(tempRigidBody);
  484. delete tempRigidBody;
  485. }
  486. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  487. {
  488. URHO3D_PROFILE(GetCollidingBodies);
  489. result.Clear();
  490. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  491. i != currentCollisions_.End(); ++i)
  492. {
  493. if (i->first_.first_ == body)
  494. {
  495. if (i->first_.second_)
  496. result.Push(i->first_.second_);
  497. }
  498. else if (i->first_.second_ == body)
  499. {
  500. if (i->first_.first_)
  501. result.Push(i->first_.first_);
  502. }
  503. }
  504. }
  505. Vector3 PhysicsWorld::GetGravity() const
  506. {
  507. return ToVector3(world_->getGravity());
  508. }
  509. int PhysicsWorld::GetNumIterations() const
  510. {
  511. return world_->getSolverInfo().m_numIterations;
  512. }
  513. bool PhysicsWorld::GetSplitImpulse() const
  514. {
  515. return world_->getSolverInfo().m_splitImpulse != 0;
  516. }
  517. void PhysicsWorld::AddRigidBody(RigidBody* body)
  518. {
  519. rigidBodies_.Push(body);
  520. }
  521. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  522. {
  523. rigidBodies_.Remove(body);
  524. // Remove possible dangling pointer from the delayedWorldTransforms structure
  525. delayedWorldTransforms_.Erase(body);
  526. }
  527. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  528. {
  529. collisionShapes_.Push(shape);
  530. }
  531. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  532. {
  533. collisionShapes_.Remove(shape);
  534. }
  535. void PhysicsWorld::AddConstraint(Constraint* constraint)
  536. {
  537. constraints_.Push(constraint);
  538. }
  539. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  540. {
  541. constraints_.Remove(constraint);
  542. }
  543. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  544. {
  545. delayedWorldTransforms_[transform.rigidBody_] = transform;
  546. }
  547. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  548. {
  549. DebugRenderer* debug = GetComponent<DebugRenderer>();
  550. DrawDebugGeometry(debug, depthTest);
  551. }
  552. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  553. {
  554. debugRenderer_ = debug;
  555. }
  556. void PhysicsWorld::SetDebugDepthTest(bool enable)
  557. {
  558. debugDepthTest_ = enable;
  559. }
  560. void PhysicsWorld::CleanupGeometryCache()
  561. {
  562. // Remove cached shapes whose only reference is the cache itself
  563. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  564. i != triMeshCache_.End();)
  565. {
  566. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  567. if (current->second_.Refs() == 1)
  568. triMeshCache_.Erase(current);
  569. }
  570. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  571. i != convexCache_.End();)
  572. {
  573. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  574. if (current->second_.Refs() == 1)
  575. convexCache_.Erase(current);
  576. }
  577. }
  578. void PhysicsWorld::OnSceneSet(Scene* scene)
  579. {
  580. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  581. if (scene)
  582. {
  583. scene_ = GetScene();
  584. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, URHO3D_HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  585. }
  586. else
  587. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  588. }
  589. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  590. {
  591. if (!updateEnabled_)
  592. return;
  593. using namespace SceneSubsystemUpdate;
  594. Update(eventData[P_TIMESTEP].GetFloat());
  595. }
  596. void PhysicsWorld::PreStep(float timeStep)
  597. {
  598. // Send pre-step event
  599. using namespace PhysicsPreStep;
  600. VariantMap& eventData = GetEventDataMap();
  601. eventData[P_WORLD] = this;
  602. eventData[P_TIMESTEP] = timeStep;
  603. SendEvent(E_PHYSICSPRESTEP, eventData);
  604. // Start profiling block for the actual simulation step
  605. #ifdef URHO3D_PROFILING
  606. Profiler* profiler = GetSubsystem<Profiler>();
  607. if (profiler)
  608. profiler->BeginBlock("StepSimulation");
  609. #endif
  610. }
  611. void PhysicsWorld::PostStep(float timeStep)
  612. {
  613. #ifdef URHO3D_PROFILING
  614. Profiler* profiler = GetSubsystem<Profiler>();
  615. if (profiler)
  616. profiler->EndBlock();
  617. #endif
  618. SendCollisionEvents();
  619. // Send post-step event
  620. using namespace PhysicsPostStep;
  621. VariantMap& eventData = GetEventDataMap();
  622. eventData[P_WORLD] = this;
  623. eventData[P_TIMESTEP] = timeStep;
  624. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  625. }
  626. void PhysicsWorld::SendCollisionEvents()
  627. {
  628. URHO3D_PROFILE(SendCollisionEvents);
  629. currentCollisions_.Clear();
  630. physicsCollisionData_.Clear();
  631. nodeCollisionData_.Clear();
  632. int numManifolds = collisionDispatcher_->getNumManifolds();
  633. if (numManifolds)
  634. {
  635. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  636. for (int i = 0; i < numManifolds; ++i)
  637. {
  638. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  639. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  640. if (!contactManifold->getNumContacts())
  641. continue;
  642. const btCollisionObject* objectA = contactManifold->getBody0();
  643. const btCollisionObject* objectB = contactManifold->getBody1();
  644. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  645. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  646. // If it's not a rigidbody, maybe a ghost object
  647. if (!bodyA || !bodyB)
  648. continue;
  649. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  650. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  651. continue;
  652. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  653. continue;
  654. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  655. !bodyA->IsActive() && !bodyB->IsActive())
  656. continue;
  657. WeakPtr<RigidBody> bodyWeakA(bodyA);
  658. WeakPtr<RigidBody> bodyWeakB(bodyB);
  659. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  660. if (bodyA < bodyB)
  661. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  662. else
  663. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  664. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  665. // objects during collision event handling
  666. currentCollisions_[bodyPair] = contactManifold;
  667. }
  668. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  669. i != currentCollisions_.End(); ++i)
  670. {
  671. RigidBody* bodyA = i->first_.first_;
  672. RigidBody* bodyB = i->first_.second_;
  673. if (!bodyA || !bodyB)
  674. continue;
  675. btPersistentManifold* contactManifold = i->second_;
  676. Node* nodeA = bodyA->GetNode();
  677. Node* nodeB = bodyB->GetNode();
  678. WeakPtr<Node> nodeWeakA(nodeA);
  679. WeakPtr<Node> nodeWeakB(nodeB);
  680. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  681. bool newCollision = !previousCollisions_.Contains(i->first_);
  682. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  683. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  684. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  685. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  686. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  687. contacts_.Clear();
  688. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  689. {
  690. btManifoldPoint& point = contactManifold->getContactPoint(j);
  691. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  692. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  693. contacts_.WriteFloat(point.m_distance1);
  694. contacts_.WriteFloat(point.m_appliedImpulse);
  695. }
  696. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  697. // Send separate collision start event if collision is new
  698. if (newCollision)
  699. {
  700. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  701. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  702. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  703. continue;
  704. }
  705. // Then send the ongoing collision event
  706. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  707. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  708. continue;
  709. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  710. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  711. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  712. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  713. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  714. if (newCollision)
  715. {
  716. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  717. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  718. continue;
  719. }
  720. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  721. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  722. continue;
  723. contacts_.Clear();
  724. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  725. {
  726. btManifoldPoint& point = contactManifold->getContactPoint(j);
  727. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  728. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  729. contacts_.WriteFloat(point.m_distance1);
  730. contacts_.WriteFloat(point.m_appliedImpulse);
  731. }
  732. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  733. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  734. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  735. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  736. if (newCollision)
  737. {
  738. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  739. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  740. continue;
  741. }
  742. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  743. }
  744. }
  745. // Send collision end events as applicable
  746. {
  747. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  748. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator
  749. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  750. {
  751. if (!currentCollisions_.Contains(i->first_))
  752. {
  753. RigidBody* bodyA = i->first_.first_;
  754. RigidBody* bodyB = i->first_.second_;
  755. if (!bodyA || !bodyB)
  756. continue;
  757. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  758. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  759. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  760. continue;
  761. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  762. continue;
  763. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  764. !bodyA->IsActive() && !bodyB->IsActive())
  765. continue;
  766. Node* nodeA = bodyA->GetNode();
  767. Node* nodeB = bodyB->GetNode();
  768. WeakPtr<Node> nodeWeakA(nodeA);
  769. WeakPtr<Node> nodeWeakB(nodeB);
  770. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  771. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  772. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  773. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  774. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  775. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  776. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  777. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  778. continue;
  779. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  780. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  781. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  782. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  783. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  784. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  785. continue;
  786. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  787. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  788. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  789. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  790. }
  791. }
  792. }
  793. previousCollisions_ = currentCollisions_;
  794. }
  795. void RegisterPhysicsLibrary(Context* context)
  796. {
  797. CollisionShape::RegisterObject(context);
  798. RigidBody::RegisterObject(context);
  799. Constraint::RegisterObject(context);
  800. PhysicsWorld::RegisterObject(context);
  801. }
  802. }