Light.cpp 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "Context.h"
  25. #include "DebugRenderer.h"
  26. #include "Light.h"
  27. #include "Node.h"
  28. #include "OctreeQuery.h"
  29. #include "Profiler.h"
  30. #include "ResourceCache.h"
  31. #include "Texture2D.h"
  32. #include "TextureCube.h"
  33. #include "DebugNew.h"
  34. namespace Urho3D
  35. {
  36. extern const char* SCENE_CATEGORY;
  37. static const LightType DEFAULT_LIGHTTYPE = LIGHT_POINT;
  38. static const float DEFAULT_RANGE = 10.0f;
  39. static const float DEFAULT_FOV = 30.0f;
  40. static const float DEFAULT_SPECULARINTENSITY = 1.0f;
  41. static const float DEFAULT_CONSTANTBIAS = 0.0001f;
  42. static const float DEFAULT_SLOPESCALEDBIAS = 0.5f;
  43. static const float DEFAULT_BIASAUTOADJUST = 1.0f;
  44. static const float DEFAULT_SHADOWFADESTART = 0.8f;
  45. static const float DEFAULT_SHADOWQUANTIZE = 0.5f;
  46. static const float DEFAULT_SHADOWMINVIEW = 3.0f;
  47. static const float DEFAULT_SHADOWNEARFARRATIO = 0.002f;
  48. static const float DEFAULT_SHADOWSPLIT = 1000.0f;
  49. static const char* typeNames[] =
  50. {
  51. "Directional",
  52. "Spot",
  53. "Point",
  54. 0
  55. };
  56. void BiasParameters::Validate()
  57. {
  58. constantBias_ = Clamp(constantBias_, -1.0f, 1.0f);
  59. slopeScaledBias_ = Clamp(slopeScaledBias_, -16.0f, 16.0f);
  60. }
  61. void CascadeParameters::Validate()
  62. {
  63. for (unsigned i = 0; i < MAX_CASCADE_SPLITS; ++i)
  64. splits_[i] = Max(splits_[i], 0.0f);
  65. fadeStart_ = Clamp(fadeStart_, M_EPSILON, 1.0f);
  66. }
  67. void FocusParameters::Validate()
  68. {
  69. quantize_ = Max(quantize_, SHADOW_MIN_QUANTIZE);
  70. minView_ = Max(minView_, SHADOW_MIN_VIEW);
  71. }
  72. template<> LightType Variant::Get<LightType>() const
  73. {
  74. return (LightType)GetInt();
  75. }
  76. Light::Light(Context* context) :
  77. Drawable(context, DRAWABLE_LIGHT),
  78. lightType_(DEFAULT_LIGHTTYPE),
  79. shadowBias_(BiasParameters(DEFAULT_CONSTANTBIAS, DEFAULT_SLOPESCALEDBIAS)),
  80. shadowCascade_(CascadeParameters(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f, DEFAULT_SHADOWFADESTART)),
  81. shadowFocus_(FocusParameters(true, true, true, DEFAULT_SHADOWQUANTIZE, DEFAULT_SHADOWMINVIEW)),
  82. lightQueue_(0),
  83. specularIntensity_(DEFAULT_SPECULARINTENSITY),
  84. range_(DEFAULT_RANGE),
  85. fov_(DEFAULT_FOV),
  86. aspectRatio_(1.0f),
  87. fadeDistance_(0.0f),
  88. shadowFadeDistance_(0.0f),
  89. shadowIntensity_(0.0f),
  90. shadowResolution_(1.0f),
  91. shadowNearFarRatio_(DEFAULT_SHADOWNEARFARRATIO),
  92. perVertex_(false)
  93. {
  94. }
  95. Light::~Light()
  96. {
  97. }
  98. void Light::RegisterObject(Context* context)
  99. {
  100. context->RegisterFactory<Light>(SCENE_CATEGORY);
  101. ACCESSOR_ATTRIBUTE(Light, VAR_BOOL, "Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT);
  102. ENUM_ACCESSOR_ATTRIBUTE(Light, "Light Type", GetLightType, SetLightType, LightType, typeNames, DEFAULT_LIGHTTYPE, AM_DEFAULT);
  103. REF_ACCESSOR_ATTRIBUTE(Light, VAR_COLOR, "Color", GetColor, SetColor, Color, Color::WHITE, AM_DEFAULT);
  104. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Specular Intensity", GetSpecularIntensity, SetSpecularIntensity, float, DEFAULT_SPECULARINTENSITY, AM_DEFAULT);
  105. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Range", GetRange, SetRange, float, DEFAULT_RANGE, AM_DEFAULT);
  106. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Spot FOV", GetFov, SetFov, float, DEFAULT_FOV, AM_DEFAULT);
  107. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Spot Aspect Ratio", GetAspectRatio, SetAspectRatio, float, 1.0f, AM_DEFAULT);
  108. ACCESSOR_ATTRIBUTE(Light, VAR_RESOURCEREF, "Attenuation Texture", GetRampTextureAttr, SetRampTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  109. ACCESSOR_ATTRIBUTE(Light, VAR_RESOURCEREF, "Light Shape Texture", GetShapeTextureAttr, SetShapeTextureAttr, ResourceRef, ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  110. ACCESSOR_ATTRIBUTE(Light, VAR_BOOL, "Can Be Occluded", IsOccludee, SetOccludee, bool, true, AM_DEFAULT);
  111. ATTRIBUTE(Light, VAR_BOOL, "Cast Shadows", castShadows_, false, AM_DEFAULT);
  112. ATTRIBUTE(Light, VAR_BOOL, "Per Vertex", perVertex_, false, AM_DEFAULT);
  113. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Draw Distance", GetDrawDistance, SetDrawDistance, float, 0.0f, AM_DEFAULT);
  114. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Fade Distance", GetFadeDistance, SetFadeDistance, float, 0.0f, AM_DEFAULT);
  115. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Shadow Distance", GetShadowDistance, SetShadowDistance, float, 0.0f, AM_DEFAULT);
  116. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Shadow Fade Distance", GetShadowFadeDistance, SetShadowFadeDistance, float, 0.0f, AM_DEFAULT);
  117. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Shadow Intensity", GetShadowIntensity, SetShadowIntensity, float, 0.0f, AM_DEFAULT);
  118. ACCESSOR_ATTRIBUTE(Light, VAR_FLOAT, "Shadow Resolution", GetShadowResolution, SetShadowResolution, float, 1.0f, AM_DEFAULT);
  119. ATTRIBUTE(Light, VAR_BOOL, "Focus To Scene", shadowFocus_.focus_, true, AM_DEFAULT);
  120. ATTRIBUTE(Light, VAR_BOOL, "Non-uniform View", shadowFocus_.nonUniform_, true, AM_DEFAULT);
  121. ATTRIBUTE(Light, VAR_BOOL, "Auto-Reduce Size", shadowFocus_.autoSize_, true, AM_DEFAULT);
  122. ATTRIBUTE(Light, VAR_VECTOR4, "CSM Splits", shadowCascade_.splits_, Vector4(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f), AM_DEFAULT);
  123. ATTRIBUTE(Light, VAR_FLOAT, "CSM Fade Start", shadowCascade_.fadeStart_, DEFAULT_SHADOWFADESTART, AM_DEFAULT);
  124. ATTRIBUTE(Light, VAR_FLOAT, "CSM Bias Auto Adjust", shadowCascade_.biasAutoAdjust_, DEFAULT_BIASAUTOADJUST, AM_DEFAULT);
  125. ATTRIBUTE(Light, VAR_FLOAT, "View Size Quantize", shadowFocus_.quantize_, DEFAULT_SHADOWQUANTIZE, AM_DEFAULT);
  126. ATTRIBUTE(Light, VAR_FLOAT, "View Size Minimum", shadowFocus_.minView_, DEFAULT_SHADOWMINVIEW, AM_DEFAULT);
  127. ATTRIBUTE(Light, VAR_FLOAT, "Depth Constant Bias", shadowBias_.constantBias_, DEFAULT_CONSTANTBIAS, AM_DEFAULT);
  128. ATTRIBUTE(Light, VAR_FLOAT, "Depth Slope Bias", shadowBias_.slopeScaledBias_, DEFAULT_SLOPESCALEDBIAS, AM_DEFAULT);
  129. ATTRIBUTE(Light, VAR_FLOAT, "Near/Farclip Ratio", shadowNearFarRatio_, DEFAULT_SHADOWNEARFARRATIO, AM_DEFAULT);
  130. ATTRIBUTE(Light, VAR_INT, "View Mask", viewMask_, DEFAULT_VIEWMASK, AM_DEFAULT);
  131. ATTRIBUTE(Light, VAR_INT, "Light Mask", lightMask_, DEFAULT_LIGHTMASK, AM_DEFAULT);
  132. }
  133. void Light::OnSetAttribute(const AttributeInfo& attr, const Variant& src)
  134. {
  135. Component::OnSetAttribute(attr, src);
  136. // Validate the bias, cascade & focus parameters
  137. if (attr.offset_ >= offsetof(Light, shadowBias_) && attr.offset_ < (offsetof(Light, shadowBias_) + sizeof(BiasParameters)))
  138. shadowBias_.Validate();
  139. else if (attr.offset_ >= offsetof(Light, shadowCascade_) && attr.offset_ < (offsetof(Light, shadowCascade_) + sizeof(CascadeParameters)))
  140. shadowCascade_.Validate();
  141. else if (attr.offset_ >= offsetof(Light, shadowFocus_) && attr.offset_ < (offsetof(Light, shadowFocus_) + sizeof(FocusParameters)))
  142. shadowFocus_.Validate();
  143. }
  144. void Light::ProcessRayQuery(const RayOctreeQuery& query, PODVector<RayQueryResult>& results)
  145. {
  146. // Do not record a raycast result for a directional light, as it would block all other results
  147. if (lightType_ == LIGHT_DIRECTIONAL)
  148. return;
  149. float distance;
  150. switch (query.level_)
  151. {
  152. case RAY_AABB:
  153. Drawable::ProcessRayQuery(query, results);
  154. return;
  155. case RAY_OBB:
  156. {
  157. Matrix3x4 inverse(node_->GetWorldTransform().Inverse());
  158. Ray localRay = query.ray_.Transformed(inverse);
  159. distance = localRay.HitDistance(GetWorldBoundingBox().Transformed(inverse));
  160. if (distance >= query.maxDistance_)
  161. return;
  162. }
  163. break;
  164. case RAY_TRIANGLE:
  165. if (lightType_ == LIGHT_SPOT)
  166. {
  167. distance = query.ray_.HitDistance(GetFrustum());
  168. if (distance >= query.maxDistance_)
  169. return;
  170. }
  171. else
  172. {
  173. distance = query.ray_.HitDistance(Sphere(node_->GetWorldPosition(), range_));
  174. if (distance >= query.maxDistance_)
  175. return;
  176. }
  177. break;
  178. }
  179. // If the code reaches here then we have a hit
  180. RayQueryResult result;
  181. result.position_ = query.ray_.origin_ + distance * query.ray_.direction_;
  182. result.normal_ = -query.ray_.direction_;
  183. result.distance_ = distance;
  184. result.drawable_ = this;
  185. result.node_ = node_;
  186. result.subObject_ = M_MAX_UNSIGNED;
  187. results.Push(result);
  188. }
  189. void Light::UpdateBatches(const FrameInfo& frame)
  190. {
  191. switch (lightType_)
  192. {
  193. case LIGHT_DIRECTIONAL:
  194. // Directional light affects the whole scene, so it is always "closest"
  195. distance_ = 0.0f;
  196. break;
  197. default:
  198. distance_ = frame.camera_->GetDistance(node_->GetWorldPosition());
  199. break;
  200. }
  201. }
  202. void Light::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  203. {
  204. if (debug && IsEnabledEffective())
  205. {
  206. switch (lightType_)
  207. {
  208. case LIGHT_DIRECTIONAL:
  209. {
  210. Vector3 start = node_->GetWorldPosition();
  211. Vector3 end = start + node_->GetWorldDirection() * 10.f;
  212. for (short i = -1; i < 2; ++i)
  213. for (short j = -1; j < 2; ++j)
  214. {
  215. Vector3 offset = Vector3::UP * (5.f * i) + Vector3::RIGHT * (5.f * j);
  216. debug->AddSphere(Sphere(start + offset, 0.1f), color_, depthTest);
  217. debug->AddLine(start + offset, end + offset, color_, depthTest);
  218. }
  219. }
  220. break;
  221. case LIGHT_SPOT:
  222. debug->AddFrustum(GetFrustum(), color_, depthTest);
  223. break;
  224. case LIGHT_POINT:
  225. debug->AddSphere(Sphere(node_->GetWorldPosition(), range_), color_, depthTest);
  226. break;
  227. }
  228. }
  229. }
  230. void Light::SetLightType(LightType type)
  231. {
  232. lightType_ = type;
  233. OnMarkedDirty(node_);
  234. MarkNetworkUpdate();
  235. }
  236. void Light::SetPerVertex(bool enable)
  237. {
  238. perVertex_ = enable;
  239. MarkNetworkUpdate();
  240. }
  241. void Light::SetColor(const Color& color)
  242. {
  243. // Clamp RGB values to positive, as negative values behave erratically depending on whether the pass uses
  244. // replace or additive blend mode
  245. color_ = Color(Max(color.r_, 0.0f), Max(color.g_, 0.0f), Max(color.b_, 0.0f), 1.0f);
  246. MarkNetworkUpdate();
  247. }
  248. void Light::SetRange(float range)
  249. {
  250. range_ = Max(range, 0.0f);
  251. OnMarkedDirty(node_);
  252. MarkNetworkUpdate();
  253. }
  254. void Light::SetFov(float fov)
  255. {
  256. fov_ = Clamp(fov, 0.0f, M_MAX_FOV);
  257. OnMarkedDirty(node_);
  258. MarkNetworkUpdate();
  259. }
  260. void Light::SetAspectRatio(float aspectRatio)
  261. {
  262. aspectRatio_ = Max(aspectRatio, M_EPSILON);
  263. OnMarkedDirty(node_);
  264. MarkNetworkUpdate();
  265. }
  266. void Light::SetShadowNearFarRatio(float nearFarRatio)
  267. {
  268. shadowNearFarRatio_ = Clamp(nearFarRatio, 0.0f, 0.5f);
  269. MarkNetworkUpdate();
  270. }
  271. void Light::SetSpecularIntensity(float intensity)
  272. {
  273. specularIntensity_ = Max(intensity, 0.0f);
  274. MarkNetworkUpdate();
  275. }
  276. void Light::SetFadeDistance(float distance)
  277. {
  278. fadeDistance_ = Max(distance, 0.0f);
  279. MarkNetworkUpdate();
  280. }
  281. void Light::SetShadowBias(const BiasParameters& parameters)
  282. {
  283. shadowBias_ = parameters;
  284. shadowBias_.Validate();
  285. MarkNetworkUpdate();
  286. }
  287. void Light::SetShadowCascade(const CascadeParameters& parameters)
  288. {
  289. shadowCascade_ = parameters;
  290. shadowCascade_.Validate();
  291. MarkNetworkUpdate();
  292. }
  293. void Light::SetShadowFocus(const FocusParameters& parameters)
  294. {
  295. shadowFocus_ = parameters;
  296. shadowFocus_.Validate();
  297. MarkNetworkUpdate();
  298. }
  299. void Light::SetShadowFadeDistance(float distance)
  300. {
  301. shadowFadeDistance_ = Max(distance, 0.0f);
  302. MarkNetworkUpdate();
  303. }
  304. void Light::SetShadowIntensity(float intensity)
  305. {
  306. shadowIntensity_ = Clamp(intensity, 0.0f, 1.0f);
  307. MarkNetworkUpdate();
  308. }
  309. void Light::SetShadowResolution(float resolution)
  310. {
  311. shadowResolution_ = Clamp(resolution, 0.125f, 1.0f);
  312. MarkNetworkUpdate();
  313. }
  314. void Light::SetRampTexture(Texture* texture)
  315. {
  316. rampTexture_ = texture;
  317. MarkNetworkUpdate();
  318. }
  319. void Light::SetShapeTexture(Texture* texture)
  320. {
  321. shapeTexture_ = texture;
  322. MarkNetworkUpdate();
  323. }
  324. Frustum Light::GetFrustum() const
  325. {
  326. // Note: frustum is unaffected by node or parent scale
  327. Matrix3x4 frustumTransform(node_ ? Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), 1.0f) :
  328. Matrix3x4::IDENTITY);
  329. Frustum ret;
  330. ret.Define(fov_, aspectRatio_, 1.0f, M_MIN_NEARCLIP, range_, frustumTransform);
  331. return ret;
  332. }
  333. Matrix3x4 Light::GetDirLightTransform(Camera* camera, bool getNearQuad)
  334. {
  335. if (!camera)
  336. return Matrix3x4::IDENTITY;
  337. Vector3 nearVector, farVector;
  338. camera->GetFrustumSize(nearVector, farVector);
  339. float nearClip = camera->GetNearClip();
  340. float farClip = camera->GetFarClip();
  341. float distance = getNearQuad ? nearClip : farClip;
  342. if (!camera->IsOrthographic())
  343. farVector *= (distance / farClip);
  344. else
  345. farVector.z_ *= (distance / farClip);
  346. // Set an epsilon from clip planes due to possible inaccuracy
  347. /// \todo Rather set an identity projection matrix
  348. farVector.z_ = Clamp(farVector.z_, (1.0f + M_LARGE_EPSILON) * nearClip, (1.0f - M_LARGE_EPSILON) * farClip);
  349. return Matrix3x4(Vector3(0.0f, 0.0f, farVector.z_), Quaternion::IDENTITY, Vector3(farVector.x_, farVector.y_, 1.0f));
  350. }
  351. const Matrix3x4& Light::GetVolumeTransform(Camera* camera)
  352. {
  353. if (!node_)
  354. return Matrix3x4::IDENTITY;
  355. switch (lightType_)
  356. {
  357. case LIGHT_DIRECTIONAL:
  358. volumeTransform_ = GetDirLightTransform(camera);
  359. break;
  360. case LIGHT_SPOT:
  361. {
  362. float yScale = tanf(fov_ * M_DEGTORAD * 0.5f) * range_;
  363. float xScale = aspectRatio_ * yScale;
  364. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), Vector3(xScale, yScale, range_));
  365. }
  366. break;
  367. case LIGHT_POINT:
  368. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), Quaternion::IDENTITY, range_);
  369. break;
  370. }
  371. return volumeTransform_;
  372. }
  373. void Light::SetRampTextureAttr(ResourceRef value)
  374. {
  375. ResourceCache* cache = GetSubsystem<ResourceCache>();
  376. rampTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  377. }
  378. void Light::SetShapeTextureAttr(ResourceRef value)
  379. {
  380. ResourceCache* cache = GetSubsystem<ResourceCache>();
  381. shapeTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  382. }
  383. ResourceRef Light::GetRampTextureAttr() const
  384. {
  385. return GetResourceRef(rampTexture_, Texture2D::GetTypeStatic());
  386. }
  387. ResourceRef Light::GetShapeTextureAttr() const
  388. {
  389. return GetResourceRef(shapeTexture_, lightType_ == LIGHT_POINT ? TextureCube::GetTypeStatic() : Texture2D::GetTypeStatic());
  390. }
  391. void Light::OnWorldBoundingBoxUpdate()
  392. {
  393. switch (lightType_)
  394. {
  395. case LIGHT_DIRECTIONAL:
  396. // Directional light always sets humongous bounding box not affected by transform
  397. worldBoundingBox_.Define(-M_LARGE_VALUE, M_LARGE_VALUE);
  398. break;
  399. case LIGHT_SPOT:
  400. // Frustum is already transformed into world space
  401. worldBoundingBox_.Define(GetFrustum());
  402. break;
  403. case LIGHT_POINT:
  404. {
  405. const Vector3& center = node_->GetWorldPosition();
  406. Vector3 edge(range_, range_, range_);
  407. worldBoundingBox_.Define(center - edge, center + edge);
  408. }
  409. break;
  410. }
  411. }
  412. void Light::SetIntensitySortValue(float distance)
  413. {
  414. // When sorting lights globally, give priority to directional lights so that they will be combined into the ambient pass
  415. if (lightType_ != LIGHT_DIRECTIONAL)
  416. sortValue_ = Max(distance, M_MIN_NEARCLIP) / (color_.SumRGB() + M_EPSILON);
  417. else
  418. sortValue_ = M_EPSILON / (color_.SumRGB() + M_EPSILON);
  419. // Additionally, give priority to vertex lights so that vertex light base passes can be determined before per pixel lights
  420. if (perVertex_)
  421. sortValue_ -= M_LARGE_VALUE;
  422. }
  423. void Light::SetIntensitySortValue(const BoundingBox& box)
  424. {
  425. // When sorting lights for object's maximum light cap, give priority based on attenuation and intensity
  426. switch (lightType_)
  427. {
  428. case LIGHT_DIRECTIONAL:
  429. sortValue_ = 1.0f / (color_.SumRGB() + M_EPSILON);
  430. break;
  431. case LIGHT_SPOT:
  432. {
  433. Vector3 centerPos = box.Center();
  434. Vector3 lightPos = node_->GetWorldPosition();
  435. Vector3 lightDir = node_->GetWorldDirection();
  436. Ray lightRay(lightPos, lightDir);
  437. Vector3 centerProj = lightRay.Project(centerPos);
  438. float centerDistance = (centerProj - lightPos).Length();
  439. Ray centerRay(centerProj, centerPos - centerProj);
  440. float centerAngle = centerRay.HitDistance(box) / centerDistance;
  441. // Check if a corner of the bounding box is closer to the light ray than the center, use its angle in that case
  442. Vector3 cornerPos = centerPos + box.HalfSize() * Vector3(centerPos.x_ < centerProj.x_ ? 1.0f : -1.0f,
  443. centerPos.y_ < centerProj.y_ ? 1.0f : -1.0f, centerPos.z_ < centerProj.z_ ? 1.0f : -1.0f);
  444. Vector3 cornerProj = lightRay.Project(cornerPos);
  445. float cornerDistance = (cornerProj - lightPos).Length();
  446. float cornerAngle = (cornerPos - cornerProj).Length() / cornerDistance;
  447. float spotAngle = Min(centerAngle, cornerAngle);
  448. float maxAngle = tanf(fov_ * M_DEGTORAD * 0.5f);
  449. float spotFactor = Min(spotAngle / maxAngle, 1.0f);
  450. // We do not know the actual range attenuation ramp, so take only spot attenuation into account
  451. float att = Max(1.0f - spotFactor * spotFactor, M_EPSILON);
  452. sortValue_ = 1.0f / (color_.SumRGB() * att + M_EPSILON);
  453. }
  454. break;
  455. case LIGHT_POINT:
  456. {
  457. Vector3 centerPos = box.Center();
  458. Vector3 lightPos = node_->GetWorldPosition();
  459. Vector3 lightDir = (centerPos - lightPos).Normalized();
  460. Ray lightRay(lightPos, lightDir);
  461. float distance = lightRay.HitDistance(box);
  462. float normDistance = distance / range_;
  463. float att = Max(1.0f - normDistance * normDistance, M_EPSILON);
  464. sortValue_ = 1.0f / (color_.SumRGB() * att + M_EPSILON);
  465. }
  466. break;
  467. }
  468. }
  469. void Light::SetLightQueue(LightBatchQueue* queue)
  470. {
  471. lightQueue_ = queue;
  472. }
  473. }