View.cpp 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "OctreeQuery.h"
  34. #include "Renderer.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderVariation.h"
  38. #include "Technique.h"
  39. #include "Texture2D.h"
  40. #include "TextureCube.h"
  41. #include "Time.h"
  42. #include "VertexBuffer.h"
  43. #include "View.h"
  44. #include "Zone.h"
  45. #include "DebugNew.h"
  46. static const Vector3 directions[] =
  47. {
  48. Vector3::RIGHT,
  49. Vector3::LEFT,
  50. Vector3::UP,
  51. Vector3::DOWN,
  52. Vector3::FORWARD,
  53. Vector3::BACK,
  54. };
  55. OBJECTTYPESTATIC(View);
  56. View::View(Context* context) :
  57. Object(context),
  58. graphics_(GetSubsystem<Graphics>()),
  59. renderer_(GetSubsystem<Renderer>()),
  60. octree_(0),
  61. camera_(0),
  62. zone_(0),
  63. renderTarget_(0),
  64. depthStencil_(0),
  65. jitterCounter_(0)
  66. {
  67. frame_.camera_ = 0;
  68. }
  69. View::~View()
  70. {
  71. }
  72. bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
  73. {
  74. if ((!viewport.scene_) || (!viewport.camera_))
  75. return false;
  76. // If scene is loading asynchronously, it is incomplete and should not be rendered
  77. if (viewport.scene_->IsAsyncLoading())
  78. return false;
  79. Octree* octree = viewport.scene_->GetComponent<Octree>();
  80. if (!octree)
  81. return false;
  82. mode_ = graphics_->GetRenderMode();
  83. // In deferred mode, check for the render texture being too large
  84. if ((mode_ != RENDER_FORWARD) && (renderTarget))
  85. {
  86. if ((renderTarget->GetWidth() > graphics_->GetWidth()) || (renderTarget->GetHeight() > graphics_->GetHeight()))
  87. {
  88. // Display message only once per rendertarget, do not spam each frame
  89. if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
  90. {
  91. gBufferErrorDisplayed_.Insert(renderTarget);
  92. LOGERROR("Render texture is larger than the G-buffer, can not render");
  93. }
  94. return false;
  95. }
  96. }
  97. octree_ = octree;
  98. camera_ = viewport.camera_;
  99. renderTarget_ = renderTarget;
  100. if (!renderTarget)
  101. depthStencil_ = 0;
  102. else
  103. {
  104. // In Direct3D9 deferred rendering, always use the system depth stencil for the whole time
  105. // to ensure it is as large as the G-buffer
  106. #ifdef USE_OPENGL
  107. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  108. #else
  109. if (mode_ == RENDER_FORWARD)
  110. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  111. else
  112. depthStencil_ = 0;
  113. #endif
  114. }
  115. zone_ = renderer_->GetDefaultZone();
  116. // Validate the rect and calculate size. If zero rect, use whole render target size
  117. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  118. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  119. if (viewport.rect_ != IntRect::ZERO)
  120. {
  121. screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
  122. screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
  123. screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
  124. screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
  125. }
  126. else
  127. screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
  128. width_ = screenRect_.right_ - screenRect_.left_;
  129. height_ = screenRect_.bottom_ - screenRect_.top_;
  130. // Set possible quality overrides from the camera
  131. drawShadows_ = renderer_->GetDrawShadows();
  132. materialQuality_ = renderer_->GetMaterialQuality();
  133. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  134. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  135. if (viewOverrideFlags & VOF_LOW_MATERIAL_QUALITY)
  136. materialQuality_ = QUALITY_LOW;
  137. if (viewOverrideFlags & VOF_DISABLE_SHADOWS)
  138. drawShadows_ = false;
  139. if (viewOverrideFlags & VOF_DISABLE_OCCLUSION)
  140. maxOccluderTriangles_ = 0;
  141. return true;
  142. }
  143. void View::Update(const FrameInfo& frame)
  144. {
  145. if ((!camera_) || (!octree_))
  146. return;
  147. frame_.camera_ = camera_;
  148. frame_.timeStep_ = frame.timeStep_;
  149. frame_.frameNumber_ = frame.frameNumber_;
  150. frame_.viewSize_ = IntVector2(width_, height_);
  151. // Clear old light scissor cache, geometry, light, occluder & batch lists
  152. lightScissorCache_.Clear();
  153. geometries_.Clear();
  154. geometryDepthBounds_.Clear();
  155. lights_.Clear();
  156. occluders_.Clear();
  157. shadowOccluders_.Clear();
  158. gBufferQueue_.Clear();
  159. baseQueue_.Clear();
  160. extraQueue_.Clear();
  161. transparentQueue_.Clear();
  162. noShadowLightQueue_.Clear();
  163. lightQueues_.Clear();
  164. // Set automatic aspect ratio if required
  165. if (camera_->GetAutoAspectRatio())
  166. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  167. // Reset projection jitter if was used last frame
  168. camera_->SetProjectionOffset(Vector2::ZERO);
  169. // Reset shadow map use count; they can be reused between views as each is rendered completely at a time
  170. renderer_->ResetShadowMapUseCount();
  171. GetDrawables();
  172. GetBatches();
  173. }
  174. void View::Render()
  175. {
  176. if ((!octree_) || (!camera_))
  177. return;
  178. // Forget parameter sources from the previous view
  179. graphics_->ClearParameterSources();
  180. // If stream offset is supported, write all instance transforms to a single large buffer
  181. // Else we must lock the instance buffer for each batch group
  182. if ((renderer_->GetDynamicInstancing()) && (graphics_->GetStreamOffsetSupport()))
  183. PrepareInstancingBuffer();
  184. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  185. // again to ensure correct projection will be used
  186. if (camera_->GetAutoAspectRatio())
  187. camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_));
  188. // Set the "view texture" to ensure the rendertarget will not be bound as a texture during rendering
  189. if (renderTarget_)
  190. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  191. else
  192. graphics_->SetViewTexture(0);
  193. graphics_->SetFillMode(FILL_SOLID);
  194. // Calculate view-global shader parameters
  195. CalculateShaderParameters();
  196. // If not reusing shadowmaps, render all of them first
  197. if (!renderer_->reuseShadowMaps_)
  198. {
  199. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  200. {
  201. LightBatchQueue& queue = lightQueues_[i];
  202. if (queue.light_->GetShadowMap())
  203. RenderShadowMap(queue);
  204. }
  205. }
  206. if (mode_ == RENDER_FORWARD)
  207. RenderBatchesForward();
  208. else
  209. RenderBatchesDeferred();
  210. graphics_->SetViewTexture(0);
  211. // If this is a main view, draw the associated debug geometry now
  212. if (!renderTarget_)
  213. {
  214. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  215. if (scene)
  216. {
  217. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  218. if (debug)
  219. {
  220. debug->SetView(camera_);
  221. debug->Render();
  222. }
  223. }
  224. }
  225. // "Forget" the camera, octree and zone after rendering
  226. camera_ = 0;
  227. octree_ = 0;
  228. zone_ = 0;
  229. frame_.camera_ = 0;
  230. }
  231. void View::GetDrawables()
  232. {
  233. PROFILE(GetDrawables);
  234. Vector3 cameraPos = camera_->GetWorldPosition();
  235. // Get zones & find the zone camera is in
  236. PODVector<Zone*> zones;
  237. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>& >(zones), cameraPos, DRAWABLE_ZONE);
  238. octree_->GetDrawables(query);
  239. int highestZonePriority = M_MIN_INT;
  240. for (unsigned i = 0; i < zones.Size(); ++i)
  241. {
  242. Zone* zone = zones[i];
  243. if ((zone->IsInside(cameraPos)) && (zone->GetPriority() > highestZonePriority))
  244. {
  245. zone_ = zone;
  246. highestZonePriority = zone->GetPriority();
  247. }
  248. }
  249. // If occlusion in use, get & render the occluders, then build the depth buffer hierarchy
  250. bool useOcclusion = false;
  251. OcclusionBuffer* buffer = 0;
  252. if (maxOccluderTriangles_ > 0)
  253. {
  254. FrustumOctreeQuery query(occluders_, camera_->GetFrustum(), DRAWABLE_GEOMETRY, true, false);
  255. octree_->GetDrawables(query);
  256. UpdateOccluders(occluders_, camera_);
  257. if (occluders_.Size())
  258. {
  259. buffer = renderer_->GetOrCreateOcclusionBuffer(camera_, maxOccluderTriangles_);
  260. DrawOccluders(buffer, occluders_);
  261. buffer->BuildDepthHierarchy();
  262. useOcclusion = true;
  263. }
  264. }
  265. if (!useOcclusion)
  266. {
  267. // Get geometries & lights without occlusion
  268. FrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  269. octree_->GetDrawables(query);
  270. }
  271. else
  272. {
  273. // Get geometries & lights using occlusion
  274. OccludedFrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), buffer, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  275. octree_->GetDrawables(query);
  276. }
  277. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  278. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  279. sceneBox_.defined_ = false;
  280. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  281. sceneViewBox_.defined_ = false;
  282. Matrix3x4 view(camera_->GetInverseWorldTransform());
  283. unsigned cameraViewMask = camera_->GetViewMask();
  284. for (unsigned i = 0; i < tempDrawables_.Size(); ++i)
  285. {
  286. Drawable* drawable = tempDrawables_[i];
  287. // Check view mask
  288. if (!(cameraViewMask & drawable->GetViewMask()))
  289. continue;
  290. drawable->UpdateDistance(frame_);
  291. // If draw distance non-zero, check it
  292. float maxDistance = drawable->GetDrawDistance();
  293. if ((maxDistance > 0.0f) && (drawable->GetDistance() > maxDistance))
  294. continue;
  295. unsigned flags = drawable->GetDrawableFlags();
  296. if (flags & DRAWABLE_GEOMETRY)
  297. {
  298. drawable->ClearBasePass();
  299. drawable->MarkInView(frame_);
  300. drawable->UpdateGeometry(frame_);
  301. // Expand the scene bounding boxes
  302. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  303. BoundingBox geoview_Box = geomBox.Transformed(view);
  304. sceneBox_.Merge(geomBox);
  305. sceneViewBox_.Merge(geoview_Box);
  306. // Store depth info to speed up split directional light queries
  307. GeometryDepthBounds bounds;
  308. bounds.min_ = geoview_Box.min_.z_;
  309. bounds.max_ = geoview_Box.max_.z_;
  310. geometryDepthBounds_.Push(bounds);
  311. geometries_.Push(drawable);
  312. }
  313. else if (flags & DRAWABLE_LIGHT)
  314. {
  315. Light* light = static_cast<Light*>(drawable);
  316. // Skip if light is culled by the zone
  317. if (!(light->GetViewMask() & zone_->GetViewMask()))
  318. continue;
  319. light->MarkInView(frame_);
  320. lights_.Push(light);
  321. }
  322. }
  323. // Sort the lights to brightest/closest first
  324. for (unsigned i = 0; i < lights_.Size(); ++i)
  325. lights_[i]->SetIntensitySortValue(cameraPos);
  326. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  327. }
  328. void View::GetBatches()
  329. {
  330. HashSet<LitTransparencyCheck> litTransparencies;
  331. HashSet<Drawable*> maxLightsDrawables;
  332. Map<Light*, unsigned> lightQueueIndex;
  333. // Go through lights
  334. {
  335. PROFILE_MULTIPLE(GetLightBatches, lights_.Size());
  336. unsigned lightQueueCount = 0;
  337. for (unsigned i = 0; i < lights_.Size(); ++i)
  338. {
  339. Light* light = lights_[i];
  340. unsigned splits = ProcessLight(light);
  341. if (!splits)
  342. continue;
  343. // Prepare lit object + shadow caster queues for each split
  344. if (lightQueues_.Size() < lightQueueCount + splits)
  345. lightQueues_.Resize(lightQueueCount + splits);
  346. unsigned prevLightQueueCount = lightQueueCount;
  347. for (unsigned j = 0; j < splits; ++j)
  348. {
  349. Light* SplitLight = splitLights_[j];
  350. LightBatchQueue& lightQueue = lightQueues_[lightQueueCount];
  351. lightQueue.light_ = SplitLight;
  352. lightQueue.shadowBatches_.Clear();
  353. lightQueue.litBatches_.Clear();
  354. lightQueue.volumeBatches_.Clear();
  355. lightQueue.lastSplit_ = false;
  356. // Loop through shadow casters
  357. Camera* shadowCamera = SplitLight->GetShadowCamera();
  358. for (unsigned k = 0; k < shadowCasters_[j].Size(); ++k)
  359. {
  360. Drawable* drawable = shadowCasters_[j][k];
  361. unsigned numBatches = drawable->GetNumBatches();
  362. for (unsigned l = 0; l < numBatches; ++l)
  363. {
  364. Batch shadowBatch;
  365. drawable->GetBatch(frame_, l, shadowBatch);
  366. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  367. if ((!shadowBatch.geometry_) || (!tech))
  368. continue;
  369. Pass* pass = tech->GetPass(PASS_SHADOW);
  370. // Skip if material has no shadow pass
  371. if (!pass)
  372. continue;
  373. // Fill the rest of the batch
  374. shadowBatch.camera_ = shadowCamera;
  375. shadowBatch.distance_ = shadowCamera->GetDistance(drawable->GetWorldPosition());
  376. shadowBatch.light_ = SplitLight;
  377. shadowBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  378. renderer_->SetBatchShaders(shadowBatch, tech, pass);
  379. lightQueue.shadowBatches_.AddBatch(shadowBatch);
  380. }
  381. }
  382. // Loop through lit geometries
  383. if (litGeometries_[j].Size())
  384. {
  385. bool storeLightQueue = true;
  386. for (unsigned k = 0; k < litGeometries_[j].Size(); ++k)
  387. {
  388. Drawable* drawable = litGeometries_[j][k];
  389. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  390. if (!drawable->GetMaxLights())
  391. GetLitBatches(drawable, light, SplitLight, &lightQueue, litTransparencies);
  392. else
  393. {
  394. drawable->AddLight(SplitLight);
  395. maxLightsDrawables.Insert(drawable);
  396. }
  397. }
  398. // Store the light queue, and light volume batch in deferred mode
  399. if (mode_ != RENDER_FORWARD)
  400. {
  401. Batch volumeBatch;
  402. volumeBatch.geometry_ = renderer_->GetLightGeometry(SplitLight);
  403. volumeBatch.worldTransform_ = &SplitLight->GetVolumeTransform(*camera_);
  404. volumeBatch.overrideView_ = SplitLight->GetLightType() == LIGHT_DIRECTIONAL;
  405. volumeBatch.camera_ = camera_;
  406. volumeBatch.light_ = SplitLight;
  407. volumeBatch.distance_ = SplitLight->GetDistance();
  408. renderer_->SetLightVolumeShaders(volumeBatch);
  409. // If light is a split point light, it must be treated as shadowed in any case for correct stencil clearing
  410. if ((SplitLight->GetShadowMap()) || (SplitLight->GetLightType() == LIGHT_SPLITPOINT))
  411. lightQueue.volumeBatches_.Push(volumeBatch);
  412. else
  413. {
  414. storeLightQueue = false;
  415. noShadowLightQueue_.AddBatch(volumeBatch, true);
  416. }
  417. }
  418. if (storeLightQueue)
  419. {
  420. lightQueueIndex[SplitLight] = lightQueueCount;
  421. ++lightQueueCount;
  422. }
  423. }
  424. }
  425. // Mark the last split
  426. if (lightQueueCount != prevLightQueueCount)
  427. lightQueues_[lightQueueCount - 1].lastSplit_ = true;
  428. }
  429. // Resize the light queue vector now that final size is known
  430. lightQueues_.Resize(lightQueueCount);
  431. }
  432. // Process drawables with limited light count
  433. if (maxLightsDrawables.Size())
  434. {
  435. PROFILE(GetMaxLightsBatches);
  436. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables.Begin(); i != maxLightsDrawables.End(); ++i)
  437. {
  438. Drawable* drawable = *i;
  439. drawable->LimitLights();
  440. const PODVector<Light*>& lights = drawable->GetLights();
  441. for (unsigned i = 0; i < lights.Size(); ++i)
  442. {
  443. Light* SplitLight = lights[i];
  444. Light* light = SplitLight->GetOriginalLight();
  445. if (!light)
  446. light = SplitLight;
  447. // Find the correct light queue again
  448. LightBatchQueue* queue = 0;
  449. Map<Light*, unsigned>::Iterator j = lightQueueIndex.Find(SplitLight);
  450. if (j != lightQueueIndex.End())
  451. queue = &lightQueues_[j->second_];
  452. GetLitBatches(drawable, light, SplitLight, queue, litTransparencies);
  453. }
  454. }
  455. }
  456. // Go through geometries for base pass batches
  457. {
  458. PROFILE(GetBaseBatches);
  459. for (unsigned i = 0; i < geometries_.Size(); ++i)
  460. {
  461. Drawable* drawable = geometries_[i];
  462. unsigned numBatches = drawable->GetNumBatches();
  463. for (unsigned j = 0; j < numBatches; ++j)
  464. {
  465. Batch baseBatch;
  466. drawable->GetBatch(frame_, j, baseBatch);
  467. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  468. if ((!baseBatch.geometry_) || (!tech))
  469. continue;
  470. // Check here if the material technique refers to a render target texture with camera(s) attached
  471. // Only check this for the main view (null rendertarget)
  472. if ((!renderTarget_) && (baseBatch.material_) && (baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_))
  473. CheckMaterialForAuxView(baseBatch.material_);
  474. // If object already has a lit base pass, can skip the unlit base pass
  475. if (drawable->HasBasePass(j))
  476. continue;
  477. // Fill the rest of the batch
  478. baseBatch.camera_ = camera_;
  479. baseBatch.distance_ = drawable->GetDistance();
  480. Pass* pass = 0;
  481. // In deferred mode, check for a G-buffer batch first
  482. if (mode_ != RENDER_FORWARD)
  483. {
  484. pass = tech->GetPass(PASS_GBUFFER);
  485. if (pass)
  486. {
  487. renderer_->SetBatchShaders(baseBatch, tech, pass);
  488. baseBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  489. gBufferQueue_.AddBatch(baseBatch);
  490. // Check also for an additional pass (possibly for emissive)
  491. pass = tech->GetPass(PASS_EXTRA);
  492. if (pass)
  493. {
  494. renderer_->SetBatchShaders(baseBatch, tech, pass);
  495. baseQueue_.AddBatch(baseBatch);
  496. }
  497. continue;
  498. }
  499. }
  500. // Then check for forward rendering base pass
  501. pass = tech->GetPass(PASS_BASE);
  502. if (pass)
  503. {
  504. renderer_->SetBatchShaders(baseBatch, tech, pass);
  505. if (pass->GetBlendMode() == BLEND_REPLACE)
  506. {
  507. baseBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  508. baseQueue_.AddBatch(baseBatch);
  509. }
  510. else
  511. {
  512. baseBatch.hasPriority_ = true;
  513. transparentQueue_.AddBatch(baseBatch, true);
  514. }
  515. continue;
  516. }
  517. else
  518. {
  519. // If no base pass, finally check for extra / custom pass
  520. pass = tech->GetPass(PASS_EXTRA);
  521. if (pass)
  522. {
  523. baseBatch.hasPriority_ = false;
  524. renderer_->SetBatchShaders(baseBatch, tech, pass);
  525. extraQueue_.AddBatch(baseBatch);
  526. }
  527. }
  528. }
  529. }
  530. }
  531. // All batches have been collected. Sort them now
  532. SortBatches();
  533. }
  534. void View::GetLitBatches(Drawable* drawable, Light* light, Light* SplitLight, LightBatchQueue* lightQueue,
  535. HashSet<LitTransparencyCheck>& litTransparencies)
  536. {
  537. bool splitPointLight = SplitLight->GetLightType() == LIGHT_SPLITPOINT;
  538. // Whether to allow shadows for transparencies, or for forward lit objects in deferred mode
  539. bool allowShadows = (!renderer_->reuseShadowMaps_) && (!splitPointLight);
  540. unsigned numBatches = drawable->GetNumBatches();
  541. for (unsigned i = 0; i < numBatches; ++i)
  542. {
  543. Batch litBatch;
  544. drawable->GetBatch(frame_, i, litBatch);
  545. Technique* tech = GetTechnique(drawable, litBatch.material_);
  546. if ((!litBatch.geometry_) || (!tech))
  547. continue;
  548. // If material uses opaque G-buffer rendering, skip
  549. if ((mode_ != RENDER_FORWARD) && (tech->HasPass(PASS_GBUFFER)))
  550. continue;
  551. Pass* pass = 0;
  552. bool priority = false;
  553. // For directional light, check for lit base pass
  554. if (SplitLight->GetLightType() == LIGHT_DIRECTIONAL)
  555. {
  556. if (!drawable->HasBasePass(i))
  557. {
  558. pass = tech->GetPass(PASS_LITBASE);
  559. if (pass)
  560. {
  561. priority = true;
  562. drawable->SetBasePass(i);
  563. }
  564. }
  565. }
  566. // If no first light pass, get ordinary light pass
  567. if (!pass)
  568. pass = tech->GetPass(PASS_LIGHT);
  569. // Skip if material does not receive light at all
  570. if (!pass)
  571. continue;
  572. // Fill the rest of the batch
  573. litBatch.camera_ = camera_;
  574. litBatch.distance_ = drawable->GetDistance();
  575. litBatch.light_ = SplitLight;
  576. litBatch.hasPriority_ = priority;
  577. // Check from the ambient pass whether the object is opaque
  578. Pass* ambientPass = tech->GetPass(PASS_BASE);
  579. if ((!ambientPass) || (ambientPass->GetBlendMode() == BLEND_REPLACE))
  580. {
  581. if (mode_ == RENDER_FORWARD)
  582. {
  583. if (lightQueue)
  584. {
  585. renderer_->SetBatchShaders(litBatch, tech, pass);
  586. lightQueue->litBatches_.AddBatch(litBatch);
  587. }
  588. }
  589. else
  590. {
  591. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  592. baseQueue_.AddBatch(litBatch);
  593. }
  594. }
  595. else
  596. {
  597. if (splitPointLight)
  598. {
  599. // Check if already lit
  600. LitTransparencyCheck check(light, drawable, i);
  601. if (litTransparencies.Find(check) != litTransparencies.End())
  602. continue;
  603. // Use the original light instead of the split one, to choose correct scissor
  604. litBatch.light_ = light;
  605. litTransparencies.Insert(check);
  606. }
  607. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  608. transparentQueue_.AddBatch(litBatch, true);
  609. }
  610. }
  611. }
  612. void View::RenderBatchesForward()
  613. {
  614. {
  615. // Render opaque objects' base passes
  616. PROFILE(RenderBasePass);
  617. graphics_->SetColorWrite(true);
  618. graphics_->SetStencilTest(false);
  619. graphics_->SetRenderTarget(0, renderTarget_);
  620. graphics_->SetDepthStencil(depthStencil_);
  621. graphics_->SetViewport(screenRect_);
  622. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, zone_->GetFogColor());
  623. RenderBatchQueue(baseQueue_);
  624. }
  625. {
  626. // Render shadow maps + opaque objects' shadowed additive lighting
  627. PROFILE(RenderLights);
  628. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  629. {
  630. LightBatchQueue& queue = lightQueues_[i];
  631. // If reusing shadowmaps, render each of them before the lit batches
  632. if ((renderer_->reuseShadowMaps_) && (queue.light_->GetShadowMap()))
  633. RenderShadowMap(queue);
  634. graphics_->SetRenderTarget(0, renderTarget_);
  635. graphics_->SetDepthStencil(depthStencil_);
  636. graphics_->SetViewport(screenRect_);
  637. RenderForwardLightBatchQueue(queue.litBatches_, queue.light_);
  638. // Clear the stencil buffer after the last split
  639. if (queue.lastSplit_)
  640. {
  641. LightType type = queue.light_->GetLightType();
  642. if ((type == LIGHT_SPLITPOINT) || (type == LIGHT_DIRECTIONAL))
  643. DrawSplitLightToStencil(*camera_, queue.light_, true);
  644. }
  645. }
  646. }
  647. {
  648. // Render extra / custom passes
  649. PROFILE(RenderExtraPass);
  650. graphics_->SetRenderTarget(0, renderTarget_);
  651. graphics_->SetDepthStencil(depthStencil_);
  652. graphics_->SetViewport(screenRect_);
  653. RenderBatchQueue(extraQueue_);
  654. }
  655. {
  656. // Render transparent objects last (both base passes & additive lighting)
  657. PROFILE(RenderTransparent);
  658. RenderBatchQueue(transparentQueue_, true);
  659. }
  660. }
  661. void View::RenderBatchesDeferred()
  662. {
  663. Texture2D* diffBuffer = graphics_->GetDiffBuffer();
  664. Texture2D* normalBuffer = graphics_->GetNormalBuffer();
  665. Texture2D* depthBuffer = graphics_->GetDepthBuffer();
  666. // Check for temporal antialiasing in deferred mode. Only use it on the main view (null rendertarget)
  667. bool temporalAA = (!renderTarget_) && (graphics_->GetMultiSample() > 0);
  668. if (temporalAA)
  669. {
  670. ++jitterCounter_;
  671. if (jitterCounter_ > 3)
  672. jitterCounter_ = 2;
  673. Vector2 jitter(-0.25f, -0.25f);
  674. if (jitterCounter_ & 1)
  675. jitter = -jitter;
  676. jitter.x_ /= width_;
  677. jitter.y_ /= height_;
  678. camera_->SetProjectionOffset(jitter);
  679. }
  680. RenderSurface* renderBuffer = temporalAA ? graphics_->GetScreenBuffer(jitterCounter_ & 1)->GetRenderSurface() : renderTarget_;
  681. // Calculate shader parameters needed only in deferred rendering
  682. Vector3 nearVector, farVector;
  683. camera_->GetFrustumSize(nearVector, farVector);
  684. Vector4 viewportParams(farVector.x_, farVector.y_, farVector.z_, 0.0f);
  685. float gBufferWidth = (float)diffBuffer->GetWidth();
  686. float gBufferHeight = (float)diffBuffer->GetHeight();
  687. float widthRange = 0.5f * width_ / gBufferWidth;
  688. float heightRange = 0.5f * height_ / gBufferHeight;
  689. #ifdef USE_OPENGL
  690. Vector4 bufferUVOffset(((float)screenRect_.left_) / gBufferWidth + widthRange,
  691. ((float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  692. // Hardware depth is non-linear in perspective views, so calculate the depth reconstruction parameters
  693. float farClip = camera_->GetFarClip();
  694. float nearClip = camera_->GetNearClip();
  695. Vector4 depthReconstruct = Vector4::ZERO;
  696. depthReconstruct.x_ = farClip / (farClip - nearClip);
  697. depthReconstruct.y_ = -nearClip / (farClip - nearClip);
  698. shaderParameters_[PSP_DEPTHRECONSTRUCT] = depthReconstruct;
  699. #else
  700. Vector4 bufferUVOffset((0.5f + (float)screenRect_.left_) / gBufferWidth + widthRange,
  701. (0.5f + (float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  702. #endif
  703. Vector4 viewportSize((float)screenRect_.left_ / gBufferWidth, (float)screenRect_.top_ / gBufferHeight,
  704. (float)screenRect_.right_ / gBufferWidth, (float)screenRect_.bottom_ / gBufferHeight);
  705. shaderParameters_[VSP_FRUSTUMSIZE] = viewportParams;
  706. shaderParameters_[VSP_GBUFFEROFFSETS] = bufferUVOffset;
  707. shaderParameters_[PSP_GBUFFEROFFSETS] = bufferUVOffset;
  708. shaderParameters_[PSP_GBUFFERVIEWPORT] = viewportSize;
  709. {
  710. // Clear and render the G-buffer
  711. PROFILE(RenderGBuffer);
  712. graphics_->SetColorWrite(true);
  713. graphics_->SetScissorTest(false);
  714. graphics_->SetStencilTest(false);
  715. #ifdef USE_OPENGL
  716. // On OpenGL, clear the diffuse and depth buffers normally
  717. graphics_->SetRenderTarget(0, diffBuffer);
  718. graphics_->SetDepthStencil(depthBuffer);
  719. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL);
  720. graphics_->SetRenderTarget(1, normalBuffer);
  721. #else
  722. // On Direct3D9, clear only depth and stencil at first (fillrate optimization)
  723. graphics_->SetRenderTarget(0, diffBuffer);
  724. graphics_->SetRenderTarget(1, normalBuffer);
  725. graphics_->SetRenderTarget(2, depthBuffer);
  726. graphics_->SetDepthStencil(depthStencil_);
  727. graphics_->SetViewport(screenRect_);
  728. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  729. #endif
  730. RenderBatchQueue(gBufferQueue_);
  731. graphics_->SetAlphaTest(false);
  732. graphics_->SetBlendMode(BLEND_REPLACE);
  733. #ifndef USE_OPENGL
  734. // On Direct3D9, clear now the parts of G-Buffer that were not rendered into
  735. graphics_->SetDepthTest(CMP_LESSEQUAL);
  736. graphics_->SetDepthWrite(false);
  737. graphics_->ResetRenderTarget(2);
  738. graphics_->SetRenderTarget(1, depthBuffer);
  739. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("GBufferFill"),
  740. renderer_->GetPixelShader("GBufferFill"), false, shaderParameters_);
  741. #endif
  742. }
  743. {
  744. PROFILE(RenderAmbientQuad);
  745. // Render ambient color & fog. On OpenGL the depth buffer will be copied now
  746. graphics_->SetDepthTest(CMP_ALWAYS);
  747. graphics_->SetRenderTarget(0, renderBuffer);
  748. graphics_->ResetRenderTarget(1);
  749. #ifdef USE_OPENGL
  750. graphics_->SetDepthWrite(true);
  751. #else
  752. graphics_->ResetRenderTarget(2);
  753. #endif
  754. graphics_->SetDepthStencil(depthStencil_);
  755. graphics_->SetViewport(screenRect_);
  756. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  757. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  758. String pixelShaderName = "Ambient";
  759. #ifdef USE_OPENGL
  760. if (camera_->IsOrthographic())
  761. pixelShaderName += "Ortho";
  762. // On OpenGL, set up a stencil operation to reset the stencil during ambient quad rendering
  763. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_ZERO, OP_KEEP, OP_KEEP);
  764. #endif
  765. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("Ambient"),
  766. renderer_->GetPixelShader(pixelShaderName), false, shaderParameters_);
  767. #ifdef USE_OPENGL
  768. graphics_->SetStencilTest(false);
  769. #endif
  770. }
  771. {
  772. // Render lights
  773. PROFILE(RenderLights);
  774. // Shadowed lights
  775. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  776. {
  777. LightBatchQueue& queue = lightQueues_[i];
  778. // If reusing shadowmaps, render each of them before the lit batches
  779. if ((renderer_->reuseShadowMaps_) && (queue.light_->GetShadowMap()))
  780. RenderShadowMap(queue);
  781. // Light volume batches are not sorted as there should be only one of them
  782. if (queue.volumeBatches_.Size())
  783. {
  784. graphics_->SetRenderTarget(0, renderBuffer);
  785. graphics_->SetDepthStencil(depthStencil_);
  786. graphics_->SetViewport(screenRect_);
  787. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  788. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  789. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  790. for (unsigned j = 0; j < queue.volumeBatches_.Size(); ++j)
  791. {
  792. renderer_->SetupLightBatch(queue.volumeBatches_[j]);
  793. queue.volumeBatches_[j].Draw(graphics_, shaderParameters_);
  794. }
  795. // If was the last split of a split point light, clear the stencil by rendering the point light again
  796. if ((queue.lastSplit_) && (queue.light_->GetLightType() == LIGHT_SPLITPOINT))
  797. DrawSplitLightToStencil(*camera_, queue.light_, true);
  798. }
  799. }
  800. // Non-shadowed lights
  801. if (noShadowLightQueue_.sortedBatches_.Size())
  802. {
  803. graphics_->SetRenderTarget(0, renderBuffer);
  804. graphics_->SetDepthStencil(depthStencil_);
  805. graphics_->SetViewport(screenRect_);
  806. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  807. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  808. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  809. for (unsigned i = 0; i < noShadowLightQueue_.sortedBatches_.Size(); ++i)
  810. {
  811. renderer_->SetupLightBatch(*noShadowLightQueue_.sortedBatches_[i]);
  812. noShadowLightQueue_.sortedBatches_[i]->Draw(graphics_, shaderParameters_);
  813. }
  814. }
  815. }
  816. {
  817. // Render base passes
  818. PROFILE(RenderBasePass);
  819. graphics_->SetStencilTest(false);
  820. graphics_->SetTexture(TU_DIFFBUFFER, 0);
  821. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  822. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  823. graphics_->SetRenderTarget(0, renderBuffer);
  824. graphics_->SetDepthStencil(depthStencil_);
  825. graphics_->SetViewport(screenRect_);
  826. RenderBatchQueue(baseQueue_, true);
  827. }
  828. {
  829. // Render extra / custom passes
  830. PROFILE(RenderExtraPass);
  831. RenderBatchQueue(extraQueue_);
  832. }
  833. {
  834. // Render transparent objects last (both ambient & additive lighting)
  835. PROFILE(RenderTransparent);
  836. RenderBatchQueue(transparentQueue_, true);
  837. }
  838. // Render temporal antialiasing now if enabled
  839. if (temporalAA)
  840. {
  841. PROFILE(RenderTemporalAA);
  842. // Disable averaging if it is the first frame rendered in this view
  843. float thisFrameWeight = jitterCounter_ < 2 ? 1.0f : 0.5f;
  844. Vector4 depthMode = Vector4::ZERO;
  845. if (camera_->IsOrthographic())
  846. depthMode.z_ = 1.0f;
  847. else
  848. depthMode.w_ = 1.0f / camera_->GetFarClip();
  849. String shaderName = "TemporalAA";
  850. if (camera_->IsOrthographic())
  851. shaderName += "_Ortho";
  852. graphics_->SetAlphaTest(false);
  853. graphics_->SetBlendMode(BLEND_REPLACE);
  854. graphics_->SetDepthTest(CMP_ALWAYS);
  855. graphics_->SetDepthWrite(false);
  856. graphics_->SetScissorTest(false);
  857. graphics_->SetStencilTest(false);
  858. graphics_->SetRenderTarget(0, renderTarget_);
  859. graphics_->SetDepthStencil(depthStencil_);
  860. graphics_->SetViewport(screenRect_);
  861. // Pre-select the right shaders so that we can set shader parameters that can not go into the parameter map
  862. // (matrices)
  863. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  864. graphics_->SetShaderParameter(VSP_CAMERAROT, camera_->GetWorldTransform().RotationMatrix());
  865. graphics_->SetShaderParameter(VSP_DEPTHMODE, depthMode);
  866. graphics_->SetShaderParameter(PSP_CAMERAPOS, camera_->GetWorldPosition());
  867. graphics_->SetShaderParameter(PSP_ANTIALIASWEIGHTS, Vector4(thisFrameWeight, 1.0f - thisFrameWeight, 0.0f, 0.0f));
  868. graphics_->SetShaderParameter(PSP_SAMPLEOFFSETS, Vector4(1.0f / gBufferWidth, 1.0f / gBufferHeight, 0.0f, 0.0f));
  869. graphics_->SetShaderParameter(PSP_VIEWPROJ, camera_->GetProjection(false) * lastCameraView_);
  870. graphics_->SetTexture(TU_DIFFBUFFER, graphics_->GetScreenBuffer(jitterCounter_ & 1));
  871. graphics_->SetTexture(TU_NORMALBUFFER, graphics_->GetScreenBuffer((jitterCounter_ + 1) & 1));
  872. graphics_->SetTexture(TU_DEPTHBUFFER, graphics_->GetDepthBuffer());
  873. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader(shaderName),
  874. renderer_->GetPixelShader(shaderName), false, shaderParameters_);
  875. // Store view transform for next frame
  876. lastCameraView_ = camera_->GetInverseWorldTransform();
  877. }
  878. }
  879. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  880. {
  881. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  882. float halfViewSize = camera->GetHalfViewSize();
  883. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  884. Vector3 cameraPos = camera->GetWorldPosition();
  885. unsigned cameraViewMask = camera->GetViewMask();
  886. for (unsigned i = 0; i < occluders.Size(); ++i)
  887. {
  888. Drawable* occluder = occluders[i];
  889. occluder->UpdateDistance(frame_);
  890. bool erase = false;
  891. // Check view mask
  892. if (!(cameraViewMask & occluder->GetViewMask()))
  893. erase = true;
  894. // Check occluder's draw distance (in main camera view)
  895. float maxDistance = occluder->GetDrawDistance();
  896. if ((maxDistance > 0.0f) && (occluder->GetDistance() > maxDistance))
  897. erase = true;
  898. // Check that occluder is big enough on the screen
  899. const BoundingBox& box = occluder->GetWorldBoundingBox();
  900. float diagonal = (box.max_ - box.min_).LengthFast();
  901. float compare;
  902. if (!camera->IsOrthographic())
  903. compare = diagonal * halfViewSize / occluder->GetDistance();
  904. else
  905. compare = diagonal * invOrthoSize;
  906. if (compare < occluderSizeThreshold_)
  907. erase = true;
  908. if (!erase)
  909. {
  910. unsigned totalTriangles = 0;
  911. unsigned batches = occluder->GetNumBatches();
  912. Batch tempBatch;
  913. for (unsigned j = 0; j < batches; ++j)
  914. {
  915. occluder->GetBatch(frame_, j, tempBatch);
  916. if (tempBatch.geometry_)
  917. totalTriangles += tempBatch.geometry_->GetIndexCount() / 3;
  918. }
  919. // Store amount of triangles divided by screen size as a sorting key
  920. // (best occluders are big and have few triangles)
  921. occluder->SetSortValue((float)totalTriangles / compare);
  922. }
  923. else
  924. {
  925. occluders.Erase(occluders.Begin() + i);
  926. --i;
  927. }
  928. }
  929. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  930. if (occluders.Size())
  931. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  932. }
  933. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  934. {
  935. for (unsigned i = 0; i < occluders.Size(); ++i)
  936. {
  937. Drawable* occluder = occluders[i];
  938. if (i > 0)
  939. {
  940. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  941. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  942. continue;
  943. }
  944. occluder->UpdateGeometry(frame_);
  945. // Check for running out of triangles
  946. if (!occluder->DrawOcclusion(buffer))
  947. return;
  948. }
  949. }
  950. unsigned View::ProcessLight(Light* light)
  951. {
  952. unsigned numLitGeometries = 0;
  953. unsigned numShadowCasters = 0;
  954. unsigned numSplits;
  955. // Check if light should be shadowed
  956. bool isShadowed = (drawShadows_) && (light->GetCastShadows());
  957. // If shadow distance non-zero, check it
  958. if ((isShadowed) && (light->GetShadowDistance() > 0.0f) && (light->GetDistance() > light->GetShadowDistance()))
  959. isShadowed = false;
  960. // If light has no ramp textures defined, set defaults
  961. if ((light->GetLightType() != LIGHT_DIRECTIONAL) && (!light->GetRampTexture()))
  962. light->SetRampTexture(renderer_->GetDefaultLightRamp());
  963. if ((light->GetLightType() == LIGHT_SPOT) && (!light->GetShapeTexture()))
  964. light->SetShapeTexture(renderer_->GetDefaultLightSpot());
  965. // Split the light if necessary
  966. if (isShadowed)
  967. numSplits = SplitLight(light);
  968. else
  969. {
  970. // No splitting, use the original light
  971. splitLights_[0] = light;
  972. numSplits = 1;
  973. }
  974. // For a shadowed directional light, get occluders once using the whole (non-split) light frustum
  975. bool useOcclusion = false;
  976. OcclusionBuffer* buffer = 0;
  977. if ((maxOccluderTriangles_ > 0) && (isShadowed) && (light->GetLightType() == LIGHT_DIRECTIONAL))
  978. {
  979. // This shadow camera is never used for actually querying shadow casters, just occluders
  980. Camera* shadowCamera = renderer_->CreateShadowCamera();
  981. light->SetShadowCamera(shadowCamera);
  982. SetupShadowCamera(light, true);
  983. // Get occluders, which must be shadow-casting themselves
  984. FrustumOctreeQuery query(shadowOccluders_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY, true, true);
  985. octree_->GetDrawables(query);
  986. UpdateOccluders(shadowOccluders_, shadowCamera);
  987. if (shadowOccluders_.Size())
  988. {
  989. // Shadow viewport is rectangular and consumes more CPU fillrate, so halve size
  990. buffer = renderer_->GetOrCreateOcclusionBuffer(shadowCamera, maxOccluderTriangles_, true);
  991. DrawOccluders(buffer, shadowOccluders_);
  992. buffer->BuildDepthHierarchy();
  993. useOcclusion = true;
  994. }
  995. }
  996. // Process each split for shadow camera update, lit geometries, and shadow casters
  997. for (unsigned i = 0; i < numSplits; ++i)
  998. {
  999. litGeometries_[i].Clear();
  1000. shadowCasters_[i].Clear();
  1001. }
  1002. for (unsigned i = 0; i < numSplits; ++i)
  1003. {
  1004. Light* split = splitLights_[i];
  1005. LightType type = split->GetLightType();
  1006. bool isSplitShadowed = (isShadowed) && (split->GetCastShadows());
  1007. Camera* shadowCamera = 0;
  1008. // If shadow casting, choose the shadow map & update shadow camera
  1009. if (isSplitShadowed)
  1010. {
  1011. shadowCamera = renderer_->CreateShadowCamera();
  1012. split->SetShadowMap(renderer_->GetShadowMap(splitLights_[i]->GetShadowResolution()));
  1013. // Check if managed to get a shadow map. Otherwise must convert to non-shadowed
  1014. if (split->GetShadowMap())
  1015. {
  1016. split->SetShadowCamera(shadowCamera);
  1017. SetupShadowCamera(split);
  1018. }
  1019. else
  1020. {
  1021. isSplitShadowed = false;
  1022. split->SetShadowCamera(0);
  1023. }
  1024. }
  1025. else
  1026. {
  1027. split->SetShadowCamera(0);
  1028. split->SetShadowMap(0);
  1029. }
  1030. BoundingBox geometryBox;
  1031. BoundingBox shadowCasterBox;
  1032. switch (type)
  1033. {
  1034. case LIGHT_DIRECTIONAL:
  1035. // Loop through visible geometries and check if they belong to this split
  1036. {
  1037. float nearSplit = split->GetNearSplit() - split->GetNearFadeRange();
  1038. float farSplit = split->GetFarSplit();
  1039. // If split extends to the whole visible frustum, no depth check necessary
  1040. bool optimize = (nearSplit <= camera_->GetNearClip()) && (farSplit >= camera_->GetFarClip());
  1041. // If whole visible scene is outside the split, can reject trivially
  1042. if ((sceneViewBox_.min_.z_ > farSplit) || (sceneViewBox_.max_.z_ < nearSplit))
  1043. {
  1044. split->SetShadowMap(0);
  1045. continue;
  1046. }
  1047. bool generateBoxes = (isSplitShadowed) && (split->GetShadowFocus().focus_);
  1048. Matrix3x4 lightView;
  1049. if (shadowCamera)
  1050. lightView = shadowCamera->GetInverseWorldTransform();
  1051. if (!optimize)
  1052. {
  1053. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1054. {
  1055. Drawable* drawable = geometries_[j];
  1056. const GeometryDepthBounds& bounds = geometryDepthBounds_[j];
  1057. // Check bounds and light mask
  1058. if ((bounds.min_ <= farSplit) && (bounds.max_ >= nearSplit) && (drawable->GetLightMask() &
  1059. split->GetLightMask()))
  1060. {
  1061. litGeometries_[i].Push(drawable);
  1062. if (generateBoxes)
  1063. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1064. }
  1065. }
  1066. }
  1067. else
  1068. {
  1069. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1070. {
  1071. Drawable* drawable = geometries_[j];
  1072. // Need to check light mask only
  1073. if (drawable->GetLightMask() & split->GetLightMask())
  1074. {
  1075. litGeometries_[i].Push(drawable);
  1076. if (generateBoxes)
  1077. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1078. }
  1079. }
  1080. }
  1081. }
  1082. // Then get shadow casters by shadow camera frustum query. Use occlusion because of potentially many geometries
  1083. if ((isSplitShadowed) && (litGeometries_[i].Size()))
  1084. {
  1085. Camera* shadowCamera = split->GetShadowCamera();
  1086. if (!useOcclusion)
  1087. {
  1088. // Get potential shadow casters without occlusion
  1089. FrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY);
  1090. octree_->GetDrawables(query);
  1091. }
  1092. else
  1093. {
  1094. // Get potential shadow casters with occlusion
  1095. OccludedFrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), buffer,
  1096. DRAWABLE_GEOMETRY);
  1097. octree_->GetDrawables(query);
  1098. }
  1099. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, false, isSplitShadowed);
  1100. }
  1101. break;
  1102. case LIGHT_POINT:
  1103. {
  1104. SphereOctreeQuery query(tempDrawables_, Sphere(split->GetWorldPosition(), split->GetRange()), DRAWABLE_GEOMETRY);
  1105. octree_->GetDrawables(query);
  1106. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, false);
  1107. }
  1108. break;
  1109. case LIGHT_SPOT:
  1110. case LIGHT_SPLITPOINT:
  1111. {
  1112. FrustumOctreeQuery query(tempDrawables_, splitLights_[i]->GetFrustum(), DRAWABLE_GEOMETRY);
  1113. octree_->GetDrawables(query);
  1114. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, isSplitShadowed);
  1115. }
  1116. break;
  1117. }
  1118. // Optimization: if a particular split has no shadow casters, render as unshadowed
  1119. if (!shadowCasters_[i].Size())
  1120. split->SetShadowMap(0);
  1121. // Focus shadow camera as applicable
  1122. if (split->GetShadowMap())
  1123. {
  1124. if (split->GetShadowFocus().focus_)
  1125. FocusShadowCamera(split, geometryBox, shadowCasterBox);
  1126. // Set a zoom factor to ensure that we do not render to the shadow map border
  1127. // (clamp addressing is necessary because border mode /w hardware shadow maps is not supported by all GPUs)
  1128. Camera* shadowCamera = split->GetShadowCamera();
  1129. Texture2D* shadowMap = split->GetShadowMap();
  1130. if (shadowCamera->GetZoom() >= 1.0f)
  1131. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth()));
  1132. }
  1133. // Update count of total lit geometries & shadow casters
  1134. numLitGeometries += litGeometries_[i].Size();
  1135. numShadowCasters += shadowCasters_[i].Size();
  1136. }
  1137. // If no lit geometries at all, no need to process further
  1138. if (!numLitGeometries)
  1139. numSplits = 0;
  1140. // If no shadow casters at all, concatenate lit geometries into one & return the original light
  1141. else if (!numShadowCasters)
  1142. {
  1143. if (numSplits > 1)
  1144. {
  1145. // Make sure there are no duplicates
  1146. HashSet<Drawable*> allLitGeometries;
  1147. for (unsigned i = 0; i < numSplits; ++i)
  1148. {
  1149. for (Vector<Drawable*>::Iterator j = litGeometries_[i].Begin(); j != litGeometries_[i].End(); ++j)
  1150. allLitGeometries.Insert(*j);
  1151. }
  1152. litGeometries_[0].Resize(allLitGeometries.Size());
  1153. unsigned index = 0;
  1154. for (HashSet<Drawable*>::Iterator i = allLitGeometries.Begin(); i != allLitGeometries.End(); ++i)
  1155. litGeometries_[0][index++] = *i;
  1156. }
  1157. splitLights_[0] = light;
  1158. splitLights_[0]->SetShadowMap(0);
  1159. numSplits = 1;
  1160. }
  1161. return numSplits;
  1162. }
  1163. void View::ProcessLightQuery(unsigned splitIndex, const PODVector<Drawable*>& result, BoundingBox& geometryBox,
  1164. BoundingBox& shadowCasterBox, bool getLitGeometries, bool GetShadowCasters)
  1165. {
  1166. Light* light = splitLights_[splitIndex];
  1167. Matrix3x4 lightView;
  1168. Matrix4 lightProj;
  1169. Frustum lightViewFrustum;
  1170. BoundingBox lightViewFrustumBox;
  1171. bool mergeBoxes = (light->GetLightType() != LIGHT_SPLITPOINT) && (light->GetShadowMap()) && (light->GetShadowFocus().focus_);
  1172. bool projectBoxes = false;
  1173. Camera* shadowCamera = light->GetShadowCamera();
  1174. if (shadowCamera)
  1175. {
  1176. bool projectBoxes = !shadowCamera->IsOrthographic();
  1177. lightView = shadowCamera->GetInverseWorldTransform();
  1178. lightProj = shadowCamera->GetProjection();
  1179. // Transform scene frustum into shadow camera's view space for shadow caster visibility check
  1180. // For point & spot lights, we can use the whole scene frustum. For directional lights, use the
  1181. // intersection of the scene frustum and the split frustum, so that shadow casters do not get
  1182. // rendered into unnecessary splits
  1183. if (light->GetLightType() != LIGHT_DIRECTIONAL)
  1184. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1185. else
  1186. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, light->GetNearSplit() - light->GetNearFadeRange()),
  1187. Min(sceneViewBox_.max_.z_, light->GetFarSplit())).Transformed(lightView);
  1188. lightViewFrustumBox.Define(lightViewFrustum);
  1189. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1190. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1191. GetShadowCasters = false;
  1192. }
  1193. else
  1194. GetShadowCasters = false;
  1195. BoundingBox lightViewBox;
  1196. BoundingBox lightProjBox;
  1197. for (unsigned i = 0; i < result.Size(); ++i)
  1198. {
  1199. Drawable* drawable = static_cast<Drawable*>(result[i]);
  1200. drawable->UpdateDistance(frame_);
  1201. bool boxGenerated = false;
  1202. // If draw distance non-zero, check it
  1203. float maxDistance = drawable->GetDrawDistance();
  1204. if ((maxDistance > 0.0f) && (drawable->GetDistance() > maxDistance))
  1205. continue;
  1206. // Check light mask
  1207. if (!(drawable->GetLightMask() & light->GetLightMask()))
  1208. continue;
  1209. // Get lit geometry only if inside main camera frustum this frame
  1210. if ((getLitGeometries) && (drawable->IsInView(frame_)))
  1211. {
  1212. if (mergeBoxes)
  1213. {
  1214. // Transform bounding box into light view space, and to projection space if needed
  1215. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1216. if (!projectBoxes)
  1217. geometryBox.Merge(lightViewBox);
  1218. else
  1219. {
  1220. lightProjBox = lightViewBox.Projected(lightProj);
  1221. geometryBox.Merge(lightProjBox);
  1222. }
  1223. boxGenerated = true;
  1224. }
  1225. litGeometries_[splitIndex].Push(drawable);
  1226. }
  1227. // Shadow caster need not be inside main camera frustum: in that case try to detect whether
  1228. // the shadow projection intersects the view
  1229. if ((GetShadowCasters) && (drawable->GetCastShadows()))
  1230. {
  1231. // If shadow distance non-zero, check it
  1232. float maxShadowDistance = drawable->GetShadowDistance();
  1233. if ((maxShadowDistance > 0.0f) && (drawable->GetDistance() > maxShadowDistance))
  1234. continue;
  1235. if (!boxGenerated)
  1236. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1237. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1238. {
  1239. if (mergeBoxes)
  1240. {
  1241. if (!projectBoxes)
  1242. shadowCasterBox.Merge(lightViewBox);
  1243. else
  1244. {
  1245. if (!boxGenerated)
  1246. lightProjBox = lightViewBox.Projected(lightProj);
  1247. shadowCasterBox.Merge(lightProjBox);
  1248. }
  1249. }
  1250. // Update geometry now if not updated yet
  1251. if (!drawable->IsInView(frame_))
  1252. {
  1253. drawable->MarkInShadowView(frame_);
  1254. drawable->UpdateGeometry(frame_);
  1255. }
  1256. shadowCasters_[splitIndex].Push(drawable);
  1257. }
  1258. }
  1259. }
  1260. }
  1261. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1262. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1263. {
  1264. // If shadow caster is also an occluder, must let it be visible, because it has potentially already culled
  1265. // away other shadow casters (could also check the actual shadow occluder vector, but that would be slower)
  1266. if (drawable->IsOccluder())
  1267. return true;
  1268. if (shadowCamera->IsOrthographic())
  1269. {
  1270. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1271. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1272. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1273. }
  1274. else
  1275. {
  1276. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1277. if (drawable->IsInView(frame_))
  1278. return true;
  1279. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1280. Vector3 center = lightViewBox.Center();
  1281. Ray extrusionRay(center, center.Normalized());
  1282. float extrusionDistance = shadowCamera->GetFarClip();
  1283. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  1284. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1285. float sizeFactor = extrusionDistance / originalDistance;
  1286. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1287. // than necessary, so the test will be conservative
  1288. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1289. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1290. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1291. lightViewBox.Merge(extrudedBox);
  1292. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1293. }
  1294. }
  1295. void View::SetupShadowCamera(Light* light, bool shadowOcclusion)
  1296. {
  1297. Camera* shadowCamera = light->GetShadowCamera();
  1298. Node* cameraNode = shadowCamera->GetNode();
  1299. const FocusParameters& parameters = light->GetShadowFocus();
  1300. // Reset zoom
  1301. shadowCamera->SetZoom(1.0f);
  1302. switch(light->GetLightType())
  1303. {
  1304. case LIGHT_DIRECTIONAL:
  1305. {
  1306. float extrusionDistance = camera_->GetFarClip();
  1307. // Calculate initial position & rotation
  1308. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1309. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1310. Quaternion rot(Vector3::FORWARD, lightWorldDirection);
  1311. cameraNode->SetTransform(pos, rot);
  1312. // Calculate main camera shadowed frustum in light's view space
  1313. float sceneMaxZ = camera_->GetFarClip();
  1314. // When shadow focusing is enabled, use the scene far Z to limit maximum frustum size
  1315. if ((shadowOcclusion) || (parameters.focus_))
  1316. sceneMaxZ = Min(sceneViewBox_.max_.z_, sceneMaxZ);
  1317. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1318. Frustum lightViewSplitFrustum = camera_->GetSplitFrustum(light->GetNearSplit() - light->GetNearFadeRange(),
  1319. Min(light->GetFarSplit(), sceneMaxZ)).Transformed(lightView);
  1320. // Fit the frustum inside a bounding box. If uniform size, use a sphere instead
  1321. BoundingBox shadowBox;
  1322. if ((!shadowOcclusion) && (parameters.nonUniform_))
  1323. shadowBox.Define(lightViewSplitFrustum);
  1324. else
  1325. {
  1326. Sphere shadowSphere;
  1327. shadowSphere.Define(lightViewSplitFrustum);
  1328. shadowBox.Define(shadowSphere);
  1329. }
  1330. shadowCamera->SetOrthographic(true);
  1331. shadowCamera->SetNearClip(0.0f);
  1332. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1333. // Center shadow camera on the bounding box, snap to whole texels
  1334. QuantizeDirShadowCamera(light, shadowBox);
  1335. }
  1336. break;
  1337. case LIGHT_SPOT:
  1338. case LIGHT_SPLITPOINT:
  1339. {
  1340. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1341. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1342. shadowCamera->SetFarClip(light->GetRange());
  1343. shadowCamera->SetOrthographic(false);
  1344. shadowCamera->SetFov(light->GetFov());
  1345. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1346. // For spot lights, zoom out shadowmap if far away (reduces fillrate)
  1347. if ((light->GetLightType() == LIGHT_SPOT) && (parameters.zoomOut_))
  1348. {
  1349. // Make sure the out-zooming does not start while we are inside the spot
  1350. float distance = Max((camera_->GetInverseWorldTransform() * light->GetWorldPosition()).z_ - light->GetRange(), 1.0f);
  1351. float lightPixels = (((float)height_ * light->GetRange() * camera_->GetZoom() * 0.5f) / distance);
  1352. // Clamp pixel amount to a sufficient minimum to avoid self-shadowing artifacts due to loss of precision
  1353. if (lightPixels < SHADOW_MIN_PIXELS)
  1354. lightPixels = SHADOW_MIN_PIXELS;
  1355. float zoolevel_ = Min(lightPixels / (float)light->GetShadowMap()->GetHeight(), 1.0f);
  1356. shadowCamera->SetZoom(zoolevel_);
  1357. }
  1358. }
  1359. break;
  1360. }
  1361. }
  1362. void View::FocusShadowCamera(Light* light, const BoundingBox& geometryBox, const BoundingBox& shadowCasterBox)
  1363. {
  1364. // If either no geometries or no shadow casters, do nothing
  1365. if ((!geometryBox.defined_) || (!shadowCasterBox.defined_))
  1366. return;
  1367. Camera* shadowCamera = light->GetShadowCamera();
  1368. const FocusParameters& parameters = light->GetShadowFocus();
  1369. switch (light->GetLightType())
  1370. {
  1371. case LIGHT_DIRECTIONAL:
  1372. {
  1373. BoundingBox combinedBox;
  1374. combinedBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1375. combinedBox.max_.x_ = shadowCamera->GetAspectRatio() * combinedBox.max_.y_;
  1376. combinedBox.min_.y_ = -combinedBox.max_.y_;
  1377. combinedBox.min_.x_ = -combinedBox.max_.x_;
  1378. combinedBox.Intersect(geometryBox);
  1379. combinedBox.Intersect(shadowCasterBox);
  1380. QuantizeDirShadowCamera(light, combinedBox);
  1381. }
  1382. break;
  1383. case LIGHT_SPOT:
  1384. // Can not move, but can zoom the shadow camera. Check for out-zooming (distant shadow map), do nothing in that case
  1385. if (shadowCamera->GetZoom() >= 1.0f)
  1386. {
  1387. BoundingBox combinedBox(-1.0f, 1.0f);
  1388. combinedBox.Intersect(geometryBox);
  1389. combinedBox.Intersect(shadowCasterBox);
  1390. float viewSizeX = Max(fabsf(combinedBox.min_.x_), fabsf(combinedBox.max_.x_));
  1391. float viewSizeY = Max(fabsf(combinedBox.min_.y_), fabsf(combinedBox.max_.y_));
  1392. float viewSize = Max(viewSizeX, viewSizeY);
  1393. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1394. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1395. float quantize = parameters.quantize_ * invOrthoSize;
  1396. float minView = parameters.minView_ * invOrthoSize;
  1397. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1398. if (viewSize < 1.0f)
  1399. shadowCamera->SetZoom(1.0f / viewSize);
  1400. }
  1401. break;
  1402. }
  1403. }
  1404. void View::QuantizeDirShadowCamera(Light* light, const BoundingBox& viewBox)
  1405. {
  1406. Camera* shadowCamera = light->GetShadowCamera();
  1407. Node* cameraNode = shadowCamera->GetNode();
  1408. const FocusParameters& parameters = light->GetShadowFocus();
  1409. float minX = viewBox.min_.x_;
  1410. float minY = viewBox.min_.y_;
  1411. float maxX = viewBox.max_.x_;
  1412. float maxY = viewBox.max_.y_;
  1413. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1414. Vector2 viewSize(maxX - minX, maxY - minY);
  1415. // Quantize size to reduce swimming
  1416. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1417. if (parameters.nonUniform_)
  1418. {
  1419. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1420. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1421. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1422. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1423. }
  1424. else if (parameters.focus_)
  1425. {
  1426. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1427. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1428. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1429. viewSize.y_ = viewSize.x_;
  1430. }
  1431. shadowCamera->SetOrthoSize(viewSize);
  1432. // Center shadow camera to the view space bounding box
  1433. Vector3 pos = shadowCamera->GetWorldPosition();
  1434. Quaternion rot = shadowCamera->GetWorldRotation();
  1435. Vector3 adjust(center.x_, center.y_, 0.0f);
  1436. cameraNode->Translate(rot * adjust);
  1437. // If there is a shadow map, snap to its whole texels
  1438. Texture2D* shadowMap = light->GetShadowMap();
  1439. if (shadowMap)
  1440. {
  1441. Vector3 viewPos(rot.Inverse() * shadowCamera->GetWorldPosition());
  1442. // Take into account that shadow map border will not be used
  1443. float invActualSize = 1.0f / (float)(shadowMap->GetWidth() - 2);
  1444. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1445. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1446. cameraNode->Translate(rot * snap);
  1447. }
  1448. }
  1449. void View::OptimizeLightByScissor(Light* light)
  1450. {
  1451. if (light)
  1452. graphics_->SetScissorTest(true, GetLightScissor(light));
  1453. else
  1454. graphics_->SetScissorTest(false);
  1455. }
  1456. const Rect& View::GetLightScissor(Light* light)
  1457. {
  1458. Map<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1459. if (i != lightScissorCache_.End())
  1460. return i->second_;
  1461. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1462. Matrix4 projection(camera_->GetProjection());
  1463. switch (light->GetLightType())
  1464. {
  1465. case LIGHT_POINT:
  1466. {
  1467. BoundingBox viewBox = light->GetWorldBoundingBox().Transformed(view);
  1468. return lightScissorCache_[light] = viewBox.Projected(projection);
  1469. }
  1470. case LIGHT_SPOT:
  1471. case LIGHT_SPLITPOINT:
  1472. {
  1473. Frustum viewFrustum = light->GetFrustum().Transformed(view);
  1474. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1475. }
  1476. default:
  1477. return lightScissorCache_[light] = Rect::FULL;
  1478. }
  1479. }
  1480. unsigned View::SplitLight(Light* light)
  1481. {
  1482. LightType type = light->GetLightType();
  1483. if (type == LIGHT_DIRECTIONAL)
  1484. {
  1485. const CascadeParameters& cascade = light->GetShadowCascade();
  1486. unsigned splits = cascade.splits_;
  1487. if (splits > MAX_LIGHT_SPLITS - 1)
  1488. splits = MAX_LIGHT_SPLITS;
  1489. // Orthographic view actually has near clip 0, but clamp it to a theoretical minimum
  1490. float farClip = Min(cascade.shadowRange_, camera_->GetFarClip()); // Shadow range end
  1491. float nearClip = Max(camera_->GetNearClip(), M_MIN_NEARCLIP); // Shadow range start
  1492. bool CreateExtraSplit = farClip < camera_->GetFarClip();
  1493. // Practical split scheme (Zhang et al.)
  1494. unsigned i;
  1495. for (i = 0; i < splits; ++i)
  1496. {
  1497. // Set a minimum for the fade range to avoid boundary artifacts (missing lighting)
  1498. float splitFadeRange = Max(cascade.splitFadeRange_, 0.001f);
  1499. float iPerM = (float)i / (float)splits;
  1500. float log = nearClip * powf(farClip / nearClip, iPerM);
  1501. float uniform = nearClip + (farClip - nearClip) * iPerM;
  1502. float nearSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1503. float nearFadeRange = nearSplit * splitFadeRange;
  1504. iPerM = (float)(i + 1) / (float)splits;
  1505. log = nearClip * powf(farClip / nearClip, iPerM);
  1506. uniform = nearClip + (farClip - nearClip) * iPerM;
  1507. float farSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1508. float farFadeRange = farSplit * splitFadeRange;
  1509. // If split is completely beyond camera far clip, we are done
  1510. if ((nearSplit - nearFadeRange) > camera_->GetFarClip())
  1511. break;
  1512. Light* SplitLight = renderer_->CreateSplitLight(light);
  1513. splitLights_[i] = SplitLight;
  1514. // Though the near clip was previously clamped, use the real near clip value for the first split,
  1515. // so that there are no unlit portions
  1516. if (i)
  1517. SplitLight->SetNearSplit(nearSplit);
  1518. else
  1519. SplitLight->SetNearSplit(camera_->GetNearClip());
  1520. SplitLight->SetNearFadeRange(nearFadeRange);
  1521. SplitLight->SetFarSplit(farSplit);
  1522. // The final split will not fade
  1523. if ((CreateExtraSplit) || (i < splits - 1))
  1524. SplitLight->SetFarFadeRange(farFadeRange);
  1525. // Create an extra unshadowed split if necessary
  1526. if ((CreateExtraSplit) && (i == splits - 1))
  1527. {
  1528. Light* SplitLight = renderer_->CreateSplitLight(light);
  1529. splitLights_[i + 1] = SplitLight;
  1530. SplitLight->SetNearSplit(farSplit);
  1531. SplitLight->SetNearFadeRange(farFadeRange);
  1532. SplitLight->SetCastShadows(false);
  1533. }
  1534. }
  1535. if (CreateExtraSplit)
  1536. return i + 1;
  1537. else
  1538. return i;
  1539. }
  1540. if (type == LIGHT_POINT)
  1541. {
  1542. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1543. {
  1544. Light* SplitLight = renderer_->CreateSplitLight(light);
  1545. Node* lightNode = SplitLight->GetNode();
  1546. splitLights_[i] = SplitLight;
  1547. SplitLight->SetLightType(LIGHT_SPLITPOINT);
  1548. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1549. lightNode->SetDirection(directions[i]);
  1550. SplitLight->SetFov(90.0f);
  1551. SplitLight->SetAspectRatio(1.0f);
  1552. }
  1553. return MAX_CUBEMAP_FACES;
  1554. }
  1555. // A spot light does not actually need splitting. However, we may be rendering several views,
  1556. // and in some the light might be unshadowed, so better create an unique copy
  1557. Light* SplitLight = renderer_->CreateSplitLight(light);
  1558. splitLights_[0] = SplitLight;
  1559. return 1;
  1560. }
  1561. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1562. {
  1563. if (!material)
  1564. material = renderer_->GetDefaultMaterial();
  1565. if (!material)
  1566. return 0;
  1567. float lodDistance = drawable->GetLodDistance();
  1568. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1569. if (techniques.Empty())
  1570. return 0;
  1571. // Check for suitable technique. Techniques should be ordered like this:
  1572. // Most distant & highest quality
  1573. // Most distant & lowest quality
  1574. // Second most distant & highest quality
  1575. // ...
  1576. for (unsigned i = 0; i < techniques.Size(); ++i)
  1577. {
  1578. const TechniqueEntry& entry = techniques[i];
  1579. Technique* technique = entry.technique_;
  1580. if ((!technique) || ((technique->IsSM3()) && (!graphics_->GetSM3Support())) || (materialQuality_ < entry.qualityLevel_))
  1581. continue;
  1582. if (lodDistance >= entry.lodDistance_)
  1583. return technique;
  1584. }
  1585. // If no suitable technique found, fallback to the last
  1586. return techniques.Back().technique_;
  1587. }
  1588. void View::CheckMaterialForAuxView(Material* material)
  1589. {
  1590. const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
  1591. for (unsigned i = 0; i < textures.Size(); ++i)
  1592. {
  1593. // Have to check cube & 2D textures separately
  1594. Texture* texture = textures[i];
  1595. if (texture)
  1596. {
  1597. if (texture->GetType() == Texture2D::GetTypeStatic())
  1598. {
  1599. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1600. RenderSurface* target = tex2D->GetRenderSurface();
  1601. if (target)
  1602. {
  1603. const Viewport& viewport = target->GetViewport();
  1604. if ((viewport.scene_) && (viewport.camera_))
  1605. renderer_->AddView(target, viewport);
  1606. }
  1607. }
  1608. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1609. {
  1610. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1611. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1612. {
  1613. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1614. if (target)
  1615. {
  1616. const Viewport& viewport = target->GetViewport();
  1617. if ((viewport.scene_) && (viewport.camera_))
  1618. renderer_->AddView(target, viewport);
  1619. }
  1620. }
  1621. }
  1622. }
  1623. }
  1624. // Set frame number so that we can early-out next time we come across this material on the same frame
  1625. material->MarkForAuxView(frame_.frameNumber_);
  1626. }
  1627. void View::SortBatches()
  1628. {
  1629. PROFILE(SortBatches);
  1630. if (mode_ != RENDER_FORWARD)
  1631. {
  1632. gBufferQueue_.SortFrontToBack();
  1633. noShadowLightQueue_.SortFrontToBack();
  1634. }
  1635. baseQueue_.SortFrontToBack();
  1636. extraQueue_.SortFrontToBack();
  1637. transparentQueue_.SortBackToFront();
  1638. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1639. {
  1640. lightQueues_[i].shadowBatches_.SortFrontToBack();
  1641. lightQueues_[i].litBatches_.SortFrontToBack();
  1642. }
  1643. }
  1644. void View::PrepareInstancingBuffer()
  1645. {
  1646. PROFILE(PrepareInstancingBuffer);
  1647. unsigned totalInstances = 0;
  1648. if (mode_ != RENDER_FORWARD)
  1649. totalInstances += gBufferQueue_.GetNumInstances();
  1650. totalInstances += baseQueue_.GetNumInstances();
  1651. totalInstances += extraQueue_.GetNumInstances();
  1652. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1653. {
  1654. totalInstances += lightQueues_[i].shadowBatches_.GetNumInstances();
  1655. totalInstances += lightQueues_[i].litBatches_.GetNumInstances();
  1656. }
  1657. // If fail to set buffer size, fall back to per-group locking
  1658. if ((totalInstances) && (renderer_->ResizeInstancingBuffer(totalInstances)))
  1659. {
  1660. unsigned freeIndex = 0;
  1661. void* lockedData = renderer_->instancingBuffer_->Lock(0, totalInstances, LOCK_DISCARD);
  1662. if (lockedData)
  1663. {
  1664. if (mode_ != RENDER_FORWARD)
  1665. gBufferQueue_.SetTransforms(lockedData, freeIndex);
  1666. baseQueue_.SetTransforms(lockedData, freeIndex);
  1667. extraQueue_.SetTransforms(lockedData, freeIndex);
  1668. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1669. {
  1670. lightQueues_[i].shadowBatches_.SetTransforms(lockedData, freeIndex);
  1671. lightQueues_[i].litBatches_.SetTransforms(lockedData, freeIndex);
  1672. }
  1673. renderer_->instancingBuffer_->Unlock();
  1674. }
  1675. }
  1676. }
  1677. void View::CalculateShaderParameters()
  1678. {
  1679. Time* time = GetSubsystem<Time>();
  1680. float fogStart = zone_->GetFogStart();
  1681. float fogEnd = zone_->GetFogEnd();
  1682. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  1683. float farClip = camera_->GetFarClip();
  1684. float nearClip = camera_->GetNearClip();
  1685. Vector4 fogParams(fogStart / farClip, fogEnd / farClip, 1.0f / (fogRange / farClip), 0.0f);
  1686. Vector4 elapsedTime((time->GetTotalMSec() & 0x3fffff) / 1000.0f, 0.0f, 0.0f, 0.0f);
  1687. shaderParameters_.Clear();
  1688. shaderParameters_[VSP_ELAPSEDTIME] = elapsedTime;
  1689. shaderParameters_[PSP_AMBIENTCOLOR] = zone_->GetAmbientColor().ToVector4();
  1690. shaderParameters_[PSP_ELAPSEDTIME] = elapsedTime;
  1691. shaderParameters_[PSP_FOGCOLOR] = zone_->GetFogColor().ToVector4(),
  1692. shaderParameters_[PSP_FOGPARAMS] = fogParams;
  1693. }
  1694. void View::DrawSplitLightToStencil(Camera& camera, Light* light, bool clear)
  1695. {
  1696. Matrix3x4 view(camera.GetInverseWorldTransform());
  1697. switch (light->GetLightType())
  1698. {
  1699. case LIGHT_SPLITPOINT:
  1700. if (!clear)
  1701. {
  1702. Matrix4 projection(camera.GetProjection());
  1703. const Matrix3x4& model = light->GetVolumeTransform(camera);
  1704. float lightExtent = light->GetVolumeExtent();
  1705. float lightViewDist = (light->GetWorldPosition() - camera.GetWorldPosition()).LengthFast();
  1706. bool drawBackFaces = lightViewDist < (lightExtent + camera.GetNearClip());
  1707. graphics_->SetAlphaTest(false);
  1708. graphics_->SetColorWrite(false);
  1709. graphics_->SetDepthWrite(false);
  1710. graphics_->SetCullMode(drawBackFaces ? CULL_CW : CULL_CCW);
  1711. graphics_->SetDepthTest(drawBackFaces ? CMP_GREATER : CMP_LESS);
  1712. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1713. graphics_->SetShaderParameter(VSP_MODEL, model);
  1714. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1715. graphics_->ClearTransformSources();
  1716. // Draw the faces to stencil which we should draw (where no light has not been rendered yet)
  1717. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 0);
  1718. renderer_->spotLightGeometry_->Draw(graphics_);
  1719. // Draw the other faces to stencil to mark where we should not draw ("frees up" the pixels for other faces)
  1720. graphics_->SetCullMode(drawBackFaces ? CULL_CCW : CULL_CW);
  1721. graphics_->SetStencilTest(true, CMP_EQUAL, OP_DECR, OP_KEEP, OP_KEEP, 1);
  1722. renderer_->spotLightGeometry_->Draw(graphics_);
  1723. // Now set stencil test for rendering the lit geometries (also marks the pixels so that they will not be used again)
  1724. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 1);
  1725. graphics_->SetColorWrite(true);
  1726. }
  1727. else
  1728. {
  1729. // Clear stencil with a scissored clear operation
  1730. OptimizeLightByScissor(light->GetOriginalLight());
  1731. graphics_->Clear(CLEAR_STENCIL);
  1732. graphics_->SetScissorTest(false);
  1733. graphics_->SetStencilTest(false);
  1734. }
  1735. break;
  1736. case LIGHT_DIRECTIONAL:
  1737. // If light encompasses whole frustum, no drawing to frustum necessary
  1738. if ((light->GetNearSplit() <= camera.GetNearClip()) && (light->GetFarSplit() >= camera.GetFarClip()))
  1739. return;
  1740. else
  1741. {
  1742. if (!clear)
  1743. {
  1744. // Get projection without jitter offset to ensure the whole screen is filled
  1745. Matrix4 projection(camera.GetProjection(false));
  1746. Matrix3x4 nearTransform(light->GetDirLightTransform(camera, true));
  1747. Matrix3x4 farTransform(light->GetDirLightTransform(camera, false));
  1748. graphics_->SetAlphaTest(false);
  1749. graphics_->SetColorWrite(false);
  1750. graphics_->SetDepthWrite(false);
  1751. graphics_->SetCullMode(CULL_NONE);
  1752. // If the split begins at the near plane (first split), draw at split far plane
  1753. if (light->GetNearSplit() <= camera.GetNearClip())
  1754. {
  1755. graphics_->SetDepthTest(CMP_GREATEREQUAL);
  1756. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1757. graphics_->SetShaderParameter(VSP_MODEL, farTransform);
  1758. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1759. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1760. }
  1761. // Otherwise draw at split near plane
  1762. else
  1763. {
  1764. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1765. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1766. graphics_->SetShaderParameter(VSP_MODEL, nearTransform);
  1767. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1768. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1769. }
  1770. graphics_->ClearTransformSources();
  1771. renderer_->dirLightGeometry_->Draw(graphics_);
  1772. graphics_->SetColorWrite(true);
  1773. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 1);
  1774. }
  1775. else
  1776. {
  1777. // Clear the whole stencil
  1778. graphics_->SetScissorTest(false);
  1779. graphics_->Clear(CLEAR_STENCIL);
  1780. graphics_->SetStencilTest(false);
  1781. }
  1782. }
  1783. break;
  1784. }
  1785. }
  1786. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor, bool disableScissor)
  1787. {
  1788. VertexBuffer* instancingBuffer = 0;
  1789. if (renderer_->GetDynamicInstancing())
  1790. instancingBuffer = renderer_->instancingBuffer_;
  1791. if (disableScissor)
  1792. graphics_->SetScissorTest(false);
  1793. graphics_->SetStencilTest(false);
  1794. // Priority instanced
  1795. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1796. queue.priorityBatchGroups_.End(); ++i)
  1797. {
  1798. const BatchGroup& group = i->second_;
  1799. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1800. }
  1801. // Priority non-instanced
  1802. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1803. {
  1804. Batch* batch = *i;
  1805. batch->Draw(graphics_, shaderParameters_);
  1806. }
  1807. // Non-priority instanced
  1808. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1809. queue.batchGroups_.End(); ++i)
  1810. {
  1811. const BatchGroup& group = i->second_;
  1812. if ((useScissor) && (group.light_))
  1813. OptimizeLightByScissor(group.light_);
  1814. else
  1815. graphics_->SetScissorTest(false);
  1816. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1817. }
  1818. // Non-priority non-instanced
  1819. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1820. {
  1821. Batch* batch = *i;
  1822. // For the transparent queue, both priority and non-priority batches are copied here, so check the flag
  1823. if ((useScissor) && (batch->light_) && (!batch->hasPriority_))
  1824. OptimizeLightByScissor(batch->light_);
  1825. else
  1826. graphics_->SetScissorTest(false);
  1827. batch->Draw(graphics_, shaderParameters_);
  1828. }
  1829. }
  1830. void View::RenderForwardLightBatchQueue(const BatchQueue& queue, Light* light)
  1831. {
  1832. VertexBuffer* instancingBuffer = 0;
  1833. if (renderer_->GetDynamicInstancing())
  1834. instancingBuffer = renderer_->instancingBuffer_;
  1835. graphics_->SetScissorTest(false);
  1836. graphics_->SetStencilTest(false);
  1837. // Priority instanced
  1838. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1839. queue.priorityBatchGroups_.End(); ++i)
  1840. {
  1841. const BatchGroup& group = i->second_;
  1842. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1843. }
  1844. // Priority non-instanced
  1845. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1846. {
  1847. Batch* batch = *i;
  1848. batch->Draw(graphics_, shaderParameters_);
  1849. }
  1850. // All base passes have been drawn. Optimize at this point by both scissor and stencil
  1851. if (light)
  1852. {
  1853. OptimizeLightByScissor(light);
  1854. LightType type = light->GetLightType();
  1855. if ((type == LIGHT_SPLITPOINT) || (type == LIGHT_DIRECTIONAL))
  1856. DrawSplitLightToStencil(*camera_, light);
  1857. }
  1858. // Non-priority instanced
  1859. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1860. queue.batchGroups_.End(); ++i)
  1861. {
  1862. const BatchGroup& group = i->second_;
  1863. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1864. }
  1865. // Non-priority non-instanced
  1866. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1867. {
  1868. Batch* batch = *i;
  1869. batch->Draw(graphics_, shaderParameters_);
  1870. }
  1871. }
  1872. void View::RenderShadowMap(const LightBatchQueue& queue)
  1873. {
  1874. PROFILE(RenderShadowMap);
  1875. Texture2D* shadowMap = queue.light_->GetShadowMap();
  1876. graphics_->SetColorWrite(false);
  1877. graphics_->SetStencilTest(false);
  1878. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1879. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1880. graphics_->SetDepthStencil(shadowMap);
  1881. graphics_->Clear(CLEAR_DEPTH);
  1882. // Set shadow depth bias
  1883. BiasParameters parameters = queue.light_->GetShadowBias();
  1884. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1885. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1886. // However, do not do this for point lights
  1887. if (queue.light_->GetLightType() != LIGHT_SPLITPOINT)
  1888. {
  1889. float zoom = Min(queue.light_->GetShadowCamera()->GetZoom(),
  1890. (float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth());
  1891. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1892. graphics_->SetScissorTest(true, zoomRect, false);
  1893. }
  1894. else
  1895. graphics_->SetScissorTest(false);
  1896. // Draw instanced and non-instanced shadow casters
  1897. RenderBatchQueue(queue.shadowBatches_, false, false);
  1898. graphics_->SetColorWrite(true);
  1899. graphics_->SetDepthBias(0.0f, 0.0f);
  1900. }