Batch.cpp 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "Geometry.h"
  25. #include "Graphics.h"
  26. #include "GraphicsImpl.h"
  27. #include "Material.h"
  28. #include "Node.h"
  29. #include "Renderer.h"
  30. #include "Profiler.h"
  31. #include "Scene.h"
  32. #include "ShaderVariation.h"
  33. #include "Sort.h"
  34. #include "Technique.h"
  35. #include "Texture2D.h"
  36. #include "VertexBuffer.h"
  37. #include "View.h"
  38. #include "Zone.h"
  39. #include "DebugNew.h"
  40. namespace Urho3D
  41. {
  42. inline bool CompareBatchesState(Batch* lhs, Batch* rhs)
  43. {
  44. if (lhs->sortKey_ != rhs->sortKey_)
  45. return lhs->sortKey_ < rhs->sortKey_;
  46. else
  47. return lhs->distance_ < rhs->distance_;
  48. }
  49. inline bool CompareBatchesFrontToBack(Batch* lhs, Batch* rhs)
  50. {
  51. if (lhs->distance_ != rhs->distance_)
  52. return lhs->distance_ < rhs->distance_;
  53. else
  54. return lhs->sortKey_ < rhs->sortKey_;
  55. }
  56. inline bool CompareBatchesBackToFront(Batch* lhs, Batch* rhs)
  57. {
  58. if (lhs->distance_ != rhs->distance_)
  59. return lhs->distance_ > rhs->distance_;
  60. else
  61. return lhs->sortKey_ < rhs->sortKey_;
  62. }
  63. inline bool CompareInstancesFrontToBack(const InstanceData& lhs, const InstanceData& rhs)
  64. {
  65. return lhs.distance_ < rhs.distance_;
  66. }
  67. void CalculateShadowMatrix(Matrix4& dest, LightBatchQueue* queue, unsigned split, Renderer* renderer, const Vector3& translation)
  68. {
  69. Camera* shadowCamera = queue->shadowSplits_[split].shadowCamera_;
  70. const IntRect& viewport = queue->shadowSplits_[split].shadowViewport_;
  71. Matrix3x4 posAdjust(translation, Quaternion::IDENTITY, 1.0f);
  72. Matrix3x4 shadowView(shadowCamera->GetView());
  73. Matrix4 shadowProj(shadowCamera->GetProjection());
  74. Matrix4 texAdjust(Matrix4::IDENTITY);
  75. Texture2D* shadowMap = queue->shadowMap_;
  76. if (!shadowMap)
  77. return;
  78. float width = (float)shadowMap->GetWidth();
  79. float height = (float)shadowMap->GetHeight();
  80. Vector2 offset(
  81. (float)viewport.left_ / width,
  82. (float)viewport.top_ / height
  83. );
  84. Vector2 scale(
  85. 0.5f * (float)viewport.Width() / width,
  86. 0.5f * (float)viewport.Height() / height
  87. );
  88. #ifdef USE_OPENGL
  89. offset.x_ += scale.x_;
  90. offset.y_ += scale.y_;
  91. offset.y_ = 1.0f - offset.y_;
  92. // If using 4 shadow samples, offset the position diagonally by half pixel
  93. if (renderer->GetShadowQuality() & SHADOWQUALITY_HIGH_16BIT)
  94. {
  95. offset.x_ -= 0.5f / width;
  96. offset.y_ -= 0.5f / height;
  97. }
  98. texAdjust.SetTranslation(Vector3(offset.x_, offset.y_, 0.5f));
  99. texAdjust.SetScale(Vector3(scale.x_, scale.y_, 0.5f));
  100. #else
  101. offset.x_ += scale.x_ + 0.5f / width;
  102. offset.y_ += scale.y_ + 0.5f / height;
  103. if (renderer->GetShadowQuality() & SHADOWQUALITY_HIGH_16BIT)
  104. {
  105. offset.x_ -= 0.5f / width;
  106. offset.y_ -= 0.5f / height;
  107. }
  108. scale.y_ = -scale.y_;
  109. texAdjust.SetTranslation(Vector3(offset.x_, offset.y_, 0.0f));
  110. texAdjust.SetScale(Vector3(scale.x_, scale.y_, 1.0f));
  111. #endif
  112. dest = texAdjust * shadowProj * shadowView * posAdjust;
  113. }
  114. void CalculateSpotMatrix(Matrix4& dest, Light* light, const Vector3& translation)
  115. {
  116. Node* lightNode = light->GetNode();
  117. Matrix3x4 posAdjust(translation, Quaternion::IDENTITY, 1.0f);
  118. Matrix3x4 spotView = Matrix3x4(lightNode->GetWorldPosition(), lightNode->GetWorldRotation(), 1.0f).Inverse();
  119. Matrix4 spotProj(Matrix4::ZERO);
  120. Matrix4 texAdjust(Matrix4::IDENTITY);
  121. // Make the projected light slightly smaller than the shadow map to prevent light spill
  122. float h = 1.005f / tanf(light->GetFov() * M_DEGTORAD * 0.5f);
  123. float w = h / light->GetAspectRatio();
  124. spotProj.m00_ = w;
  125. spotProj.m11_ = h;
  126. spotProj.m22_ = 1.0f / Max(light->GetRange(), M_EPSILON);
  127. spotProj.m32_ = 1.0f;
  128. #ifdef USE_OPENGL
  129. texAdjust.SetTranslation(Vector3(0.5f, 0.5f, 0.5f));
  130. texAdjust.SetScale(Vector3(0.5f, -0.5f, 0.5f));
  131. #else
  132. texAdjust.SetTranslation(Vector3(0.5f, 0.5f, 0.0f));
  133. texAdjust.SetScale(Vector3(0.5f, -0.5f, 1.0f));
  134. #endif
  135. dest = texAdjust * spotProj * spotView * posAdjust;
  136. }
  137. void Batch::CalculateSortKey()
  138. {
  139. unsigned shaderID = ((*((unsigned*)&vertexShader_) / sizeof(ShaderVariation)) + (*((unsigned*)&pixelShader_) / sizeof(ShaderVariation))) & 0x3fff;
  140. if (!isBase_)
  141. shaderID |= 0x8000;
  142. if (pass_ && pass_->GetAlphaMask())
  143. shaderID |= 0x4000;
  144. unsigned lightQueueID = (*((unsigned*)&lightQueue_) / sizeof(LightBatchQueue)) & 0xffff;
  145. unsigned materialID = (*((unsigned*)&material_) / sizeof(Material)) & 0xffff;
  146. unsigned geometryID = (*((unsigned*)&geometry_) / sizeof(Geometry)) & 0xffff;
  147. sortKey_ = (((unsigned long long)shaderID) << 48) | (((unsigned long long)lightQueueID) << 32) |
  148. (((unsigned long long)materialID) << 16) | geometryID;
  149. }
  150. void Batch::Prepare(View* view, bool setModelTransform) const
  151. {
  152. if (!vertexShader_ || !pixelShader_)
  153. return;
  154. Graphics* graphics = view->GetGraphics();
  155. Renderer* renderer = view->GetRenderer();
  156. Node* cameraNode = camera_ ? camera_->GetNode() : 0;
  157. // Set pass / material-specific renderstates
  158. if (pass_ && material_)
  159. {
  160. bool isShadowPass = pass_->GetType() == PASS_SHADOW;
  161. graphics->SetBlendMode(pass_->GetBlendMode());
  162. renderer->SetCullMode(isShadowPass ? material_->GetShadowCullMode() : material_->GetCullMode(), camera_);
  163. if (!isShadowPass)
  164. {
  165. const BiasParameters& depthBias = material_->GetDepthBias();
  166. graphics->SetDepthBias(depthBias.constantBias_, depthBias.slopeScaledBias_);
  167. }
  168. graphics->SetDepthTest(pass_->GetDepthTestMode());
  169. graphics->SetDepthWrite(pass_->GetDepthWrite());
  170. }
  171. // Set shaders
  172. graphics->SetShaders(vertexShader_, pixelShader_);
  173. // Set global frame parameters
  174. if (graphics->NeedParameterUpdate(SP_FRAME, (void*)0))
  175. {
  176. Scene* scene = view->GetScene();
  177. if (scene)
  178. {
  179. float elapsedTime = scene->GetElapsedTime();
  180. graphics->SetShaderParameter(VSP_ELAPSEDTIME, elapsedTime);
  181. graphics->SetShaderParameter(PSP_ELAPSEDTIME, elapsedTime);
  182. }
  183. }
  184. // Set camera shader parameters
  185. unsigned cameraHash = overrideView_ ? (unsigned)(size_t)camera_ + 4 : (unsigned)(size_t)camera_;
  186. if (graphics->NeedParameterUpdate(SP_CAMERA, reinterpret_cast<void*>(cameraHash)))
  187. {
  188. // Calculate camera rotation just once
  189. Matrix3 cameraWorldRotation = cameraNode->GetWorldRotation().RotationMatrix();
  190. graphics->SetShaderParameter(VSP_CAMERAPOS, cameraNode->GetWorldPosition());
  191. graphics->SetShaderParameter(VSP_CAMERAROT, cameraWorldRotation);
  192. Vector4 depthMode = Vector4::ZERO;
  193. if (camera_->IsOrthographic())
  194. {
  195. depthMode.x_ = 1.0f;
  196. #ifdef USE_OPENGL
  197. depthMode.z_ = 0.5f;
  198. depthMode.w_ = 0.5f;
  199. #else
  200. depthMode.z_ = 1.0f;
  201. #endif
  202. }
  203. else
  204. depthMode.w_ = 1.0f / camera_->GetFarClip();
  205. graphics->SetShaderParameter(VSP_DEPTHMODE, depthMode);
  206. Vector3 nearVector, farVector;
  207. camera_->GetFrustumSize(nearVector, farVector);
  208. Vector4 viewportParams(farVector.x_, farVector.y_, farVector.z_, 0.0f);
  209. graphics->SetShaderParameter(VSP_FRUSTUMSIZE, viewportParams);
  210. Matrix4 projection = camera_->GetProjection();
  211. #ifdef USE_OPENGL
  212. // Add constant depth bias manually to the projection matrix due to glPolygonOffset() inconsistency
  213. float constantBias = 2.0f * graphics->GetDepthConstantBias();
  214. // On OpenGL ES slope-scaled bias can not be guaranteed to be available, and the shadow filtering is more coarse,
  215. // so use a higher constant bias
  216. #ifdef GL_ES_VERSION_2_0
  217. constantBias *= 1.5f;
  218. #endif
  219. projection.m22_ += projection.m32_ * constantBias;
  220. projection.m23_ += projection.m33_ * constantBias;
  221. #endif
  222. if (overrideView_)
  223. graphics->SetShaderParameter(VSP_VIEWPROJ, projection);
  224. else
  225. graphics->SetShaderParameter(VSP_VIEWPROJ, projection * camera_->GetView());
  226. graphics->SetShaderParameter(VSP_VIEWRIGHTVECTOR, cameraWorldRotation * Vector3::RIGHT);
  227. graphics->SetShaderParameter(VSP_VIEWUPVECTOR, cameraWorldRotation * Vector3::UP);
  228. }
  229. // Set viewport shader parameters
  230. IntVector2 rtSize = graphics->GetRenderTargetDimensions();
  231. IntRect viewport = graphics->GetViewport();
  232. unsigned viewportHash = (viewport.left_) | (viewport.top_ << 8) | (viewport.right_ << 16) | (viewport.bottom_ << 24);
  233. if (graphics->NeedParameterUpdate(SP_VIEWPORT, reinterpret_cast<void*>(viewportHash)))
  234. {
  235. float rtWidth = (float)rtSize.x_;
  236. float rtHeight = (float)rtSize.y_;
  237. float widthRange = 0.5f * viewport.Width() / rtWidth;
  238. float heightRange = 0.5f * viewport.Height() / rtHeight;
  239. #ifdef USE_OPENGL
  240. Vector4 bufferUVOffset(((float)viewport.left_) / rtWidth + widthRange,
  241. 1.0f - (((float)viewport.top_) / rtHeight + heightRange), widthRange, heightRange);
  242. #else
  243. Vector4 bufferUVOffset((0.5f + (float)viewport.left_) / rtWidth + widthRange,
  244. (0.5f + (float)viewport.top_) / rtHeight + heightRange, widthRange, heightRange);
  245. #endif
  246. graphics->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  247. float sizeX = 1.0f / rtWidth;
  248. float sizeY = 1.0f / rtHeight;
  249. graphics->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(sizeX, sizeY, 0.0f, 0.0f));
  250. }
  251. // Set model transform
  252. if (setModelTransform && graphics->NeedParameterUpdate(SP_OBJECTTRANSFORM, worldTransform_))
  253. graphics->SetShaderParameter(VSP_MODEL, *worldTransform_);
  254. // Set skinning transforms
  255. if (shaderData_ && shaderDataSize_ && graphics->NeedParameterUpdate(SP_OBJECTDATA, shaderData_))
  256. graphics->SetShaderParameter(VSP_SKINMATRICES, shaderData_, shaderDataSize_);
  257. // Set zone-related shader parameters
  258. BlendMode blend = graphics->GetBlendMode();
  259. Zone* fogColorZone = (blend == BLEND_ADD || blend == BLEND_ADDALPHA) ? renderer->GetDefaultZone() : zone_;
  260. unsigned zoneHash = (unsigned)(size_t)zone_ + (unsigned)(size_t)fogColorZone;
  261. if (zone_ && graphics->NeedParameterUpdate(SP_ZONE, reinterpret_cast<void*>(zoneHash)))
  262. {
  263. graphics->SetShaderParameter(VSP_AMBIENTSTARTCOLOR, zone_->GetAmbientStartColor());
  264. graphics->SetShaderParameter(VSP_AMBIENTENDCOLOR, zone_->GetAmbientEndColor().ToVector4() - zone_->GetAmbientStartColor().ToVector4());
  265. const BoundingBox& box = zone_->GetBoundingBox();
  266. Vector3 boxSize = box.Size();
  267. Matrix3x4 adjust(Matrix3x4::IDENTITY);
  268. adjust.SetScale(Vector3(1.0f / boxSize.x_, 1.0f / boxSize.y_, 1.0f / boxSize.z_));
  269. adjust.SetTranslation(Vector3(0.5f, 0.5f, 0.5f));
  270. Matrix3x4 zoneTransform = adjust * zone_->GetInverseWorldTransform();
  271. graphics->SetShaderParameter(VSP_ZONE, zoneTransform);
  272. graphics->SetShaderParameter(PSP_AMBIENTCOLOR, zone_->GetAmbientColor());
  273. // If the pass is additive, override fog color to black so that shaders do not need a separate additive path
  274. graphics->SetShaderParameter(PSP_FOGCOLOR, fogColorZone->GetFogColor());
  275. float farClip = camera_->GetFarClip();
  276. float fogStart = Min(zone_->GetFogStart(), farClip);
  277. float fogEnd = Min(zone_->GetFogEnd(), farClip);
  278. if (fogStart >= fogEnd * (1.0f - M_LARGE_EPSILON))
  279. fogStart = fogEnd * (1.0f - M_LARGE_EPSILON);
  280. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  281. Vector4 fogParams(fogEnd / farClip, farClip / fogRange, 0.0f, 0.0f);
  282. graphics->SetShaderParameter(PSP_FOGPARAMS, fogParams);
  283. }
  284. // Set light-related shader parameters
  285. Light* light = 0;
  286. Texture2D* shadowMap = 0;
  287. if (lightQueue_)
  288. {
  289. light = lightQueue_->light_;
  290. shadowMap = lightQueue_->shadowMap_;
  291. if (graphics->NeedParameterUpdate(SP_VERTEXLIGHTS, lightQueue_) && graphics->HasShaderParameter(VS, VSP_VERTEXLIGHTS))
  292. {
  293. Vector4 vertexLights[MAX_VERTEX_LIGHTS * 3];
  294. const PODVector<Light*>& lights = lightQueue_->vertexLights_;
  295. for (unsigned i = 0; i < lights.Size(); ++i)
  296. {
  297. Light* vertexLight = lights[i];
  298. Node* vertexLightNode = vertexLight->GetNode();
  299. LightType type = vertexLight->GetLightType();
  300. // Attenuation
  301. float invRange, cutoff, invCutoff;
  302. if (type == LIGHT_DIRECTIONAL)
  303. invRange = 0.0f;
  304. else
  305. invRange = 1.0f / Max(vertexLight->GetRange(), M_EPSILON);
  306. if (type == LIGHT_SPOT)
  307. {
  308. cutoff = Cos(vertexLight->GetFov() * 0.5f);
  309. invCutoff = 1.0f / (1.0f - cutoff);
  310. }
  311. else
  312. {
  313. cutoff = -1.0f;
  314. invCutoff = 1.0f;
  315. }
  316. // Color
  317. float fade = 1.0f;
  318. float fadeEnd = vertexLight->GetDrawDistance();
  319. float fadeStart = vertexLight->GetFadeDistance();
  320. // Do fade calculation for light if both fade & draw distance defined
  321. if (vertexLight->GetLightType() != LIGHT_DIRECTIONAL && fadeEnd > 0.0f && fadeStart > 0.0f && fadeStart < fadeEnd)
  322. fade = Min(1.0f - (vertexLight->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 1.0f);
  323. Color color = vertexLight->GetColor() * fade;
  324. vertexLights[i * 3] = Vector4(color.r_, color.g_, color.b_, invRange);
  325. // Direction
  326. vertexLights[i * 3 + 1] = Vector4(-(vertexLightNode->GetWorldDirection()), cutoff);
  327. // Position
  328. vertexLights[i * 3 + 2] = Vector4(vertexLightNode->GetWorldPosition(), invCutoff);
  329. }
  330. if (lights.Size())
  331. graphics->SetShaderParameter(VSP_VERTEXLIGHTS, vertexLights[0].Data(), lights.Size() * 3 * 4);
  332. }
  333. }
  334. if (light && graphics->NeedParameterUpdate(SP_LIGHT, light))
  335. {
  336. Node* lightNode = light->GetNode();
  337. Matrix3 lightWorldRotation = lightNode->GetWorldRotation().RotationMatrix();
  338. graphics->SetShaderParameter(VSP_LIGHTDIR, lightWorldRotation * Vector3::BACK);
  339. float atten = 1.0f / Max(light->GetRange(), M_EPSILON);
  340. graphics->SetShaderParameter(VSP_LIGHTPOS, Vector4(lightNode->GetWorldPosition(), atten));
  341. if (graphics->HasShaderParameter(VS, VSP_LIGHTMATRICES))
  342. {
  343. switch (light->GetLightType())
  344. {
  345. case LIGHT_DIRECTIONAL:
  346. {
  347. Matrix4 shadowMatrices[MAX_CASCADE_SPLITS];
  348. unsigned numSplits = lightQueue_->shadowSplits_.Size();
  349. for (unsigned i = 0; i < numSplits; ++i)
  350. CalculateShadowMatrix(shadowMatrices[i], lightQueue_, i, renderer, Vector3::ZERO);
  351. graphics->SetShaderParameter(VSP_LIGHTMATRICES, shadowMatrices[0].Data(), 16 * numSplits);
  352. }
  353. break;
  354. case LIGHT_SPOT:
  355. {
  356. Matrix4 shadowMatrices[2];
  357. CalculateSpotMatrix(shadowMatrices[0], light, Vector3::ZERO);
  358. bool isShadowed = shadowMap && graphics->HasTextureUnit(TU_SHADOWMAP);
  359. if (isShadowed)
  360. CalculateShadowMatrix(shadowMatrices[1], lightQueue_, 0, renderer, Vector3::ZERO);
  361. graphics->SetShaderParameter(VSP_LIGHTMATRICES, shadowMatrices[0].Data(), isShadowed ? 32 : 16);
  362. }
  363. break;
  364. case LIGHT_POINT:
  365. {
  366. Matrix4 lightVecRot(lightNode->GetWorldRotation().RotationMatrix());
  367. // HLSL compiler will pack the parameters as if the matrix is only 3x4, so must be careful to not overwrite
  368. // the next parameter
  369. #ifdef USE_OPENGL
  370. graphics->SetShaderParameter(VSP_LIGHTMATRICES, lightVecRot.Data(), 16);
  371. #else
  372. graphics->SetShaderParameter(VSP_LIGHTMATRICES, lightVecRot.Data(), 12);
  373. #endif
  374. }
  375. break;
  376. }
  377. }
  378. float fade = 1.0f;
  379. float fadeEnd = light->GetDrawDistance();
  380. float fadeStart = light->GetFadeDistance();
  381. // Do fade calculation for light if both fade & draw distance defined
  382. if (light->GetLightType() != LIGHT_DIRECTIONAL && fadeEnd > 0.0f && fadeStart > 0.0f && fadeStart < fadeEnd)
  383. fade = Min(1.0f - (light->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 1.0f);
  384. graphics->SetShaderParameter(PSP_LIGHTCOLOR, Color(light->GetColor(), light->GetSpecularIntensity()) * fade);
  385. graphics->SetShaderParameter(PSP_LIGHTDIR, lightWorldRotation * Vector3::BACK);
  386. graphics->SetShaderParameter(PSP_LIGHTPOS, Vector4(lightNode->GetWorldPosition() - cameraNode->GetWorldPosition(), atten));
  387. if (graphics->HasShaderParameter(PS, PSP_LIGHTMATRICES))
  388. {
  389. switch (light->GetLightType())
  390. {
  391. case LIGHT_DIRECTIONAL:
  392. {
  393. Matrix4 shadowMatrices[MAX_CASCADE_SPLITS];
  394. unsigned numSplits = lightQueue_->shadowSplits_.Size();
  395. for (unsigned i = 0; i < numSplits; ++i)
  396. CalculateShadowMatrix(shadowMatrices[i], lightQueue_, i, renderer, cameraNode->GetWorldPosition());
  397. graphics->SetShaderParameter(PSP_LIGHTMATRICES, shadowMatrices[0].Data(), 16 * numSplits);
  398. }
  399. break;
  400. case LIGHT_SPOT:
  401. {
  402. Matrix4 shadowMatrices[2];
  403. CalculateSpotMatrix(shadowMatrices[0], light, cameraNode->GetWorldPosition());
  404. bool isShadowed = lightQueue_->shadowMap_ != 0;
  405. if (isShadowed)
  406. CalculateShadowMatrix(shadowMatrices[1], lightQueue_, 0, renderer, cameraNode->GetWorldPosition());
  407. graphics->SetShaderParameter(PSP_LIGHTMATRICES, shadowMatrices[0].Data(), isShadowed ? 32 : 16);
  408. }
  409. break;
  410. case LIGHT_POINT:
  411. {
  412. Matrix4 lightVecRot(lightNode->GetWorldRotation().RotationMatrix());
  413. // HLSL compiler will pack the parameters as if the matrix is only 3x4, so must be careful to not overwrite
  414. // the next parameter
  415. #ifdef USE_OPENGL
  416. graphics->SetShaderParameter(PSP_LIGHTMATRICES, lightVecRot.Data(), 16);
  417. #else
  418. graphics->SetShaderParameter(PSP_LIGHTMATRICES, lightVecRot.Data(), 12);
  419. #endif
  420. }
  421. break;
  422. }
  423. }
  424. // Set shadow mapping shader parameters
  425. if (shadowMap)
  426. {
  427. {
  428. unsigned faceWidth = shadowMap->GetWidth() / 2;
  429. unsigned faceHeight = shadowMap->GetHeight() / 3;
  430. float width = (float)shadowMap->GetWidth();
  431. float height = (float)shadowMap->GetHeight();
  432. #ifdef USE_OPENGL
  433. float mulX = (float)(faceWidth - 3) / width;
  434. float mulY = (float)(faceHeight - 3) / height;
  435. float addX = 1.5f / width;
  436. float addY = 1.5f / height;
  437. #else
  438. float mulX = (float)(faceWidth - 4) / width;
  439. float mulY = (float)(faceHeight - 4) / height;
  440. float addX = 2.5f / width;
  441. float addY = 2.5f / height;
  442. #endif
  443. // If using 4 shadow samples, offset the position diagonally by half pixel
  444. if (renderer->GetShadowQuality() & SHADOWQUALITY_HIGH_16BIT)
  445. {
  446. addX -= 0.5f / width;
  447. addY -= 0.5f / height;
  448. }
  449. graphics->SetShaderParameter(PSP_SHADOWCUBEADJUST, Vector4(mulX, mulY, addX, addY));
  450. }
  451. {
  452. Camera* shadowCamera = lightQueue_->shadowSplits_[0].shadowCamera_;
  453. float nearClip = shadowCamera->GetNearClip();
  454. float farClip = shadowCamera->GetFarClip();
  455. float q = farClip / (farClip - nearClip);
  456. float r = -q * nearClip;
  457. const CascadeParameters& parameters = light->GetShadowCascade();
  458. float viewFarClip = camera_->GetFarClip();
  459. float shadowRange = parameters.GetShadowRange();
  460. float fadeStart = parameters.fadeStart_ * shadowRange / viewFarClip;
  461. float fadeEnd = shadowRange / viewFarClip;
  462. float fadeRange = fadeEnd - fadeStart;
  463. graphics->SetShaderParameter(PSP_SHADOWDEPTHFADE, Vector4(q, r, fadeStart, 1.0f / fadeRange));
  464. }
  465. {
  466. float intensity = light->GetShadowIntensity();
  467. float fadeStart = light->GetShadowFadeDistance();
  468. float fadeEnd = light->GetShadowDistance();
  469. if (fadeStart > 0.0f && fadeEnd > 0.0f && fadeEnd > fadeStart)
  470. intensity = Lerp(intensity, 1.0f, Clamp((light->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 0.0f, 1.0f));
  471. float pcfValues = (1.0f - intensity);
  472. float samples = renderer->GetShadowQuality() >= SHADOWQUALITY_HIGH_16BIT ? 4.0f : 1.0f;
  473. graphics->SetShaderParameter(PSP_SHADOWINTENSITY, Vector4(pcfValues / samples, intensity, 0.0f, 0.0f));
  474. }
  475. float sizeX = 1.0f / (float)shadowMap->GetWidth();
  476. float sizeY = 1.0f / (float)shadowMap->GetHeight();
  477. graphics->SetShaderParameter(PSP_SHADOWMAPINVSIZE, Vector4(sizeX, sizeY, 0.0f, 0.0f));
  478. Vector4 lightSplits(M_LARGE_VALUE, M_LARGE_VALUE, M_LARGE_VALUE, M_LARGE_VALUE);
  479. if (lightQueue_->shadowSplits_.Size() > 1)
  480. lightSplits.x_ = lightQueue_->shadowSplits_[0].farSplit_ / camera_->GetFarClip();
  481. if (lightQueue_->shadowSplits_.Size() > 2)
  482. lightSplits.y_ = lightQueue_->shadowSplits_[1].farSplit_ / camera_->GetFarClip();
  483. if (lightQueue_->shadowSplits_.Size() > 3)
  484. lightSplits.z_ = lightQueue_->shadowSplits_[2].farSplit_ / camera_->GetFarClip();
  485. graphics->SetShaderParameter(PSP_SHADOWSPLITS, lightSplits);
  486. }
  487. }
  488. // Set material-specific shader parameters and textures
  489. if (material_)
  490. {
  491. if (graphics->NeedParameterUpdate(SP_MATERIAL, material_))
  492. {
  493. const HashMap<StringHash, MaterialShaderParameter>& parameters = material_->GetShaderParameters();
  494. for (HashMap<StringHash, MaterialShaderParameter>::ConstIterator i = parameters.Begin(); i != parameters.End(); ++i)
  495. graphics->SetShaderParameter(i->first_, i->second_.value_);
  496. }
  497. const SharedPtr<Texture>* textures = material_->GetTextures();
  498. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  499. {
  500. TextureUnit unit = (TextureUnit)i;
  501. if (graphics->HasTextureUnit(unit))
  502. graphics->SetTexture(i, textures[i]);
  503. }
  504. }
  505. // Set light-related textures
  506. if (light)
  507. {
  508. if (shadowMap && graphics->HasTextureUnit(TU_SHADOWMAP))
  509. graphics->SetTexture(TU_SHADOWMAP, shadowMap);
  510. if (graphics->HasTextureUnit(TU_LIGHTRAMP))
  511. {
  512. Texture* rampTexture = light->GetRampTexture();
  513. if (!rampTexture)
  514. rampTexture = renderer->GetDefaultLightRamp();
  515. graphics->SetTexture(TU_LIGHTRAMP, rampTexture);
  516. }
  517. if (graphics->HasTextureUnit(TU_LIGHTSHAPE))
  518. {
  519. Texture* shapeTexture = light->GetShapeTexture();
  520. if (!shapeTexture && light->GetLightType() == LIGHT_SPOT)
  521. shapeTexture = renderer->GetDefaultLightSpot();
  522. graphics->SetTexture(TU_LIGHTSHAPE, shapeTexture);
  523. }
  524. }
  525. }
  526. void Batch::Draw(View* view) const
  527. {
  528. if (!geometry_->IsEmpty())
  529. {
  530. Prepare(view);
  531. geometry_->Draw(view->GetGraphics());
  532. }
  533. }
  534. void BatchGroup::SetTransforms(void* lockedData, unsigned& freeIndex)
  535. {
  536. // Do not use up buffer space if not going to draw as instanced
  537. if (geometryType_ != GEOM_INSTANCED)
  538. return;
  539. startIndex_ = freeIndex;
  540. Matrix3x4* dest = (Matrix3x4*)lockedData;
  541. dest += freeIndex;
  542. for (unsigned i = 0; i < instances_.Size(); ++i)
  543. *dest++ = *instances_[i].worldTransform_;
  544. freeIndex += instances_.Size();
  545. }
  546. void BatchGroup::Draw(View* view) const
  547. {
  548. Graphics* graphics = view->GetGraphics();
  549. Renderer* renderer = view->GetRenderer();
  550. if (instances_.Size() && !geometry_->IsEmpty())
  551. {
  552. // Draw as individual objects if instancing not supported
  553. VertexBuffer* instanceBuffer = renderer->GetInstancingBuffer();
  554. if (!instanceBuffer || geometryType_ != GEOM_INSTANCED)
  555. {
  556. Batch::Prepare(view, false);
  557. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  558. graphics->SetVertexBuffers(geometry_->GetVertexBuffers(), geometry_->GetVertexElementMasks());
  559. for (unsigned i = 0; i < instances_.Size(); ++i)
  560. {
  561. if (graphics->NeedParameterUpdate(SP_OBJECTTRANSFORM, instances_[i].worldTransform_))
  562. graphics->SetShaderParameter(VSP_MODEL, *instances_[i].worldTransform_);
  563. graphics->Draw(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(), geometry_->GetIndexCount(),
  564. geometry_->GetVertexStart(), geometry_->GetVertexCount());
  565. }
  566. }
  567. else
  568. {
  569. Batch::Prepare(view, false);
  570. // Get the geometry vertex buffers, then add the instancing stream buffer
  571. // Hack: use a const_cast to avoid dynamic allocation of new temp vectors
  572. Vector<SharedPtr<VertexBuffer> >& vertexBuffers = const_cast<Vector<SharedPtr<VertexBuffer> >&>
  573. (geometry_->GetVertexBuffers());
  574. PODVector<unsigned>& elementMasks = const_cast<PODVector<unsigned>&>(geometry_->GetVertexElementMasks());
  575. vertexBuffers.Push(SharedPtr<VertexBuffer>(instanceBuffer));
  576. elementMasks.Push(instanceBuffer->GetElementMask());
  577. // No stream offset support, instancing buffer not pre-filled with transforms: have to fill now
  578. if (startIndex_ == M_MAX_UNSIGNED)
  579. {
  580. unsigned startIndex = 0;
  581. while (startIndex < instances_.Size())
  582. {
  583. unsigned instances = instances_.Size() - startIndex;
  584. if (instances > instanceBuffer->GetVertexCount())
  585. instances = instanceBuffer->GetVertexCount();
  586. // Copy the transforms
  587. Matrix3x4* dest = (Matrix3x4*)instanceBuffer->Lock(0, instances, true);
  588. if (dest)
  589. {
  590. for (unsigned i = 0; i < instances; ++i)
  591. dest[i] = *instances_[i + startIndex].worldTransform_;
  592. instanceBuffer->Unlock();
  593. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  594. graphics->SetVertexBuffers(vertexBuffers, elementMasks);
  595. graphics->DrawInstanced(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(),
  596. geometry_->GetIndexCount(), geometry_->GetVertexStart(), geometry_->GetVertexCount(), instances);
  597. }
  598. startIndex += instances;
  599. }
  600. }
  601. // Stream offset supported, and instancing buffer has been already filled, so just draw
  602. else
  603. {
  604. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  605. graphics->SetVertexBuffers(vertexBuffers, elementMasks, startIndex_);
  606. graphics->DrawInstanced(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(), geometry_->GetIndexCount(),
  607. geometry_->GetVertexStart(), geometry_->GetVertexCount(), instances_.Size());
  608. }
  609. // Remove the instancing buffer & element mask now
  610. vertexBuffers.Pop();
  611. elementMasks.Pop();
  612. }
  613. }
  614. }
  615. unsigned BatchGroupKey::ToHash() const
  616. {
  617. return ((unsigned)(size_t)zone_) / sizeof(Zone) +
  618. ((unsigned)(size_t)lightQueue_) / sizeof(LightBatchQueue) +
  619. ((unsigned)(size_t)pass_) / sizeof(Pass) +
  620. ((unsigned)(size_t)material_) / sizeof(Material) +
  621. ((unsigned)(size_t)geometry_) / sizeof(Geometry);
  622. }
  623. void BatchQueue::Clear(int maxSortedInstances)
  624. {
  625. batches_.Clear();
  626. sortedBaseBatches_.Clear();
  627. sortedBatches_.Clear();
  628. baseBatchGroups_.Clear();
  629. batchGroups_.Clear();
  630. maxSortedInstances_ = maxSortedInstances;
  631. }
  632. void BatchQueue::SortBackToFront()
  633. {
  634. sortedBaseBatches_.Clear();
  635. sortedBatches_.Resize(batches_.Size());
  636. for (unsigned i = 0; i < batches_.Size(); ++i)
  637. sortedBatches_[i] = &batches_[i];
  638. Sort(sortedBatches_.Begin(), sortedBatches_.End(), CompareBatchesBackToFront);
  639. // Do not actually sort batch groups, just list them
  640. sortedBaseBatchGroups_.Resize(baseBatchGroups_.Size());
  641. sortedBatchGroups_.Resize(batchGroups_.Size());
  642. unsigned index = 0;
  643. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = baseBatchGroups_.Begin(); i != baseBatchGroups_.End(); ++i)
  644. sortedBaseBatchGroups_[index++] = &i->second_;
  645. index = 0;
  646. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  647. sortedBatchGroups_[index++] = &i->second_;
  648. }
  649. void BatchQueue::SortFrontToBack()
  650. {
  651. sortedBaseBatches_.Clear();
  652. sortedBatches_.Clear();
  653. // Need to divide into base and non-base batches here to ensure proper order in relation to grouped batches
  654. for (unsigned i = 0; i < batches_.Size(); ++i)
  655. {
  656. if (batches_[i].isBase_)
  657. sortedBaseBatches_.Push(&batches_[i]);
  658. else
  659. sortedBatches_.Push(&batches_[i]);
  660. }
  661. SortFrontToBack2Pass(sortedBaseBatches_);
  662. SortFrontToBack2Pass(sortedBatches_);
  663. // Sort each group front to back
  664. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = baseBatchGroups_.Begin(); i != baseBatchGroups_.End(); ++i)
  665. {
  666. if (i->second_.instances_.Size() <= maxSortedInstances_)
  667. {
  668. Sort(i->second_.instances_.Begin(), i->second_.instances_.End(), CompareInstancesFrontToBack);
  669. if (i->second_.instances_.Size())
  670. i->second_.distance_ = i->second_.instances_[0].distance_;
  671. }
  672. else
  673. {
  674. float minDistance = M_INFINITY;
  675. for (PODVector<InstanceData>::ConstIterator j = i->second_.instances_.Begin(); j != i->second_.instances_.End(); ++j)
  676. minDistance = Min(minDistance, j->distance_);
  677. i->second_.distance_ = minDistance;
  678. }
  679. }
  680. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  681. {
  682. if (i->second_.instances_.Size() <= maxSortedInstances_)
  683. {
  684. Sort(i->second_.instances_.Begin(), i->second_.instances_.End(), CompareInstancesFrontToBack);
  685. if (i->second_.instances_.Size())
  686. i->second_.distance_ = i->second_.instances_[0].distance_;
  687. }
  688. else
  689. {
  690. float minDistance = M_INFINITY;
  691. for (PODVector<InstanceData>::ConstIterator j = i->second_.instances_.Begin(); j != i->second_.instances_.End(); ++j)
  692. minDistance = Min(minDistance, j->distance_);
  693. i->second_.distance_ = minDistance;
  694. }
  695. }
  696. sortedBaseBatchGroups_.Resize(baseBatchGroups_.Size());
  697. sortedBatchGroups_.Resize(batchGroups_.Size());
  698. unsigned index = 0;
  699. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = baseBatchGroups_.Begin(); i != baseBatchGroups_.End(); ++i)
  700. sortedBaseBatchGroups_[index++] = &i->second_;
  701. index = 0;
  702. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  703. sortedBatchGroups_[index++] = &i->second_;
  704. SortFrontToBack2Pass(reinterpret_cast<PODVector<Batch*>& >(sortedBaseBatchGroups_));
  705. SortFrontToBack2Pass(reinterpret_cast<PODVector<Batch*>& >(sortedBatchGroups_));
  706. }
  707. void BatchQueue::SortFrontToBack2Pass(PODVector<Batch*>& batches)
  708. {
  709. // Mobile devices likely use a tiled deferred approach, with which front-to-back sorting is irrelevant. The 2-pass
  710. // method is also time consuming, so just sort with state having priority
  711. #ifdef GL_ES_VERSION_2_0
  712. Sort(batches.Begin(), batches.End(), CompareBatchesState);
  713. #else
  714. // For desktop, first sort by distance and remap shader/material/geometry IDs in the sort key
  715. Sort(batches.Begin(), batches.End(), CompareBatchesFrontToBack);
  716. unsigned freeShaderID = 0;
  717. unsigned short freeMaterialID = 0;
  718. unsigned short freeGeometryID = 0;
  719. for (PODVector<Batch*>::Iterator i = batches.Begin(); i != batches.End(); ++i)
  720. {
  721. Batch* batch = *i;
  722. unsigned shaderID = (batch->sortKey_ >> 32);
  723. HashMap<unsigned, unsigned>::ConstIterator j = shaderRemapping_.Find(shaderID);
  724. if (j != shaderRemapping_.End())
  725. shaderID = j->second_;
  726. else
  727. {
  728. shaderID = shaderRemapping_[shaderID] = freeShaderID | (shaderID & 0xc0000000);
  729. ++freeShaderID;
  730. }
  731. unsigned short materialID = (unsigned short)(batch->sortKey_ & 0xffff0000);
  732. HashMap<unsigned short, unsigned short>::ConstIterator k = materialRemapping_.Find(materialID);
  733. if (k != materialRemapping_.End())
  734. materialID = k->second_;
  735. else
  736. {
  737. materialID = materialRemapping_[materialID] = freeMaterialID;
  738. ++freeMaterialID;
  739. }
  740. unsigned short geometryID = (unsigned short)(batch->sortKey_ & 0xffff);
  741. HashMap<unsigned short, unsigned short>::ConstIterator l = geometryRemapping_.Find(geometryID);
  742. if (l != geometryRemapping_.End())
  743. geometryID = l->second_;
  744. else
  745. {
  746. geometryID = geometryRemapping_[geometryID] = freeGeometryID;
  747. ++freeGeometryID;
  748. }
  749. batch->sortKey_ = (((unsigned long long)shaderID) << 32) || (((unsigned long long)materialID) << 16) | geometryID;
  750. }
  751. shaderRemapping_.Clear();
  752. materialRemapping_.Clear();
  753. geometryRemapping_.Clear();
  754. // Finally sort again with the rewritten ID's
  755. Sort(batches.Begin(), batches.End(), CompareBatchesState);
  756. #endif
  757. }
  758. void BatchQueue::SetTransforms(void* lockedData, unsigned& freeIndex)
  759. {
  760. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = baseBatchGroups_.Begin(); i != baseBatchGroups_.End(); ++i)
  761. i->second_.SetTransforms(lockedData, freeIndex);
  762. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  763. i->second_.SetTransforms(lockedData, freeIndex);
  764. }
  765. void BatchQueue::Draw(View* view, bool useScissor, bool markToStencil) const
  766. {
  767. Graphics* graphics = view->GetGraphics();
  768. Renderer* renderer = view->GetRenderer();
  769. graphics->SetScissorTest(false);
  770. // During G-buffer rendering, mark opaque pixels to stencil buffer
  771. if (!markToStencil)
  772. graphics->SetStencilTest(false);
  773. // Base instanced
  774. for (PODVector<BatchGroup*>::ConstIterator i = sortedBaseBatchGroups_.Begin(); i != sortedBaseBatchGroups_.End(); ++i)
  775. {
  776. BatchGroup* group = *i;
  777. if (markToStencil)
  778. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  779. group->Draw(view);
  780. }
  781. // Base non-instanced
  782. for (PODVector<Batch*>::ConstIterator i = sortedBaseBatches_.Begin(); i != sortedBaseBatches_.End(); ++i)
  783. {
  784. Batch* batch = *i;
  785. if (markToStencil)
  786. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  787. batch->Draw(view);
  788. }
  789. // Non-base instanced
  790. for (PODVector<BatchGroup*>::ConstIterator i = sortedBatchGroups_.Begin(); i != sortedBatchGroups_.End(); ++i)
  791. {
  792. BatchGroup* group = *i;
  793. if (useScissor && group->lightQueue_)
  794. renderer->OptimizeLightByScissor(group->lightQueue_->light_, group->camera_);
  795. if (markToStencil)
  796. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  797. group->Draw(view);
  798. }
  799. // Non-base non-instanced
  800. for (PODVector<Batch*>::ConstIterator i = sortedBatches_.Begin(); i != sortedBatches_.End(); ++i)
  801. {
  802. Batch* batch = *i;
  803. if (useScissor)
  804. {
  805. if (!batch->isBase_ && batch->lightQueue_)
  806. renderer->OptimizeLightByScissor(batch->lightQueue_->light_, batch->camera_);
  807. else
  808. graphics->SetScissorTest(false);
  809. }
  810. if (markToStencil)
  811. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  812. batch->Draw(view);
  813. }
  814. }
  815. void BatchQueue::Draw(Light* light, View* view) const
  816. {
  817. Graphics* graphics = view->GetGraphics();
  818. Renderer* renderer = view->GetRenderer();
  819. graphics->SetScissorTest(false);
  820. graphics->SetStencilTest(false);
  821. // Base instanced
  822. for (PODVector<BatchGroup*>::ConstIterator i = sortedBaseBatchGroups_.Begin(); i != sortedBaseBatchGroups_.End(); ++i)
  823. {
  824. BatchGroup* group = *i;
  825. group->Draw(view);
  826. }
  827. // Base non-instanced
  828. for (PODVector<Batch*>::ConstIterator i = sortedBaseBatches_.Begin(); i != sortedBaseBatches_.End(); ++i)
  829. {
  830. Batch* batch = *i;
  831. batch->Draw(view);
  832. }
  833. // All base passes have been drawn. Optimize at this point by both stencil volume and scissor
  834. bool optimized = false;
  835. // Non-base instanced
  836. for (PODVector<BatchGroup*>::ConstIterator i = sortedBatchGroups_.Begin(); i != sortedBatchGroups_.End(); ++i)
  837. {
  838. BatchGroup* group = *i;
  839. if (!optimized)
  840. {
  841. renderer->OptimizeLightByStencil(light, group->camera_);
  842. renderer->OptimizeLightByScissor(light, group->camera_);
  843. optimized = true;
  844. }
  845. group->Draw(view);
  846. }
  847. // Non-base non-instanced
  848. for (PODVector<Batch*>::ConstIterator i = sortedBatches_.Begin(); i != sortedBatches_.End(); ++i)
  849. {
  850. Batch* batch = *i;
  851. if (!optimized)
  852. {
  853. renderer->OptimizeLightByStencil(light, batch->camera_);
  854. renderer->OptimizeLightByScissor(light, batch->camera_);
  855. optimized = true;
  856. }
  857. batch->Draw(view);
  858. }
  859. }
  860. unsigned BatchQueue::GetNumInstances() const
  861. {
  862. unsigned total = 0;
  863. for (HashMap<BatchGroupKey, BatchGroup>::ConstIterator i = baseBatchGroups_.Begin(); i != baseBatchGroups_.End(); ++i)
  864. {
  865. if (i->second_.geometryType_ == GEOM_INSTANCED)
  866. total += i->second_.instances_.Size();
  867. }
  868. for (HashMap<BatchGroupKey, BatchGroup>::ConstIterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  869. {
  870. if (i->second_.geometryType_ == GEOM_INSTANCED)
  871. total += i->second_.instances_.Size();
  872. }
  873. return total;
  874. }
  875. }