View.cpp 87 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "OctreeQuery.h"
  34. #include "Renderer.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderVariation.h"
  38. #include "Technique.h"
  39. #include "Texture2D.h"
  40. #include "TextureCube.h"
  41. #include "Time.h"
  42. #include "VertexBuffer.h"
  43. #include "View.h"
  44. #include "Zone.h"
  45. #include "DebugNew.h"
  46. static const Vector3 directions[] =
  47. {
  48. Vector3::RIGHT,
  49. Vector3::LEFT,
  50. Vector3::UP,
  51. Vector3::DOWN,
  52. Vector3::FORWARD,
  53. Vector3::BACK,
  54. };
  55. OBJECTTYPESTATIC(View);
  56. View::View(Context* context) :
  57. Object(context),
  58. graphics_(GetSubsystem<Graphics>()),
  59. renderer_(GetSubsystem<Renderer>()),
  60. octree_(0),
  61. camera_(0),
  62. zone_(0),
  63. renderTarget_(0),
  64. depthStencil_(0)
  65. {
  66. frame_.camera_ = 0;
  67. }
  68. View::~View()
  69. {
  70. }
  71. bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
  72. {
  73. if ((!viewport.scene_) || (!viewport.camera_))
  74. return false;
  75. // If scene is loading asynchronously, it is incomplete and should not be rendered
  76. if (viewport.scene_->IsAsyncLoading())
  77. return false;
  78. Octree* octree = viewport.scene_->GetComponent<Octree>();
  79. if (!octree)
  80. return false;
  81. mode_ = graphics_->GetRenderMode();
  82. // In deferred mode, check for the render texture being too large
  83. if ((mode_ != RENDER_FORWARD) && (renderTarget))
  84. {
  85. if ((renderTarget->GetWidth() > graphics_->GetWidth()) || (renderTarget->GetHeight() > graphics_->GetHeight()))
  86. {
  87. // Display message only once per rendertarget, do not spam each frame
  88. if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
  89. {
  90. gBufferErrorDisplayed_.Insert(renderTarget);
  91. LOGERROR("Render texture is larger than the G-buffer, can not render");
  92. }
  93. return false;
  94. }
  95. }
  96. octree_ = octree;
  97. camera_ = viewport.camera_;
  98. renderTarget_ = renderTarget;
  99. if (!renderTarget)
  100. depthStencil_ = 0;
  101. else
  102. {
  103. // In Direct3D9 deferred rendering, always use the system depth stencil for the whole time
  104. // to ensure it is as large as the G-buffer
  105. #ifdef USE_OPENGL
  106. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  107. #else
  108. if (mode_ == RENDER_FORWARD)
  109. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  110. else
  111. depthStencil_ = 0;
  112. #endif
  113. }
  114. zone_ = renderer_->GetDefaultZone();
  115. // Validate the rect and calculate size. If zero rect, use whole render target size
  116. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  117. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  118. if (viewport.rect_ != IntRect::ZERO)
  119. {
  120. screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
  121. screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
  122. screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
  123. screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
  124. }
  125. else
  126. screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
  127. width_ = screenRect_.right_ - screenRect_.left_;
  128. height_ = screenRect_.bottom_ - screenRect_.top_;
  129. // Set possible quality overrides from the camera
  130. drawShadows_ = renderer_->GetDrawShadows();
  131. materialQuality_ = renderer_->GetMaterialQuality();
  132. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  133. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  134. if (viewOverrideFlags & VOF_LOW_MATERIAL_QUALITY)
  135. materialQuality_ = QUALITY_LOW;
  136. if (viewOverrideFlags & VOF_DISABLE_SHADOWS)
  137. drawShadows_ = false;
  138. if (viewOverrideFlags & VOF_DISABLE_OCCLUSION)
  139. maxOccluderTriangles_ = 0;
  140. return true;
  141. }
  142. void View::Update(const FrameInfo& frame)
  143. {
  144. if ((!camera_) || (!octree_))
  145. return;
  146. frame_.camera_ = camera_;
  147. frame_.timeStep_ = frame.timeStep_;
  148. frame_.frameNumber_ = frame.frameNumber_;
  149. frame_.viewSize_ = IntVector2(width_, height_);
  150. // Clear old light scissor cache, geometry, light, occluder & batch lists
  151. lightScissorCache_.Clear();
  152. geometries_.Clear();
  153. geometryDepthBounds_.Clear();
  154. lights_.Clear();
  155. occluders_.Clear();
  156. shadowOccluders_.Clear();
  157. gBufferQueue_.Clear();
  158. baseQueue_.Clear();
  159. extraQueue_.Clear();
  160. transparentQueue_.Clear();
  161. noShadowLightQueue_.Clear();
  162. lightQueues_.Clear();
  163. // Set automatic aspect ratio if required
  164. if (camera_->GetAutoAspectRatio())
  165. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  166. // Reset projection jitter if was used last frame
  167. camera_->SetProjectionOffset(Vector2::ZERO);
  168. // Reset shadow map use count; they can be reused between views as each is rendered completely at a time
  169. renderer_->ResetShadowMapUseCount();
  170. GetDrawables();
  171. GetBatches();
  172. }
  173. void View::Render()
  174. {
  175. if ((!octree_) || (!camera_))
  176. return;
  177. // Forget parameter sources from the previous view
  178. graphics_->ClearParameterSources();
  179. // If stream offset is supported, write all instance transforms to a single large buffer
  180. // Else we must lock the instance buffer for each batch group
  181. if ((renderer_->GetDynamicInstancing()) && (graphics_->GetStreamOffsetSupport()))
  182. PrepareInstancingBuffer();
  183. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  184. // again to ensure correct projection will be used
  185. if (camera_->GetAutoAspectRatio())
  186. camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_));
  187. // Set the "view texture" to ensure the rendertarget will not be bound as a texture during rendering
  188. if (renderTarget_)
  189. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  190. else
  191. graphics_->SetViewTexture(0);
  192. graphics_->SetFillMode(FILL_SOLID);
  193. // Calculate view-global shader parameters
  194. CalculateShaderParameters();
  195. // If not reusing shadowmaps, render all of them first
  196. if (!renderer_->reuseShadowMaps_)
  197. {
  198. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  199. {
  200. LightBatchQueue& queue = lightQueues_[i];
  201. if (queue.light_->GetShadowMap())
  202. RenderShadowMap(queue);
  203. }
  204. }
  205. if (mode_ == RENDER_FORWARD)
  206. RenderBatchesForward();
  207. else
  208. RenderBatchesDeferred();
  209. graphics_->SetViewTexture(0);
  210. // If this is a main view, draw the associated debug geometry now
  211. if (!renderTarget_)
  212. {
  213. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  214. if (scene)
  215. {
  216. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  217. if (debug)
  218. {
  219. debug->SetView(camera_);
  220. debug->Render();
  221. }
  222. }
  223. }
  224. // "Forget" the camera, octree and zone after rendering
  225. camera_ = 0;
  226. octree_ = 0;
  227. zone_ = 0;
  228. frame_.camera_ = 0;
  229. }
  230. void View::GetDrawables()
  231. {
  232. PROFILE(GetDrawables);
  233. Vector3 cameraPos = camera_->GetWorldPosition();
  234. // Get zones & find the zone camera is in
  235. PODVector<Zone*> zones;
  236. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>& >(zones), cameraPos, DRAWABLE_ZONE);
  237. octree_->GetDrawables(query);
  238. int highestZonePriority = M_MIN_INT;
  239. for (unsigned i = 0; i < zones.Size(); ++i)
  240. {
  241. Zone* zone = zones[i];
  242. if ((zone->IsInside(cameraPos)) && (zone->GetPriority() > highestZonePriority))
  243. {
  244. zone_ = zone;
  245. highestZonePriority = zone->GetPriority();
  246. }
  247. }
  248. // If occlusion in use, get & render the occluders, then build the depth buffer hierarchy
  249. bool useOcclusion = false;
  250. OcclusionBuffer* buffer = 0;
  251. if (maxOccluderTriangles_ > 0)
  252. {
  253. FrustumOctreeQuery query(occluders_, camera_->GetFrustum(), DRAWABLE_GEOMETRY, true, false);
  254. octree_->GetDrawables(query);
  255. UpdateOccluders(occluders_, camera_);
  256. if (occluders_.Size())
  257. {
  258. buffer = renderer_->GetOrCreateOcclusionBuffer(camera_, maxOccluderTriangles_);
  259. DrawOccluders(buffer, occluders_);
  260. buffer->BuildDepthHierarchy();
  261. useOcclusion = true;
  262. }
  263. }
  264. if (!useOcclusion)
  265. {
  266. // Get geometries & lights without occlusion
  267. FrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  268. octree_->GetDrawables(query);
  269. }
  270. else
  271. {
  272. // Get geometries & lights using occlusion
  273. OccludedFrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), buffer, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  274. octree_->GetDrawables(query);
  275. }
  276. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  277. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  278. sceneBox_.defined_ = false;
  279. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  280. sceneViewBox_.defined_ = false;
  281. Matrix3x4 view(camera_->GetInverseWorldTransform());
  282. unsigned cameraViewMask = camera_->GetViewMask();
  283. for (unsigned i = 0; i < tempDrawables_.Size(); ++i)
  284. {
  285. Drawable* drawable = tempDrawables_[i];
  286. // Check view mask
  287. if (!(cameraViewMask & drawable->GetViewMask()))
  288. continue;
  289. drawable->UpdateDistance(frame_);
  290. // If draw distance non-zero, check it
  291. float maxDistance = drawable->GetDrawDistance();
  292. if ((maxDistance > 0.0f) && (drawable->GetDistance() > maxDistance))
  293. continue;
  294. unsigned flags = drawable->GetDrawableFlags();
  295. if (flags & DRAWABLE_GEOMETRY)
  296. {
  297. drawable->ClearBasePass();
  298. drawable->MarkInView(frame_);
  299. drawable->UpdateGeometry(frame_);
  300. // Expand the scene bounding boxes
  301. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  302. BoundingBox geoview_Box = geomBox.Transformed(view);
  303. sceneBox_.Merge(geomBox);
  304. sceneViewBox_.Merge(geoview_Box);
  305. // Store depth info to speed up split directional light queries
  306. GeometryDepthBounds bounds;
  307. bounds.min_ = geoview_Box.min_.z_;
  308. bounds.max_ = geoview_Box.max_.z_;
  309. geometryDepthBounds_.Push(bounds);
  310. geometries_.Push(drawable);
  311. }
  312. else if (flags & DRAWABLE_LIGHT)
  313. {
  314. Light* light = static_cast<Light*>(drawable);
  315. // Skip if light is culled by the zone
  316. if (!(light->GetViewMask() & zone_->GetViewMask()))
  317. continue;
  318. light->MarkInView(frame_);
  319. lights_.Push(light);
  320. }
  321. }
  322. // Sort the lights to brightest/closest first
  323. for (unsigned i = 0; i < lights_.Size(); ++i)
  324. lights_[i]->SetIntensitySortValue(cameraPos);
  325. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  326. }
  327. void View::GetBatches()
  328. {
  329. HashSet<LitTransparencyCheck> litTransparencies;
  330. HashSet<Drawable*> maxLightsDrawables;
  331. Map<Light*, unsigned> lightQueueIndex;
  332. // Go through lights
  333. {
  334. PROFILE_MULTIPLE(GetLightBatches, lights_.Size());
  335. unsigned lightQueueCount = 0;
  336. for (unsigned i = 0; i < lights_.Size(); ++i)
  337. {
  338. Light* light = lights_[i];
  339. unsigned splits = ProcessLight(light);
  340. if (!splits)
  341. continue;
  342. // Prepare lit object + shadow caster queues for each split
  343. if (lightQueues_.Size() < lightQueueCount + splits)
  344. lightQueues_.Resize(lightQueueCount + splits);
  345. unsigned prevLightQueueCount = lightQueueCount;
  346. for (unsigned j = 0; j < splits; ++j)
  347. {
  348. Light* SplitLight = splitLights_[j];
  349. LightBatchQueue& lightQueue = lightQueues_[lightQueueCount];
  350. lightQueue.light_ = SplitLight;
  351. lightQueue.shadowBatches_.Clear();
  352. lightQueue.litBatches_.Clear();
  353. lightQueue.volumeBatches_.Clear();
  354. lightQueue.lastSplit_ = false;
  355. // Loop through shadow casters
  356. Camera* shadowCamera = SplitLight->GetShadowCamera();
  357. for (unsigned k = 0; k < shadowCasters_[j].Size(); ++k)
  358. {
  359. Drawable* drawable = shadowCasters_[j][k];
  360. unsigned numBatches = drawable->GetNumBatches();
  361. for (unsigned l = 0; l < numBatches; ++l)
  362. {
  363. Batch shadowBatch;
  364. drawable->GetBatch(frame_, l, shadowBatch);
  365. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  366. if ((!shadowBatch.geometry_) || (!tech))
  367. continue;
  368. Pass* pass = tech->GetPass(PASS_SHADOW);
  369. // Skip if material has no shadow pass
  370. if (!pass)
  371. continue;
  372. // Fill the rest of the batch
  373. shadowBatch.camera_ = shadowCamera;
  374. shadowBatch.distance_ = shadowCamera->GetDistance(drawable->GetWorldPosition());
  375. shadowBatch.light_ = SplitLight;
  376. shadowBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  377. renderer_->SetBatchShaders(shadowBatch, tech, pass);
  378. lightQueue.shadowBatches_.AddBatch(shadowBatch);
  379. }
  380. }
  381. // Loop through lit geometries
  382. if (litGeometries_[j].Size())
  383. {
  384. bool storeLightQueue = true;
  385. for (unsigned k = 0; k < litGeometries_[j].Size(); ++k)
  386. {
  387. Drawable* drawable = litGeometries_[j][k];
  388. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  389. if (!drawable->GetMaxLights())
  390. GetLitBatches(drawable, light, SplitLight, &lightQueue, litTransparencies);
  391. else
  392. {
  393. drawable->AddLight(SplitLight);
  394. maxLightsDrawables.Insert(drawable);
  395. }
  396. }
  397. // Store the light queue, and light volume batch in deferred mode
  398. if (mode_ != RENDER_FORWARD)
  399. {
  400. Batch volumeBatch;
  401. volumeBatch.geometry_ = renderer_->GetLightGeometry(SplitLight);
  402. volumeBatch.worldTransform_ = &SplitLight->GetVolumeTransform(*camera_);
  403. volumeBatch.overrideView_ = SplitLight->GetLightType() == LIGHT_DIRECTIONAL;
  404. volumeBatch.camera_ = camera_;
  405. volumeBatch.light_ = SplitLight;
  406. volumeBatch.distance_ = SplitLight->GetDistance();
  407. renderer_->SetLightVolumeShaders(volumeBatch);
  408. // If light is a split point light, it must be treated as shadowed in any case for correct stencil clearing
  409. if ((SplitLight->GetShadowMap()) || (SplitLight->GetLightType() == LIGHT_SPLITPOINT))
  410. lightQueue.volumeBatches_.Push(volumeBatch);
  411. else
  412. {
  413. storeLightQueue = false;
  414. noShadowLightQueue_.AddBatch(volumeBatch, true);
  415. }
  416. }
  417. if (storeLightQueue)
  418. {
  419. lightQueueIndex[SplitLight] = lightQueueCount;
  420. ++lightQueueCount;
  421. }
  422. }
  423. }
  424. // Mark the last split
  425. if (lightQueueCount != prevLightQueueCount)
  426. lightQueues_[lightQueueCount - 1].lastSplit_ = true;
  427. }
  428. // Resize the light queue vector now that final size is known
  429. lightQueues_.Resize(lightQueueCount);
  430. }
  431. // Process drawables with limited light count
  432. if (maxLightsDrawables.Size())
  433. {
  434. PROFILE(GetMaxLightsBatches);
  435. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables.Begin(); i != maxLightsDrawables.End(); ++i)
  436. {
  437. Drawable* drawable = *i;
  438. drawable->LimitLights();
  439. const PODVector<Light*>& lights = drawable->GetLights();
  440. for (unsigned i = 0; i < lights.Size(); ++i)
  441. {
  442. Light* SplitLight = lights[i];
  443. Light* light = SplitLight->GetOriginalLight();
  444. if (!light)
  445. light = SplitLight;
  446. // Find the correct light queue again
  447. LightBatchQueue* queue = 0;
  448. Map<Light*, unsigned>::Iterator j = lightQueueIndex.Find(SplitLight);
  449. if (j != lightQueueIndex.End())
  450. queue = &lightQueues_[j->second_];
  451. GetLitBatches(drawable, light, SplitLight, queue, litTransparencies);
  452. }
  453. }
  454. }
  455. // Go through geometries for base pass batches
  456. {
  457. PROFILE(GetBaseBatches);
  458. for (unsigned i = 0; i < geometries_.Size(); ++i)
  459. {
  460. Drawable* drawable = geometries_[i];
  461. unsigned numBatches = drawable->GetNumBatches();
  462. for (unsigned j = 0; j < numBatches; ++j)
  463. {
  464. Batch baseBatch;
  465. drawable->GetBatch(frame_, j, baseBatch);
  466. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  467. if ((!baseBatch.geometry_) || (!tech))
  468. continue;
  469. // Check here if the material technique refers to a render target texture with camera(s) attached
  470. // Only check this for the main view (null rendertarget)
  471. if ((!renderTarget_) && (baseBatch.material_) && (baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_))
  472. CheckMaterialForAuxView(baseBatch.material_);
  473. // If object already has a lit base pass, can skip the unlit base pass
  474. if (drawable->HasBasePass(j))
  475. continue;
  476. // Fill the rest of the batch
  477. baseBatch.camera_ = camera_;
  478. baseBatch.distance_ = drawable->GetDistance();
  479. Pass* pass = 0;
  480. // In deferred mode, check for a G-buffer batch first
  481. if (mode_ != RENDER_FORWARD)
  482. {
  483. pass = tech->GetPass(PASS_GBUFFER);
  484. if (pass)
  485. {
  486. renderer_->SetBatchShaders(baseBatch, tech, pass);
  487. baseBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  488. gBufferQueue_.AddBatch(baseBatch);
  489. // Check also for an additional pass (possibly for emissive)
  490. pass = tech->GetPass(PASS_EXTRA);
  491. if (pass)
  492. {
  493. renderer_->SetBatchShaders(baseBatch, tech, pass);
  494. baseQueue_.AddBatch(baseBatch);
  495. }
  496. continue;
  497. }
  498. }
  499. // Then check for forward rendering base pass
  500. pass = tech->GetPass(PASS_BASE);
  501. if (pass)
  502. {
  503. renderer_->SetBatchShaders(baseBatch, tech, pass);
  504. if (pass->GetBlendMode() == BLEND_REPLACE)
  505. {
  506. baseBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  507. baseQueue_.AddBatch(baseBatch);
  508. }
  509. else
  510. {
  511. baseBatch.hasPriority_ = true;
  512. transparentQueue_.AddBatch(baseBatch, true);
  513. }
  514. continue;
  515. }
  516. else
  517. {
  518. // If no base pass, finally check for extra / custom pass
  519. pass = tech->GetPass(PASS_EXTRA);
  520. if (pass)
  521. {
  522. baseBatch.hasPriority_ = false;
  523. renderer_->SetBatchShaders(baseBatch, tech, pass);
  524. extraQueue_.AddBatch(baseBatch);
  525. }
  526. }
  527. }
  528. }
  529. }
  530. // All batches have been collected. Sort them now
  531. SortBatches();
  532. }
  533. void View::GetLitBatches(Drawable* drawable, Light* light, Light* SplitLight, LightBatchQueue* lightQueue,
  534. HashSet<LitTransparencyCheck>& litTransparencies)
  535. {
  536. bool splitPointLight = SplitLight->GetLightType() == LIGHT_SPLITPOINT;
  537. // Whether to allow shadows for transparencies, or for forward lit objects in deferred mode
  538. bool allowShadows = (!renderer_->reuseShadowMaps_) && (!splitPointLight);
  539. unsigned numBatches = drawable->GetNumBatches();
  540. for (unsigned i = 0; i < numBatches; ++i)
  541. {
  542. Batch litBatch;
  543. drawable->GetBatch(frame_, i, litBatch);
  544. Technique* tech = GetTechnique(drawable, litBatch.material_);
  545. if ((!litBatch.geometry_) || (!tech))
  546. continue;
  547. // If material uses opaque G-buffer rendering, skip
  548. if ((mode_ != RENDER_FORWARD) && (tech->HasPass(PASS_GBUFFER)))
  549. continue;
  550. Pass* pass = 0;
  551. bool priority = false;
  552. // For directional light, check for lit base pass
  553. if (SplitLight->GetLightType() == LIGHT_DIRECTIONAL)
  554. {
  555. if (!drawable->HasBasePass(i))
  556. {
  557. pass = tech->GetPass(PASS_LITBASE);
  558. if (pass)
  559. {
  560. priority = true;
  561. drawable->SetBasePass(i);
  562. }
  563. }
  564. }
  565. // If no first light pass, get ordinary light pass
  566. if (!pass)
  567. pass = tech->GetPass(PASS_LIGHT);
  568. // Skip if material does not receive light at all
  569. if (!pass)
  570. continue;
  571. // Fill the rest of the batch
  572. litBatch.camera_ = camera_;
  573. litBatch.distance_ = drawable->GetDistance();
  574. litBatch.light_ = SplitLight;
  575. litBatch.hasPriority_ = priority;
  576. // Check from the ambient pass whether the object is opaque
  577. Pass* ambientPass = tech->GetPass(PASS_BASE);
  578. if ((!ambientPass) || (ambientPass->GetBlendMode() == BLEND_REPLACE))
  579. {
  580. if (mode_ == RENDER_FORWARD)
  581. {
  582. if (lightQueue)
  583. {
  584. renderer_->SetBatchShaders(litBatch, tech, pass);
  585. lightQueue->litBatches_.AddBatch(litBatch);
  586. }
  587. }
  588. else
  589. {
  590. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  591. baseQueue_.AddBatch(litBatch);
  592. }
  593. }
  594. else
  595. {
  596. if (splitPointLight)
  597. {
  598. // Check if already lit
  599. LitTransparencyCheck check(light, drawable, i);
  600. if (litTransparencies.Find(check) != litTransparencies.End())
  601. continue;
  602. // Use the original light instead of the split one, to choose correct scissor
  603. litBatch.light_ = light;
  604. litTransparencies.Insert(check);
  605. }
  606. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  607. transparentQueue_.AddBatch(litBatch, true);
  608. }
  609. }
  610. }
  611. void View::RenderBatchesForward()
  612. {
  613. {
  614. // Render opaque objects' base passes
  615. PROFILE(RenderBasePass);
  616. graphics_->SetColorWrite(true);
  617. graphics_->SetStencilTest(false);
  618. graphics_->SetRenderTarget(0, renderTarget_);
  619. graphics_->SetDepthStencil(depthStencil_);
  620. graphics_->SetViewport(screenRect_);
  621. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, zone_->GetFogColor());
  622. RenderBatchQueue(baseQueue_);
  623. }
  624. {
  625. // Render shadow maps + opaque objects' shadowed additive lighting
  626. PROFILE(RenderLights);
  627. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  628. {
  629. LightBatchQueue& queue = lightQueues_[i];
  630. // If reusing shadowmaps, render each of them before the lit batches
  631. if ((renderer_->reuseShadowMaps_) && (queue.light_->GetShadowMap()))
  632. RenderShadowMap(queue);
  633. graphics_->SetRenderTarget(0, renderTarget_);
  634. graphics_->SetDepthStencil(depthStencil_);
  635. graphics_->SetViewport(screenRect_);
  636. RenderForwardLightBatchQueue(queue.litBatches_, queue.light_);
  637. // Clear the stencil buffer after the last split
  638. if (queue.lastSplit_)
  639. {
  640. LightType type = queue.light_->GetLightType();
  641. if ((type == LIGHT_SPLITPOINT) || (type == LIGHT_DIRECTIONAL))
  642. DrawSplitLightToStencil(*camera_, queue.light_, true);
  643. }
  644. }
  645. }
  646. {
  647. // Render extra / custom passes
  648. PROFILE(RenderExtraPass);
  649. graphics_->SetRenderTarget(0, renderTarget_);
  650. graphics_->SetDepthStencil(depthStencil_);
  651. graphics_->SetViewport(screenRect_);
  652. RenderBatchQueue(extraQueue_);
  653. }
  654. {
  655. // Render transparent objects last (both base passes & additive lighting)
  656. PROFILE(RenderTransparent);
  657. RenderBatchQueue(transparentQueue_, true);
  658. }
  659. }
  660. void View::RenderBatchesDeferred()
  661. {
  662. Texture2D* diffBuffer = graphics_->GetDiffBuffer();
  663. Texture2D* normalBuffer = graphics_->GetNormalBuffer();
  664. Texture2D* depthBuffer = graphics_->GetDepthBuffer();
  665. // Check for deferred antialiasing (edge filter) in deferred mode. Only use it on the main view (null rendertarget)
  666. bool edgeFilter = (!renderTarget_) && (graphics_->GetMultiSample() > 1);
  667. RenderSurface* renderBuffer = edgeFilter ? graphics_->GetScreenBuffer()->GetRenderSurface() : renderTarget_;
  668. // Calculate shader parameters needed only in deferred rendering
  669. Vector3 nearVector, farVector;
  670. camera_->GetFrustumSize(nearVector, farVector);
  671. Vector4 viewportParams(farVector.x_, farVector.y_, farVector.z_, 0.0f);
  672. float gBufferWidth = (float)diffBuffer->GetWidth();
  673. float gBufferHeight = (float)diffBuffer->GetHeight();
  674. float widthRange = 0.5f * width_ / gBufferWidth;
  675. float heightRange = 0.5f * height_ / gBufferHeight;
  676. #ifdef USE_OPENGL
  677. Vector4 bufferUVOffset(((float)screenRect_.left_) / gBufferWidth + widthRange,
  678. ((float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  679. // Hardware depth is non-linear in perspective views, so calculate the depth reconstruction parameters
  680. float farClip = camera_->GetFarClip();
  681. float nearClip = camera_->GetNearClip();
  682. Vector4 depthReconstruct = Vector4::ZERO;
  683. depthReconstruct.x_ = farClip / (farClip - nearClip);
  684. depthReconstruct.y_ = -nearClip / (farClip - nearClip);
  685. shaderParameters_[PSP_DEPTHRECONSTRUCT] = depthReconstruct;
  686. #else
  687. Vector4 bufferUVOffset((0.5f + (float)screenRect_.left_) / gBufferWidth + widthRange,
  688. (0.5f + (float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  689. #endif
  690. Vector4 viewportSize((float)screenRect_.left_ / gBufferWidth, (float)screenRect_.top_ / gBufferHeight,
  691. (float)screenRect_.right_ / gBufferWidth, (float)screenRect_.bottom_ / gBufferHeight);
  692. shaderParameters_[VSP_FRUSTUMSIZE] = viewportParams;
  693. shaderParameters_[VSP_GBUFFEROFFSETS] = bufferUVOffset;
  694. {
  695. // Clear and render the G-buffer
  696. PROFILE(RenderGBuffer);
  697. graphics_->SetColorWrite(true);
  698. graphics_->SetScissorTest(false);
  699. graphics_->SetStencilTest(false);
  700. #ifdef USE_OPENGL
  701. // On OpenGL, clear the diffuse and depth buffers normally
  702. graphics_->SetRenderTarget(0, diffBuffer);
  703. graphics_->SetDepthStencil(depthBuffer);
  704. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL);
  705. graphics_->SetRenderTarget(1, normalBuffer);
  706. #else
  707. // On Direct3D9, clear only depth and stencil at first (fillrate optimization)
  708. graphics_->SetRenderTarget(0, diffBuffer);
  709. graphics_->SetRenderTarget(1, normalBuffer);
  710. graphics_->SetRenderTarget(2, depthBuffer);
  711. graphics_->SetDepthStencil(depthStencil_);
  712. graphics_->SetViewport(screenRect_);
  713. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  714. #endif
  715. RenderBatchQueue(gBufferQueue_);
  716. graphics_->SetAlphaTest(false);
  717. graphics_->SetBlendMode(BLEND_REPLACE);
  718. #ifndef USE_OPENGL
  719. // On Direct3D9, clear now the parts of G-Buffer that were not rendered into
  720. graphics_->SetDepthTest(CMP_LESSEQUAL);
  721. graphics_->SetDepthWrite(false);
  722. graphics_->ResetRenderTarget(2);
  723. graphics_->SetRenderTarget(1, depthBuffer);
  724. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("GBufferFill"),
  725. renderer_->GetPixelShader("GBufferFill"), false, shaderParameters_);
  726. #endif
  727. }
  728. {
  729. PROFILE(RenderAmbientQuad);
  730. // Render ambient color & fog. On OpenGL the depth buffer will be copied now
  731. graphics_->SetDepthTest(CMP_ALWAYS);
  732. graphics_->SetRenderTarget(0, renderBuffer);
  733. graphics_->ResetRenderTarget(1);
  734. #ifdef USE_OPENGL
  735. graphics_->SetDepthWrite(true);
  736. #else
  737. graphics_->ResetRenderTarget(2);
  738. #endif
  739. graphics_->SetDepthStencil(depthStencil_);
  740. graphics_->SetViewport(screenRect_);
  741. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  742. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  743. String pixelShaderName = "Ambient";
  744. #ifdef USE_OPENGL
  745. if (camera_->IsOrthographic())
  746. pixelShaderName += "Ortho";
  747. // On OpenGL, set up a stencil operation to reset the stencil during ambient quad rendering
  748. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_ZERO, OP_KEEP, OP_KEEP);
  749. #endif
  750. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("Ambient"),
  751. renderer_->GetPixelShader("Ambient"), false, shaderParameters_);
  752. #ifdef USE_OPENGL
  753. graphics_->SetStencilTest(false);
  754. #endif
  755. }
  756. {
  757. // Render lights
  758. PROFILE(RenderLights);
  759. // Shadowed lights
  760. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  761. {
  762. LightBatchQueue& queue = lightQueues_[i];
  763. // If reusing shadowmaps, render each of them before the lit batches
  764. if ((renderer_->reuseShadowMaps_) && (queue.light_->GetShadowMap()))
  765. RenderShadowMap(queue);
  766. // Light volume batches are not sorted as there should be only one of them
  767. if (queue.volumeBatches_.Size())
  768. {
  769. graphics_->SetRenderTarget(0, renderBuffer);
  770. graphics_->SetDepthStencil(depthStencil_);
  771. graphics_->SetViewport(screenRect_);
  772. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  773. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  774. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  775. for (unsigned j = 0; j < queue.volumeBatches_.Size(); ++j)
  776. {
  777. renderer_->SetupLightBatch(queue.volumeBatches_[j]);
  778. queue.volumeBatches_[j].Draw(graphics_, shaderParameters_);
  779. }
  780. // If was the last split of a split point light, clear the stencil by rendering the point light again
  781. if ((queue.lastSplit_) && (queue.light_->GetLightType() == LIGHT_SPLITPOINT))
  782. DrawSplitLightToStencil(*camera_, queue.light_, true);
  783. }
  784. }
  785. // Non-shadowed lights
  786. if (noShadowLightQueue_.sortedBatches_.Size())
  787. {
  788. graphics_->SetRenderTarget(0, renderBuffer);
  789. graphics_->SetDepthStencil(depthStencil_);
  790. graphics_->SetViewport(screenRect_);
  791. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  792. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  793. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  794. for (unsigned i = 0; i < noShadowLightQueue_.sortedBatches_.Size(); ++i)
  795. {
  796. renderer_->SetupLightBatch(*noShadowLightQueue_.sortedBatches_[i]);
  797. noShadowLightQueue_.sortedBatches_[i]->Draw(graphics_, shaderParameters_);
  798. }
  799. }
  800. }
  801. {
  802. // Render base passes
  803. PROFILE(RenderBasePass);
  804. graphics_->SetStencilTest(false);
  805. graphics_->SetTexture(TU_DIFFBUFFER, 0);
  806. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  807. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  808. graphics_->SetRenderTarget(0, renderBuffer);
  809. graphics_->SetDepthStencil(depthStencil_);
  810. graphics_->SetViewport(screenRect_);
  811. RenderBatchQueue(baseQueue_, true);
  812. }
  813. {
  814. // Render extra / custom passes
  815. PROFILE(RenderExtraPass);
  816. RenderBatchQueue(extraQueue_);
  817. }
  818. {
  819. // Render transparent objects last (both ambient & additive lighting)
  820. PROFILE(RenderTransparent);
  821. RenderBatchQueue(transparentQueue_, true);
  822. }
  823. // Render deferred antialiasing now if enabled
  824. if (edgeFilter)
  825. {
  826. PROFILE(RenderEdgeFilter);
  827. const EdgeFilterParameters& parameters = renderer_->GetEdgeFilter();
  828. ShaderVariation* vs = renderer_->GetVertexShader("EdgeFilter");
  829. ShaderVariation* ps = renderer_->GetPixelShader("EdgeFilter");
  830. HashMap<ShaderParameter, Vector4> shaderParameters(shaderParameters_);
  831. shaderParameters[PSP_EDGEFILTERPARAMS] = Vector4(parameters.radius_, parameters.threshold_, parameters.strength_, 0.0f);
  832. shaderParameters[PSP_SAMPLEOFFSETS] = Vector4(1.0f / gBufferWidth, 1.0f / gBufferHeight, 0.0f, 0.0f);
  833. graphics_->SetAlphaTest(false);
  834. graphics_->SetBlendMode(BLEND_REPLACE);
  835. graphics_->SetDepthTest(CMP_ALWAYS),
  836. graphics_->SetStencilTest(false);
  837. graphics_->SetRenderTarget(0, renderTarget_);
  838. graphics_->SetDepthStencil(depthStencil_);
  839. graphics_->SetViewport(screenRect_);
  840. graphics_->SetTexture(TU_DIFFBUFFER, graphics_->GetScreenBuffer());
  841. renderer_->DrawFullScreenQuad(*camera_, vs, ps, false, shaderParameters);
  842. }
  843. }
  844. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  845. {
  846. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  847. float halfViewSize = camera->GetHalfViewSize();
  848. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  849. Vector3 cameraPos = camera->GetWorldPosition();
  850. unsigned cameraViewMask = camera->GetViewMask();
  851. for (unsigned i = 0; i < occluders.Size(); ++i)
  852. {
  853. Drawable* occluder = occluders[i];
  854. occluder->UpdateDistance(frame_);
  855. bool erase = false;
  856. // Check view mask
  857. if (!(cameraViewMask & occluder->GetViewMask()))
  858. erase = true;
  859. // Check occluder's draw distance (in main camera view)
  860. float maxDistance = occluder->GetDrawDistance();
  861. if ((maxDistance > 0.0f) && (occluder->GetDistance() > maxDistance))
  862. erase = true;
  863. // Check that occluder is big enough on the screen
  864. const BoundingBox& box = occluder->GetWorldBoundingBox();
  865. float diagonal = (box.max_ - box.min_).LengthFast();
  866. float compare;
  867. if (!camera->IsOrthographic())
  868. compare = diagonal * halfViewSize / occluder->GetDistance();
  869. else
  870. compare = diagonal * invOrthoSize;
  871. if (compare < occluderSizeThreshold_)
  872. erase = true;
  873. if (!erase)
  874. {
  875. unsigned totalTriangles = 0;
  876. unsigned batches = occluder->GetNumBatches();
  877. Batch tempBatch;
  878. for (unsigned j = 0; j < batches; ++j)
  879. {
  880. occluder->GetBatch(frame_, j, tempBatch);
  881. if (tempBatch.geometry_)
  882. totalTriangles += tempBatch.geometry_->GetIndexCount() / 3;
  883. }
  884. // Store amount of triangles divided by screen size as a sorting key
  885. // (best occluders are big and have few triangles)
  886. occluder->SetSortValue((float)totalTriangles / compare);
  887. }
  888. else
  889. {
  890. occluders.Erase(occluders.Begin() + i);
  891. --i;
  892. }
  893. }
  894. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  895. if (occluders.Size())
  896. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  897. }
  898. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  899. {
  900. for (unsigned i = 0; i < occluders.Size(); ++i)
  901. {
  902. Drawable* occluder = occluders[i];
  903. if (i > 0)
  904. {
  905. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  906. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  907. continue;
  908. }
  909. occluder->UpdateGeometry(frame_);
  910. // Check for running out of triangles
  911. if (!occluder->DrawOcclusion(buffer))
  912. return;
  913. }
  914. }
  915. unsigned View::ProcessLight(Light* light)
  916. {
  917. unsigned numLitGeometries = 0;
  918. unsigned numShadowCasters = 0;
  919. unsigned numSplits;
  920. // Check if light should be shadowed
  921. bool isShadowed = (drawShadows_) && (light->GetCastShadows());
  922. // If shadow distance non-zero, check it
  923. if ((isShadowed) && (light->GetShadowDistance() > 0.0f) && (light->GetDistance() > light->GetShadowDistance()))
  924. isShadowed = false;
  925. // If light has no ramp textures defined, set defaults
  926. if ((light->GetLightType() != LIGHT_DIRECTIONAL) && (!light->GetRampTexture()))
  927. light->SetRampTexture(renderer_->GetDefaultLightRamp());
  928. if ((light->GetLightType() == LIGHT_SPOT) && (!light->GetShapeTexture()))
  929. light->SetShapeTexture(renderer_->GetDefaultLightSpot());
  930. // Split the light if necessary
  931. if (isShadowed)
  932. numSplits = SplitLight(light);
  933. else
  934. {
  935. // No splitting, use the original light
  936. splitLights_[0] = light;
  937. numSplits = 1;
  938. }
  939. // For a shadowed directional light, get occluders once using the whole (non-split) light frustum
  940. bool useOcclusion = false;
  941. OcclusionBuffer* buffer = 0;
  942. if ((maxOccluderTriangles_ > 0) && (isShadowed) && (light->GetLightType() == LIGHT_DIRECTIONAL))
  943. {
  944. // This shadow camera is never used for actually querying shadow casters, just occluders
  945. Camera* shadowCamera = renderer_->CreateShadowCamera();
  946. light->SetShadowCamera(shadowCamera);
  947. SetupShadowCamera(light, true);
  948. // Get occluders, which must be shadow-casting themselves
  949. FrustumOctreeQuery query(shadowOccluders_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY, true, true);
  950. octree_->GetDrawables(query);
  951. UpdateOccluders(shadowOccluders_, shadowCamera);
  952. if (shadowOccluders_.Size())
  953. {
  954. // Shadow viewport is rectangular and consumes more CPU fillrate, so halve size
  955. buffer = renderer_->GetOrCreateOcclusionBuffer(shadowCamera, maxOccluderTriangles_, true);
  956. DrawOccluders(buffer, shadowOccluders_);
  957. buffer->BuildDepthHierarchy();
  958. useOcclusion = true;
  959. }
  960. }
  961. // Process each split for shadow camera update, lit geometries, and shadow casters
  962. for (unsigned i = 0; i < numSplits; ++i)
  963. {
  964. litGeometries_[i].Clear();
  965. shadowCasters_[i].Clear();
  966. }
  967. for (unsigned i = 0; i < numSplits; ++i)
  968. {
  969. Light* split = splitLights_[i];
  970. LightType type = split->GetLightType();
  971. bool isSplitShadowed = (isShadowed) && (split->GetCastShadows());
  972. Camera* shadowCamera = 0;
  973. // If shadow casting, choose the shadow map & update shadow camera
  974. if (isSplitShadowed)
  975. {
  976. shadowCamera = renderer_->CreateShadowCamera();
  977. split->SetShadowMap(renderer_->GetShadowMap(splitLights_[i]->GetShadowResolution()));
  978. // Check if managed to get a shadow map. Otherwise must convert to non-shadowed
  979. if (split->GetShadowMap())
  980. {
  981. split->SetShadowCamera(shadowCamera);
  982. SetupShadowCamera(split);
  983. }
  984. else
  985. {
  986. isSplitShadowed = false;
  987. split->SetShadowCamera(0);
  988. }
  989. }
  990. else
  991. {
  992. split->SetShadowCamera(0);
  993. split->SetShadowMap(0);
  994. }
  995. BoundingBox geometryBox;
  996. BoundingBox shadowCasterBox;
  997. switch (type)
  998. {
  999. case LIGHT_DIRECTIONAL:
  1000. // Loop through visible geometries and check if they belong to this split
  1001. {
  1002. float nearSplit = split->GetNearSplit() - split->GetNearFadeRange();
  1003. float farSplit = split->GetFarSplit();
  1004. // If split extends to the whole visible frustum, no depth check necessary
  1005. bool optimize = (nearSplit <= camera_->GetNearClip()) && (farSplit >= camera_->GetFarClip());
  1006. // If whole visible scene is outside the split, can reject trivially
  1007. if ((sceneViewBox_.min_.z_ > farSplit) || (sceneViewBox_.max_.z_ < nearSplit))
  1008. {
  1009. split->SetShadowMap(0);
  1010. continue;
  1011. }
  1012. bool generateBoxes = (isSplitShadowed) && (split->GetShadowFocus().focus_);
  1013. Matrix3x4 lightView;
  1014. if (shadowCamera)
  1015. lightView = shadowCamera->GetInverseWorldTransform();
  1016. if (!optimize)
  1017. {
  1018. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1019. {
  1020. Drawable* drawable = geometries_[j];
  1021. const GeometryDepthBounds& bounds = geometryDepthBounds_[j];
  1022. // Check bounds and light mask
  1023. if ((bounds.min_ <= farSplit) && (bounds.max_ >= nearSplit) && (drawable->GetLightMask() &
  1024. split->GetLightMask()))
  1025. {
  1026. litGeometries_[i].Push(drawable);
  1027. if (generateBoxes)
  1028. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1029. }
  1030. }
  1031. }
  1032. else
  1033. {
  1034. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1035. {
  1036. Drawable* drawable = geometries_[j];
  1037. // Need to check light mask only
  1038. if (drawable->GetLightMask() & split->GetLightMask())
  1039. {
  1040. litGeometries_[i].Push(drawable);
  1041. if (generateBoxes)
  1042. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1043. }
  1044. }
  1045. }
  1046. }
  1047. // Then get shadow casters by shadow camera frustum query. Use occlusion because of potentially many geometries
  1048. if ((isSplitShadowed) && (litGeometries_[i].Size()))
  1049. {
  1050. Camera* shadowCamera = split->GetShadowCamera();
  1051. if (!useOcclusion)
  1052. {
  1053. // Get potential shadow casters without occlusion
  1054. FrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY);
  1055. octree_->GetDrawables(query);
  1056. }
  1057. else
  1058. {
  1059. // Get potential shadow casters with occlusion
  1060. OccludedFrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), buffer,
  1061. DRAWABLE_GEOMETRY);
  1062. octree_->GetDrawables(query);
  1063. }
  1064. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, false, isSplitShadowed);
  1065. }
  1066. break;
  1067. case LIGHT_POINT:
  1068. {
  1069. SphereOctreeQuery query(tempDrawables_, Sphere(split->GetWorldPosition(), split->GetRange()), DRAWABLE_GEOMETRY);
  1070. octree_->GetDrawables(query);
  1071. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, false);
  1072. }
  1073. break;
  1074. case LIGHT_SPOT:
  1075. case LIGHT_SPLITPOINT:
  1076. {
  1077. FrustumOctreeQuery query(tempDrawables_, splitLights_[i]->GetFrustum(), DRAWABLE_GEOMETRY);
  1078. octree_->GetDrawables(query);
  1079. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, isSplitShadowed);
  1080. }
  1081. break;
  1082. }
  1083. // Optimization: if a particular split has no shadow casters, render as unshadowed
  1084. if (!shadowCasters_[i].Size())
  1085. split->SetShadowMap(0);
  1086. // Focus shadow camera as applicable
  1087. if (split->GetShadowMap())
  1088. {
  1089. if (split->GetShadowFocus().focus_)
  1090. FocusShadowCamera(split, geometryBox, shadowCasterBox);
  1091. // Set a zoom factor to ensure that we do not render to the shadow map border
  1092. // (clamp addressing is necessary because border mode /w hardware shadow maps is not supported by all GPUs)
  1093. Camera* shadowCamera = split->GetShadowCamera();
  1094. Texture2D* shadowMap = split->GetShadowMap();
  1095. if (shadowCamera->GetZoom() >= 1.0f)
  1096. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth()));
  1097. }
  1098. // Update count of total lit geometries & shadow casters
  1099. numLitGeometries += litGeometries_[i].Size();
  1100. numShadowCasters += shadowCasters_[i].Size();
  1101. }
  1102. // If no lit geometries at all, no need to process further
  1103. if (!numLitGeometries)
  1104. numSplits = 0;
  1105. // If no shadow casters at all, concatenate lit geometries into one & return the original light
  1106. else if (!numShadowCasters)
  1107. {
  1108. if (numSplits > 1)
  1109. {
  1110. // Make sure there are no duplicates
  1111. HashSet<Drawable*> allLitGeometries;
  1112. for (unsigned i = 0; i < numSplits; ++i)
  1113. {
  1114. for (Vector<Drawable*>::Iterator j = litGeometries_[i].Begin(); j != litGeometries_[i].End(); ++j)
  1115. allLitGeometries.Insert(*j);
  1116. }
  1117. litGeometries_[0].Resize(allLitGeometries.Size());
  1118. unsigned index = 0;
  1119. for (HashSet<Drawable*>::Iterator i = allLitGeometries.Begin(); i != allLitGeometries.End(); ++i)
  1120. litGeometries_[0][index++] = *i;
  1121. }
  1122. splitLights_[0] = light;
  1123. splitLights_[0]->SetShadowMap(0);
  1124. numSplits = 1;
  1125. }
  1126. return numSplits;
  1127. }
  1128. void View::ProcessLightQuery(unsigned splitIndex, const PODVector<Drawable*>& result, BoundingBox& geometryBox,
  1129. BoundingBox& shadowCasterBox, bool getLitGeometries, bool GetShadowCasters)
  1130. {
  1131. Light* light = splitLights_[splitIndex];
  1132. Matrix3x4 lightView;
  1133. Matrix4 lightProj;
  1134. Frustum lightViewFrustum;
  1135. BoundingBox lightViewFrustumBox;
  1136. bool mergeBoxes = (light->GetLightType() != LIGHT_SPLITPOINT) && (light->GetShadowMap()) && (light->GetShadowFocus().focus_);
  1137. bool projectBoxes = false;
  1138. Camera* shadowCamera = light->GetShadowCamera();
  1139. if (shadowCamera)
  1140. {
  1141. bool projectBoxes = !shadowCamera->IsOrthographic();
  1142. lightView = shadowCamera->GetInverseWorldTransform();
  1143. lightProj = shadowCamera->GetProjection();
  1144. // Transform scene frustum into shadow camera's view space for shadow caster visibility check
  1145. // For point & spot lights, we can use the whole scene frustum. For directional lights, use the
  1146. // intersection of the scene frustum and the split frustum, so that shadow casters do not get
  1147. // rendered into unnecessary splits
  1148. if (light->GetLightType() != LIGHT_DIRECTIONAL)
  1149. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1150. else
  1151. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, light->GetNearSplit() - light->GetNearFadeRange()),
  1152. Min(sceneViewBox_.max_.z_, light->GetFarSplit())).Transformed(lightView);
  1153. lightViewFrustumBox.Define(lightViewFrustum);
  1154. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1155. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1156. GetShadowCasters = false;
  1157. }
  1158. else
  1159. GetShadowCasters = false;
  1160. BoundingBox lightViewBox;
  1161. BoundingBox lightProjBox;
  1162. for (unsigned i = 0; i < result.Size(); ++i)
  1163. {
  1164. Drawable* drawable = static_cast<Drawable*>(result[i]);
  1165. drawable->UpdateDistance(frame_);
  1166. bool boxGenerated = false;
  1167. // If draw distance non-zero, check it
  1168. float maxDistance = drawable->GetDrawDistance();
  1169. if ((maxDistance > 0.0f) && (drawable->GetDistance() > maxDistance))
  1170. continue;
  1171. // Check light mask
  1172. if (!(drawable->GetLightMask() & light->GetLightMask()))
  1173. continue;
  1174. // Get lit geometry only if inside main camera frustum this frame
  1175. if ((getLitGeometries) && (drawable->IsInView(frame_)))
  1176. {
  1177. if (mergeBoxes)
  1178. {
  1179. // Transform bounding box into light view space, and to projection space if needed
  1180. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1181. if (!projectBoxes)
  1182. geometryBox.Merge(lightViewBox);
  1183. else
  1184. {
  1185. lightProjBox = lightViewBox.Projected(lightProj);
  1186. geometryBox.Merge(lightProjBox);
  1187. }
  1188. boxGenerated = true;
  1189. }
  1190. litGeometries_[splitIndex].Push(drawable);
  1191. }
  1192. // Shadow caster need not be inside main camera frustum: in that case try to detect whether
  1193. // the shadow projection intersects the view
  1194. if ((GetShadowCasters) && (drawable->GetCastShadows()))
  1195. {
  1196. // If shadow distance non-zero, check it
  1197. float maxShadowDistance = drawable->GetShadowDistance();
  1198. if ((maxShadowDistance > 0.0f) && (drawable->GetDistance() > maxShadowDistance))
  1199. continue;
  1200. if (!boxGenerated)
  1201. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1202. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1203. {
  1204. if (mergeBoxes)
  1205. {
  1206. if (!projectBoxes)
  1207. shadowCasterBox.Merge(lightViewBox);
  1208. else
  1209. {
  1210. if (!boxGenerated)
  1211. lightProjBox = lightViewBox.Projected(lightProj);
  1212. shadowCasterBox.Merge(lightProjBox);
  1213. }
  1214. }
  1215. // Update geometry now if not updated yet
  1216. if (!drawable->IsInView(frame_))
  1217. {
  1218. drawable->MarkInShadowView(frame_);
  1219. drawable->UpdateGeometry(frame_);
  1220. }
  1221. shadowCasters_[splitIndex].Push(drawable);
  1222. }
  1223. }
  1224. }
  1225. }
  1226. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1227. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1228. {
  1229. // If shadow caster is also an occluder, must let it be visible, because it has potentially already culled
  1230. // away other shadow casters (could also check the actual shadow occluder vector, but that would be slower)
  1231. if (drawable->IsOccluder())
  1232. return true;
  1233. if (shadowCamera->IsOrthographic())
  1234. {
  1235. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1236. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1237. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1238. }
  1239. else
  1240. {
  1241. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1242. if (drawable->IsInView(frame_))
  1243. return true;
  1244. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1245. Vector3 center = lightViewBox.Center();
  1246. Ray extrusionRay(center, center.Normalized());
  1247. float extrusionDistance = shadowCamera->GetFarClip();
  1248. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  1249. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1250. float sizeFactor = extrusionDistance / originalDistance;
  1251. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1252. // than necessary, so the test will be conservative
  1253. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1254. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1255. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1256. lightViewBox.Merge(extrudedBox);
  1257. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1258. }
  1259. }
  1260. void View::SetupShadowCamera(Light* light, bool shadowOcclusion)
  1261. {
  1262. Camera* shadowCamera = light->GetShadowCamera();
  1263. Node* cameraNode = shadowCamera->GetNode();
  1264. const FocusParameters& parameters = light->GetShadowFocus();
  1265. // Reset zoom
  1266. shadowCamera->SetZoom(1.0f);
  1267. switch(light->GetLightType())
  1268. {
  1269. case LIGHT_DIRECTIONAL:
  1270. {
  1271. float extrusionDistance = camera_->GetFarClip();
  1272. // Calculate initial position & rotation
  1273. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1274. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1275. Quaternion rot(Vector3::FORWARD, lightWorldDirection);
  1276. cameraNode->SetTransform(pos, rot);
  1277. // Calculate main camera shadowed frustum in light's view space
  1278. float sceneMaxZ = camera_->GetFarClip();
  1279. // When shadow focusing is enabled, use the scene far Z to limit maximum frustum size
  1280. if ((shadowOcclusion) || (parameters.focus_))
  1281. sceneMaxZ = Min(sceneViewBox_.max_.z_, sceneMaxZ);
  1282. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1283. Frustum lightViewSplitFrustum = camera_->GetSplitFrustum(light->GetNearSplit() - light->GetNearFadeRange(),
  1284. Min(light->GetFarSplit(), sceneMaxZ)).Transformed(lightView);
  1285. // Fit the frustum inside a bounding box. If uniform size, use a sphere instead
  1286. BoundingBox shadowBox;
  1287. if ((!shadowOcclusion) && (parameters.nonUniform_))
  1288. shadowBox.Define(lightViewSplitFrustum);
  1289. else
  1290. {
  1291. Sphere shadowSphere;
  1292. shadowSphere.Define(lightViewSplitFrustum);
  1293. shadowBox.Define(shadowSphere);
  1294. }
  1295. shadowCamera->SetOrthographic(true);
  1296. shadowCamera->SetNearClip(0.0f);
  1297. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1298. // Center shadow camera on the bounding box, snap to whole texels
  1299. QuantizeDirShadowCamera(light, shadowBox);
  1300. }
  1301. break;
  1302. case LIGHT_SPOT:
  1303. case LIGHT_SPLITPOINT:
  1304. {
  1305. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1306. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1307. shadowCamera->SetFarClip(light->GetRange());
  1308. shadowCamera->SetOrthographic(false);
  1309. shadowCamera->SetFov(light->GetFov());
  1310. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1311. // For spot lights, zoom out shadowmap if far away (reduces fillrate)
  1312. if ((light->GetLightType() == LIGHT_SPOT) && (parameters.zoomOut_))
  1313. {
  1314. // Make sure the out-zooming does not start while we are inside the spot
  1315. float distance = Max((camera_->GetInverseWorldTransform() * light->GetWorldPosition()).z_ - light->GetRange(), 1.0f);
  1316. float lightPixels = (((float)height_ * light->GetRange() * camera_->GetZoom() * 0.5f) / distance);
  1317. // Clamp pixel amount to a sufficient minimum to avoid self-shadowing artifacts due to loss of precision
  1318. if (lightPixels < SHADOW_MIN_PIXELS)
  1319. lightPixels = SHADOW_MIN_PIXELS;
  1320. float zoolevel_ = Min(lightPixels / (float)light->GetShadowMap()->GetHeight(), 1.0f);
  1321. shadowCamera->SetZoom(zoolevel_);
  1322. }
  1323. }
  1324. break;
  1325. }
  1326. }
  1327. void View::FocusShadowCamera(Light* light, const BoundingBox& geometryBox, const BoundingBox& shadowCasterBox)
  1328. {
  1329. // If either no geometries or no shadow casters, do nothing
  1330. if ((!geometryBox.defined_) || (!shadowCasterBox.defined_))
  1331. return;
  1332. Camera* shadowCamera = light->GetShadowCamera();
  1333. const FocusParameters& parameters = light->GetShadowFocus();
  1334. switch (light->GetLightType())
  1335. {
  1336. case LIGHT_DIRECTIONAL:
  1337. {
  1338. BoundingBox combinedBox;
  1339. combinedBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1340. combinedBox.max_.x_ = shadowCamera->GetAspectRatio() * combinedBox.max_.y_;
  1341. combinedBox.min_.y_ = -combinedBox.max_.y_;
  1342. combinedBox.min_.x_ = -combinedBox.max_.x_;
  1343. combinedBox.Intersect(geometryBox);
  1344. combinedBox.Intersect(shadowCasterBox);
  1345. QuantizeDirShadowCamera(light, combinedBox);
  1346. }
  1347. break;
  1348. case LIGHT_SPOT:
  1349. // Can not move, but can zoom the shadow camera. Check for out-zooming (distant shadow map), do nothing in that case
  1350. if (shadowCamera->GetZoom() >= 1.0f)
  1351. {
  1352. BoundingBox combinedBox(-1.0f, 1.0f);
  1353. combinedBox.Intersect(geometryBox);
  1354. combinedBox.Intersect(shadowCasterBox);
  1355. float viewSizeX = Max(fabsf(combinedBox.min_.x_), fabsf(combinedBox.max_.x_));
  1356. float viewSizeY = Max(fabsf(combinedBox.min_.y_), fabsf(combinedBox.max_.y_));
  1357. float viewSize = Max(viewSizeX, viewSizeY);
  1358. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1359. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1360. float quantize = parameters.quantize_ * invOrthoSize;
  1361. float minView = parameters.minView_ * invOrthoSize;
  1362. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1363. if (viewSize < 1.0f)
  1364. shadowCamera->SetZoom(1.0f / viewSize);
  1365. }
  1366. break;
  1367. }
  1368. }
  1369. void View::QuantizeDirShadowCamera(Light* light, const BoundingBox& viewBox)
  1370. {
  1371. Camera* shadowCamera = light->GetShadowCamera();
  1372. Node* cameraNode = shadowCamera->GetNode();
  1373. const FocusParameters& parameters = light->GetShadowFocus();
  1374. float minX = viewBox.min_.x_;
  1375. float minY = viewBox.min_.y_;
  1376. float maxX = viewBox.max_.x_;
  1377. float maxY = viewBox.max_.y_;
  1378. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1379. Vector2 viewSize(maxX - minX, maxY - minY);
  1380. // Quantize size to reduce swimming
  1381. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1382. if (parameters.nonUniform_)
  1383. {
  1384. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1385. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1386. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1387. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1388. }
  1389. else if (parameters.focus_)
  1390. {
  1391. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1392. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1393. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1394. viewSize.y_ = viewSize.x_;
  1395. }
  1396. shadowCamera->SetOrthoSize(viewSize);
  1397. // Center shadow camera to the view space bounding box
  1398. Vector3 pos = shadowCamera->GetWorldPosition();
  1399. Quaternion rot = shadowCamera->GetWorldRotation();
  1400. Vector3 adjust(center.x_, center.y_, 0.0f);
  1401. cameraNode->Translate(rot * adjust);
  1402. // If there is a shadow map, snap to its whole texels
  1403. Texture2D* shadowMap = light->GetShadowMap();
  1404. if (shadowMap)
  1405. {
  1406. Vector3 viewPos(rot.Inverse() * shadowCamera->GetWorldPosition());
  1407. // Take into account that shadow map border will not be used
  1408. float invActualSize = 1.0f / (float)(shadowMap->GetWidth() - 2);
  1409. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1410. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1411. cameraNode->Translate(rot * snap);
  1412. }
  1413. }
  1414. void View::OptimizeLightByScissor(Light* light)
  1415. {
  1416. if (light)
  1417. graphics_->SetScissorTest(true, GetLightScissor(light));
  1418. else
  1419. graphics_->SetScissorTest(false);
  1420. }
  1421. const Rect& View::GetLightScissor(Light* light)
  1422. {
  1423. Map<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1424. if (i != lightScissorCache_.End())
  1425. return i->second_;
  1426. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1427. Matrix4 projection(camera_->GetProjection());
  1428. switch (light->GetLightType())
  1429. {
  1430. case LIGHT_POINT:
  1431. {
  1432. BoundingBox viewBox = light->GetWorldBoundingBox().Transformed(view);
  1433. return lightScissorCache_[light] = viewBox.Projected(projection);
  1434. }
  1435. case LIGHT_SPOT:
  1436. case LIGHT_SPLITPOINT:
  1437. {
  1438. Frustum viewFrustum = light->GetFrustum().Transformed(view);
  1439. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1440. }
  1441. default:
  1442. return lightScissorCache_[light] = Rect::FULL;
  1443. }
  1444. }
  1445. unsigned View::SplitLight(Light* light)
  1446. {
  1447. LightType type = light->GetLightType();
  1448. if (type == LIGHT_DIRECTIONAL)
  1449. {
  1450. const CascadeParameters& cascade = light->GetShadowCascade();
  1451. unsigned splits = cascade.splits_;
  1452. if (splits > MAX_LIGHT_SPLITS - 1)
  1453. splits = MAX_LIGHT_SPLITS;
  1454. // Orthographic view actually has near clip 0, but clamp it to a theoretical minimum
  1455. float farClip = Min(cascade.shadowRange_, camera_->GetFarClip()); // Shadow range end
  1456. float nearClip = Max(camera_->GetNearClip(), M_MIN_NEARCLIP); // Shadow range start
  1457. bool CreateExtraSplit = farClip < camera_->GetFarClip();
  1458. // Practical split scheme (Zhang et al.)
  1459. unsigned i;
  1460. for (i = 0; i < splits; ++i)
  1461. {
  1462. // Set a minimum for the fade range to avoid boundary artifacts (missing lighting)
  1463. float splitFadeRange = Max(cascade.splitFadeRange_, 0.001f);
  1464. float iPerM = (float)i / (float)splits;
  1465. float log = nearClip * powf(farClip / nearClip, iPerM);
  1466. float uniform = nearClip + (farClip - nearClip) * iPerM;
  1467. float nearSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1468. float nearFadeRange = nearSplit * splitFadeRange;
  1469. iPerM = (float)(i + 1) / (float)splits;
  1470. log = nearClip * powf(farClip / nearClip, iPerM);
  1471. uniform = nearClip + (farClip - nearClip) * iPerM;
  1472. float farSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1473. float farFadeRange = farSplit * splitFadeRange;
  1474. // If split is completely beyond camera far clip, we are done
  1475. if ((nearSplit - nearFadeRange) > camera_->GetFarClip())
  1476. break;
  1477. Light* SplitLight = renderer_->CreateSplitLight(light);
  1478. splitLights_[i] = SplitLight;
  1479. // Though the near clip was previously clamped, use the real near clip value for the first split,
  1480. // so that there are no unlit portions
  1481. if (i)
  1482. SplitLight->SetNearSplit(nearSplit);
  1483. else
  1484. SplitLight->SetNearSplit(camera_->GetNearClip());
  1485. SplitLight->SetNearFadeRange(nearFadeRange);
  1486. SplitLight->SetFarSplit(farSplit);
  1487. // The final split will not fade
  1488. if ((CreateExtraSplit) || (i < splits - 1))
  1489. SplitLight->SetFarFadeRange(farFadeRange);
  1490. // Create an extra unshadowed split if necessary
  1491. if ((CreateExtraSplit) && (i == splits - 1))
  1492. {
  1493. Light* SplitLight = renderer_->CreateSplitLight(light);
  1494. splitLights_[i + 1] = SplitLight;
  1495. SplitLight->SetNearSplit(farSplit);
  1496. SplitLight->SetNearFadeRange(farFadeRange);
  1497. SplitLight->SetCastShadows(false);
  1498. }
  1499. }
  1500. if (CreateExtraSplit)
  1501. return i + 1;
  1502. else
  1503. return i;
  1504. }
  1505. if (type == LIGHT_POINT)
  1506. {
  1507. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1508. {
  1509. Light* SplitLight = renderer_->CreateSplitLight(light);
  1510. Node* lightNode = SplitLight->GetNode();
  1511. splitLights_[i] = SplitLight;
  1512. SplitLight->SetLightType(LIGHT_SPLITPOINT);
  1513. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1514. lightNode->SetDirection(directions[i]);
  1515. SplitLight->SetFov(90.0f);
  1516. SplitLight->SetAspectRatio(1.0f);
  1517. }
  1518. return MAX_CUBEMAP_FACES;
  1519. }
  1520. // A spot light does not actually need splitting. However, we may be rendering several views,
  1521. // and in some the light might be unshadowed, so better create an unique copy
  1522. Light* SplitLight = renderer_->CreateSplitLight(light);
  1523. splitLights_[0] = SplitLight;
  1524. return 1;
  1525. }
  1526. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1527. {
  1528. if (!material)
  1529. material = renderer_->GetDefaultMaterial();
  1530. if (!material)
  1531. return 0;
  1532. float lodDistance = drawable->GetLodDistance();
  1533. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1534. if (techniques.Empty())
  1535. return 0;
  1536. // Check for suitable technique. Techniques should be ordered like this:
  1537. // Most distant & highest quality
  1538. // Most distant & lowest quality
  1539. // Second most distant & highest quality
  1540. // ...
  1541. for (unsigned i = 0; i < techniques.Size(); ++i)
  1542. {
  1543. const TechniqueEntry& entry = techniques[i];
  1544. Technique* technique = entry.technique_;
  1545. if ((!technique) || ((technique->IsSM3()) && (!graphics_->GetSM3Support())) || (materialQuality_ < entry.qualityLevel_))
  1546. continue;
  1547. if (lodDistance >= entry.lodDistance_)
  1548. return technique;
  1549. }
  1550. // If no suitable technique found, fallback to the last
  1551. return techniques.Back().technique_;
  1552. }
  1553. void View::CheckMaterialForAuxView(Material* material)
  1554. {
  1555. const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
  1556. for (unsigned i = 0; i < textures.Size(); ++i)
  1557. {
  1558. // Have to check cube & 2D textures separately
  1559. Texture* texture = textures[i];
  1560. if (texture)
  1561. {
  1562. if (texture->GetType() == Texture2D::GetTypeStatic())
  1563. {
  1564. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1565. RenderSurface* target = tex2D->GetRenderSurface();
  1566. if (target)
  1567. {
  1568. const Viewport& viewport = target->GetViewport();
  1569. if ((viewport.scene_) && (viewport.camera_))
  1570. renderer_->AddView(target, viewport);
  1571. }
  1572. }
  1573. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1574. {
  1575. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1576. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1577. {
  1578. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1579. if (target)
  1580. {
  1581. const Viewport& viewport = target->GetViewport();
  1582. if ((viewport.scene_) && (viewport.camera_))
  1583. renderer_->AddView(target, viewport);
  1584. }
  1585. }
  1586. }
  1587. }
  1588. }
  1589. // Set frame number so that we can early-out next time we come across this material on the same frame
  1590. material->MarkForAuxView(frame_.frameNumber_);
  1591. }
  1592. void View::SortBatches()
  1593. {
  1594. PROFILE(SortBatches);
  1595. if (mode_ != RENDER_FORWARD)
  1596. {
  1597. gBufferQueue_.SortFrontToBack();
  1598. noShadowLightQueue_.SortFrontToBack();
  1599. }
  1600. baseQueue_.SortFrontToBack();
  1601. extraQueue_.SortFrontToBack();
  1602. transparentQueue_.SortBackToFront();
  1603. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1604. {
  1605. lightQueues_[i].shadowBatches_.SortFrontToBack();
  1606. lightQueues_[i].litBatches_.SortFrontToBack();
  1607. }
  1608. }
  1609. void View::PrepareInstancingBuffer()
  1610. {
  1611. PROFILE(PrepareInstancingBuffer);
  1612. unsigned totalInstances = 0;
  1613. if (mode_ != RENDER_FORWARD)
  1614. totalInstances += gBufferQueue_.GetNumInstances();
  1615. totalInstances += baseQueue_.GetNumInstances();
  1616. totalInstances += extraQueue_.GetNumInstances();
  1617. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1618. {
  1619. totalInstances += lightQueues_[i].shadowBatches_.GetNumInstances();
  1620. totalInstances += lightQueues_[i].litBatches_.GetNumInstances();
  1621. }
  1622. // If fail to set buffer size, fall back to per-group locking
  1623. if ((totalInstances) && (renderer_->ResizeInstancingBuffer(totalInstances)))
  1624. {
  1625. unsigned freeIndex = 0;
  1626. void* lockedData = renderer_->instancingBuffer_->Lock(0, totalInstances, LOCK_DISCARD);
  1627. if (lockedData)
  1628. {
  1629. if (mode_ != RENDER_FORWARD)
  1630. gBufferQueue_.SetTransforms(lockedData, freeIndex);
  1631. baseQueue_.SetTransforms(lockedData, freeIndex);
  1632. extraQueue_.SetTransforms(lockedData, freeIndex);
  1633. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1634. {
  1635. lightQueues_[i].shadowBatches_.SetTransforms(lockedData, freeIndex);
  1636. lightQueues_[i].litBatches_.SetTransforms(lockedData, freeIndex);
  1637. }
  1638. renderer_->instancingBuffer_->Unlock();
  1639. }
  1640. }
  1641. }
  1642. void View::CalculateShaderParameters()
  1643. {
  1644. Time* time = GetSubsystem<Time>();
  1645. float fogStart = zone_->GetFogStart();
  1646. float fogEnd = zone_->GetFogEnd();
  1647. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  1648. float farClip = camera_->GetFarClip();
  1649. float nearClip = camera_->GetNearClip();
  1650. Vector4 fogParams(fogStart / farClip, fogEnd / farClip, 1.0f / (fogRange / farClip), 0.0f);
  1651. Vector4 elapsedTime((time->GetTotalMSec() & 0x3fffff) / 1000.0f, 0.0f, 0.0f, 0.0f);
  1652. shaderParameters_.Clear();
  1653. shaderParameters_[VSP_ELAPSEDTIME] = elapsedTime;
  1654. shaderParameters_[PSP_AMBIENTCOLOR] = zone_->GetAmbientColor().ToVector4();
  1655. shaderParameters_[PSP_ELAPSEDTIME] = elapsedTime;
  1656. shaderParameters_[PSP_FOGCOLOR] = zone_->GetFogColor().ToVector4(),
  1657. shaderParameters_[PSP_FOGPARAMS] = fogParams;
  1658. }
  1659. void View::DrawSplitLightToStencil(Camera& camera, Light* light, bool clear)
  1660. {
  1661. Matrix3x4 view(camera.GetInverseWorldTransform());
  1662. switch (light->GetLightType())
  1663. {
  1664. case LIGHT_SPLITPOINT:
  1665. if (!clear)
  1666. {
  1667. Matrix4 projection(camera.GetProjection());
  1668. const Matrix3x4& model = light->GetVolumeTransform(camera);
  1669. float lightExtent = light->GetVolumeExtent();
  1670. float lightViewDist = (light->GetWorldPosition() - camera.GetWorldPosition()).LengthFast();
  1671. bool drawBackFaces = lightViewDist < (lightExtent + camera.GetNearClip());
  1672. graphics_->SetAlphaTest(false);
  1673. graphics_->SetColorWrite(false);
  1674. graphics_->SetDepthWrite(false);
  1675. graphics_->SetCullMode(drawBackFaces ? CULL_CW : CULL_CCW);
  1676. graphics_->SetDepthTest(drawBackFaces ? CMP_GREATER : CMP_LESS);
  1677. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1678. graphics_->SetShaderParameter(VSP_MODEL, model);
  1679. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1680. graphics_->ClearTransformSources();
  1681. // Draw the faces to stencil which we should draw (where no light has not been rendered yet)
  1682. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 0);
  1683. renderer_->spotLightGeometry_->Draw(graphics_);
  1684. // Draw the other faces to stencil to mark where we should not draw ("frees up" the pixels for other faces)
  1685. graphics_->SetCullMode(drawBackFaces ? CULL_CCW : CULL_CW);
  1686. graphics_->SetStencilTest(true, CMP_EQUAL, OP_DECR, OP_KEEP, OP_KEEP, 1);
  1687. renderer_->spotLightGeometry_->Draw(graphics_);
  1688. // Now set stencil test for rendering the lit geometries (also marks the pixels so that they will not be used again)
  1689. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 1);
  1690. graphics_->SetColorWrite(true);
  1691. }
  1692. else
  1693. {
  1694. // Clear stencil with a scissored clear operation
  1695. OptimizeLightByScissor(light->GetOriginalLight());
  1696. graphics_->Clear(CLEAR_STENCIL);
  1697. graphics_->SetScissorTest(false);
  1698. graphics_->SetStencilTest(false);
  1699. }
  1700. break;
  1701. case LIGHT_DIRECTIONAL:
  1702. // If light encompasses whole frustum, no drawing to frustum necessary
  1703. if ((light->GetNearSplit() <= camera.GetNearClip()) && (light->GetFarSplit() >= camera.GetFarClip()))
  1704. return;
  1705. else
  1706. {
  1707. if (!clear)
  1708. {
  1709. // Get projection without jitter offset to ensure the whole screen is filled
  1710. Matrix4 projection(camera.GetProjection(false));
  1711. Matrix3x4 nearTransform(light->GetDirLightTransform(camera, true));
  1712. Matrix3x4 farTransform(light->GetDirLightTransform(camera, false));
  1713. graphics_->SetAlphaTest(false);
  1714. graphics_->SetColorWrite(false);
  1715. graphics_->SetDepthWrite(false);
  1716. graphics_->SetCullMode(CULL_NONE);
  1717. // If the split begins at the near plane (first split), draw at split far plane
  1718. if (light->GetNearSplit() <= camera.GetNearClip())
  1719. {
  1720. graphics_->SetDepthTest(CMP_GREATEREQUAL);
  1721. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1722. graphics_->SetShaderParameter(VSP_MODEL, farTransform);
  1723. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1724. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1725. }
  1726. // Otherwise draw at split near plane
  1727. else
  1728. {
  1729. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1730. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1731. graphics_->SetShaderParameter(VSP_MODEL, nearTransform);
  1732. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1733. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1734. }
  1735. graphics_->ClearTransformSources();
  1736. renderer_->dirLightGeometry_->Draw(graphics_);
  1737. graphics_->SetColorWrite(true);
  1738. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 1);
  1739. }
  1740. else
  1741. {
  1742. // Clear the whole stencil
  1743. graphics_->SetScissorTest(false);
  1744. graphics_->Clear(CLEAR_STENCIL);
  1745. graphics_->SetStencilTest(false);
  1746. }
  1747. }
  1748. break;
  1749. }
  1750. }
  1751. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor, bool disableScissor)
  1752. {
  1753. VertexBuffer* instancingBuffer = 0;
  1754. if (renderer_->GetDynamicInstancing())
  1755. instancingBuffer = renderer_->instancingBuffer_;
  1756. if (disableScissor)
  1757. graphics_->SetScissorTest(false);
  1758. graphics_->SetStencilTest(false);
  1759. // Priority instanced
  1760. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1761. queue.priorityBatchGroups_.End(); ++i)
  1762. {
  1763. const BatchGroup& group = i->second_;
  1764. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1765. }
  1766. // Priority non-instanced
  1767. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1768. {
  1769. Batch* batch = *i;
  1770. batch->Draw(graphics_, shaderParameters_);
  1771. }
  1772. // Non-priority instanced
  1773. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1774. queue.batchGroups_.End(); ++i)
  1775. {
  1776. const BatchGroup& group = i->second_;
  1777. if ((useScissor) && (group.light_))
  1778. OptimizeLightByScissor(group.light_);
  1779. else
  1780. graphics_->SetScissorTest(false);
  1781. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1782. }
  1783. // Non-priority non-instanced
  1784. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1785. {
  1786. Batch* batch = *i;
  1787. // For the transparent queue, both priority and non-priority batches are copied here, so check the flag
  1788. if ((useScissor) && (batch->light_) && (!batch->hasPriority_))
  1789. OptimizeLightByScissor(batch->light_);
  1790. else
  1791. graphics_->SetScissorTest(false);
  1792. batch->Draw(graphics_, shaderParameters_);
  1793. }
  1794. }
  1795. void View::RenderForwardLightBatchQueue(const BatchQueue& queue, Light* light)
  1796. {
  1797. VertexBuffer* instancingBuffer = 0;
  1798. if (renderer_->GetDynamicInstancing())
  1799. instancingBuffer = renderer_->instancingBuffer_;
  1800. graphics_->SetScissorTest(false);
  1801. graphics_->SetStencilTest(false);
  1802. // Priority instanced
  1803. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1804. queue.priorityBatchGroups_.End(); ++i)
  1805. {
  1806. const BatchGroup& group = i->second_;
  1807. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1808. }
  1809. // Priority non-instanced
  1810. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1811. {
  1812. Batch* batch = *i;
  1813. batch->Draw(graphics_, shaderParameters_);
  1814. }
  1815. // All base passes have been drawn. Optimize at this point by both scissor and stencil
  1816. if (light)
  1817. {
  1818. OptimizeLightByScissor(light);
  1819. LightType type = light->GetLightType();
  1820. if ((type == LIGHT_SPLITPOINT) || (type == LIGHT_DIRECTIONAL))
  1821. DrawSplitLightToStencil(*camera_, light);
  1822. }
  1823. // Non-priority instanced
  1824. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1825. queue.batchGroups_.End(); ++i)
  1826. {
  1827. const BatchGroup& group = i->second_;
  1828. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1829. }
  1830. // Non-priority non-instanced
  1831. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1832. {
  1833. Batch* batch = *i;
  1834. batch->Draw(graphics_, shaderParameters_);
  1835. }
  1836. }
  1837. void View::RenderShadowMap(const LightBatchQueue& queue)
  1838. {
  1839. PROFILE(RenderShadowMap);
  1840. Texture2D* shadowMap = queue.light_->GetShadowMap();
  1841. graphics_->SetColorWrite(false);
  1842. graphics_->SetStencilTest(false);
  1843. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1844. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1845. graphics_->SetDepthStencil(shadowMap);
  1846. graphics_->Clear(CLEAR_DEPTH);
  1847. // Set shadow depth bias
  1848. BiasParameters parameters = queue.light_->GetShadowBias();
  1849. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1850. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1851. // However, do not do this for point lights
  1852. if (queue.light_->GetLightType() != LIGHT_SPLITPOINT)
  1853. {
  1854. float zoom = Min(queue.light_->GetShadowCamera()->GetZoom(),
  1855. (float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth());
  1856. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1857. graphics_->SetScissorTest(true, zoomRect, false);
  1858. }
  1859. else
  1860. graphics_->SetScissorTest(false);
  1861. // Draw instanced and non-instanced shadow casters
  1862. RenderBatchQueue(queue.shadowBatches_, false, false);
  1863. graphics_->SetColorWrite(true);
  1864. graphics_->SetDepthBias(0.0f, 0.0f);
  1865. }