2
0

ParticleEmitter2D.cpp 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "Context.h"
  25. #include "ParticleModel2D.h"
  26. #include "ParticleEmitter2D.h"
  27. #include "ResourceCache.h"
  28. #include "Scene.h"
  29. #include "SceneEvents.h"
  30. #include "DebugNew.h"
  31. namespace Urho3D
  32. {
  33. extern const char* URHO2D_CATEGORY;
  34. ParticleEmitter2D::ParticleEmitter2D(Context* context) : Drawable2D(context),
  35. lifeTime_(0.0f),
  36. numParticles_(0),
  37. emitParticleTime_(0.0f),
  38. timeBetweenParticles_(1.0f)
  39. {
  40. }
  41. ParticleEmitter2D::~ParticleEmitter2D()
  42. {
  43. }
  44. void ParticleEmitter2D::RegisterObject(Context* context)
  45. {
  46. context->RegisterFactory<ParticleEmitter2D>(URHO2D_CATEGORY);
  47. ACCESSOR_ATTRIBUTE(ParticleEmitter2D, VAR_RESOURCEREF, "Particle Model", GetParticleModelAttr, SetParticleModelAttr, ResourceRef, ResourceRef(ParticleModel2D::GetTypeStatic()), AM_FILE);
  48. COPY_BASE_ATTRIBUTES(ParticleEmitter2D, Drawable2D);
  49. }
  50. void ParticleEmitter2D::OnSetEnabled()
  51. {
  52. Drawable2D::OnSetEnabled();
  53. Scene* scene = GetScene();
  54. if (scene)
  55. {
  56. if (IsEnabledEffective())
  57. SubscribeToEvent(scene, E_SCENEPOSTUPDATE, HANDLER(ParticleEmitter2D, HandleScenePostUpdate));
  58. else
  59. UnsubscribeFromEvent(scene, E_SCENEPOSTUPDATE);
  60. }
  61. }
  62. void ParticleEmitter2D::UpdateBatches(const FrameInfo& frame)
  63. {
  64. // const Matrix3x4& worldTransform = node_->GetWorldTransform();
  65. distance_ = frame.camera_->GetDistance(GetWorldBoundingBox().Center());
  66. batches_[0].distance_ = distance_;
  67. batches_[0].worldTransform_ = &Matrix3x4::IDENTITY;
  68. }
  69. void ParticleEmitter2D::Update(const FrameInfo& frame)
  70. {
  71. if (!model_)
  72. return;
  73. float timeStep = frame.timeStep_;
  74. float worldScale = GetNode()->GetWorldScale().x_;
  75. unsigned particleIndex = 0;
  76. while (particleIndex < numParticles_)
  77. {
  78. Particle2D& currentParticle = particles_[particleIndex];
  79. if (currentParticle.timeToLive_ > timeStep)
  80. {
  81. UpdateParticle(currentParticle, timeStep, worldScale);
  82. ++particleIndex;
  83. }
  84. else
  85. {
  86. if (particleIndex != numParticles_ - 1)
  87. particles_[particleIndex] = particles_[numParticles_ - 1];
  88. --numParticles_;
  89. }
  90. }
  91. if (lifeTime_< 0.0f || lifeTime_ > 0.0f)
  92. {
  93. Vector3 worldPosition = GetNode()->GetWorldPosition();
  94. float worldAngle = GetNode()->GetWorldRotation().RollAngle();
  95. emitParticleTime_ += timeStep;
  96. while (emitParticleTime_ > 0.0f)
  97. {
  98. EmitParticle(worldPosition, worldAngle, worldScale);
  99. emitParticleTime_ -= timeBetweenParticles_;
  100. }
  101. if (lifeTime_ > 0.0f)
  102. lifeTime_ = Max(0.0f, lifeTime_ - timeStep);
  103. }
  104. MarkVerticesDirty();
  105. OnMarkedDirty(node_);
  106. }
  107. void ParticleEmitter2D::SetModel(ParticleModel2D* model)
  108. {
  109. model_ = model;
  110. if (!model_)
  111. return;
  112. SetSprite(model_->GetSprite());
  113. SetBlendMode(model_->GetBlendMode());
  114. lifeTime_ = model_->GetDuration();
  115. numParticles_ = Min(model_->GetMaxParticles(), numParticles_);
  116. particles_.Resize(model_->GetMaxParticles());
  117. vertices_.Reserve(model_->GetMaxParticles() * 4);
  118. emitParticleTime_ = 0.0f;
  119. timeBetweenParticles_ = model_->GetParticleLifeSpan() / model_->GetMaxParticles();
  120. }
  121. ParticleModel2D* ParticleEmitter2D::GetModel() const
  122. {
  123. return model_;
  124. }
  125. void ParticleEmitter2D::SetParticleModelAttr(ResourceRef value)
  126. {
  127. ResourceCache* cache = GetSubsystem<ResourceCache>();
  128. SetModel(cache->GetResource<ParticleModel2D>(value.name_));
  129. }
  130. Urho3D::ResourceRef ParticleEmitter2D::GetParticleModelAttr() const
  131. {
  132. return GetResourceRef(model_, ParticleModel2D::GetTypeStatic());
  133. }
  134. void ParticleEmitter2D::OnNodeSet(Node* node)
  135. {
  136. Drawable2D::OnNodeSet(node);
  137. if (node)
  138. {
  139. Scene* scene = GetScene();
  140. if (scene && IsEnabledEffective())
  141. SubscribeToEvent(scene, E_SCENEPOSTUPDATE, HANDLER(ParticleEmitter2D, HandleScenePostUpdate));
  142. }
  143. }
  144. void ParticleEmitter2D::OnWorldBoundingBoxUpdate()
  145. {
  146. if (verticesDirty_)
  147. {
  148. UpdateVertices();
  149. boundingBox_.Clear();
  150. for (unsigned i = 0; i < vertices_.Size(); ++i)
  151. boundingBox_.Merge(vertices_[i].position_);
  152. }
  153. worldBoundingBox_ = boundingBox_;
  154. }
  155. void ParticleEmitter2D::UpdateVertices()
  156. {
  157. if (!verticesDirty_)
  158. return;
  159. vertices_.Clear();
  160. if (!sprite_)
  161. return;
  162. Texture2D* texture = sprite_->GetTexture();
  163. if (!texture)
  164. return;
  165. const IntRect& rectangle_ = sprite_->GetRectangle();
  166. if (rectangle_.Width() == 0 || rectangle_.Height() == 0)
  167. return;
  168. Vertex2D vertex0;
  169. Vertex2D vertex1;
  170. Vertex2D vertex2;
  171. Vertex2D vertex3;
  172. vertex0.uv_ = Vector2(0.0f, 1.0f);
  173. vertex1.uv_ = Vector2(0.0f, 0.0f);
  174. vertex2.uv_ = Vector2(1.0f, 0.0f);
  175. vertex3.uv_ = Vector2(1.0f, 1.0f);
  176. for (unsigned i = 0; i < numParticles_; ++i)
  177. {
  178. Particle2D& p = particles_[i];
  179. float c = Cos(p.rotation_);
  180. float s = Sin(p.rotation_);
  181. float add = (c + s) * p.size_ * 0.5f;
  182. float sub = (c - s) * p.size_ * 0.5f;
  183. vertex0.position_ = Vector3(p.position_.x_ - sub, p.position_.y_ - add, 0.0f) * unitPerPixel_;
  184. vertex1.position_ = Vector3(p.position_.x_ - add, p.position_.y_ + sub, 0.0f) * unitPerPixel_;
  185. vertex2.position_ = Vector3(p.position_.x_ + sub, p.position_.y_ + add, 0.0f) * unitPerPixel_;
  186. vertex3.position_ = Vector3(p.position_.x_ + add, p.position_.y_ - sub, 0.0f) * unitPerPixel_;
  187. vertex0.color_ = vertex1.color_ = vertex2.color_ = vertex3.color_ = p.color_.ToUInt();
  188. vertices_.Push(vertex0);
  189. vertices_.Push(vertex1);
  190. vertices_.Push(vertex2);
  191. vertices_.Push(vertex3);
  192. }
  193. MarkGeometryDirty();
  194. verticesDirty_ = false;
  195. }
  196. void ParticleEmitter2D::HandleScenePostUpdate(StringHash eventType, VariantMap& eventData)
  197. {
  198. MarkForUpdate();
  199. }
  200. void ParticleEmitter2D::EmitParticle(const Vector3& worldPosition, float worldAngle, float worldScale)
  201. {
  202. if (numParticles_ >= model_->GetMaxParticles())
  203. return;
  204. float lifespan = model_->GetParticleLifeSpan() + model_->GetParticleLifeSpanVariance() * Random(-1.0f, 1.0f);
  205. if (lifespan <= 0.0f)
  206. return;
  207. float invLifespan = 1.0f / lifespan;
  208. Particle2D& particle = particles_[numParticles_++];
  209. particle.timeToLive_ = lifespan;
  210. particle.startPos_.x_ = worldPosition.x_;
  211. particle.startPos_.y_ = worldPosition.y_;
  212. particle.position_.x_ = worldPosition.x_ + model_->GetSourcePositionVariance().x_ * Random(-1.0f, 1.0f);
  213. particle.position_.y_ = worldPosition.y_ + model_->GetSourcePositionVariance().y_ * Random(-1.0f, 1.0f);
  214. float angle = worldAngle + model_->GetEmitAngle() + model_->GetEmitAngleVariance() * Random(-1.0f, 1.0f);
  215. float speed = worldScale * (model_->GetSpeed() + model_->GetSpeedVariance() * Random(-1.0f, 1.0f));
  216. particle.velocity_.x_ = speed * Cos(angle);
  217. particle.velocity_.y_ = speed * Sin(angle);
  218. particle.radius_ = worldScale * (model_->GetMaxRadius() + model_->GetMaxRadiusVariance() * Random(-1.0f, 1.0f));
  219. particle.radiusDelta_ = worldScale * (model_->GetMaxRadius() * invLifespan);
  220. particle.rotation_ = worldAngle + model_->GetEmitAngle() + model_->GetEmitAngleVariance() * Random(-1.0f, 1.0f);
  221. particle.rotationDelta_ = model_->GetRotatePerSecond() + model_->GetRotatePerSecondVariance() * Random(-1.0f, 1.0f);
  222. particle.radialAccel_ = worldScale * (model_->GetRadialAcceleration() + model_->GetRadialAccelerationVariance() * Random(-1.0f, 1.0f));
  223. particle.tangentialAccel_ = worldScale * (model_->GetTangentialAcceleration() + model_->GetTangentialAccelerationVariance() * Random(-1.0f, 1.0f));
  224. float particleStartSize = worldScale * Max(0.1f, model_->GetStartParticleSize() + model_->GetStartParticleSizeVariance() * Random(-1.0f, 1.0f));
  225. float particleFinishSize = worldScale * Max(0.1f, model_->GetEndParticleSize() + model_->GetEndParticleSizeVariance() * Random(-1.0f, 1.0f));
  226. particle.size_ = particleStartSize;
  227. particle.sizeDelta_ = (particleFinishSize - particleStartSize) * invLifespan;
  228. Color startColor = model_->GetStartColor() + model_->GetStartColorVariance() * Random(-1.0f, 1.0f);
  229. Color endColor = model_->GetEndColor() + model_->GetEndColorVariance() * Random(-1.0f, 1.0f);
  230. Color colorDelta;
  231. colorDelta.r_ = (endColor.r_ - startColor.r_) * invLifespan;
  232. colorDelta.g_ = (endColor.g_ - startColor.g_) * invLifespan;
  233. colorDelta.b_ = (endColor.b_ - startColor.b_) * invLifespan;
  234. colorDelta.a_ = (endColor.a_ - startColor.a_) * invLifespan;
  235. particle.color_ = startColor;
  236. particle.colorDelta_ = colorDelta;
  237. }
  238. void ParticleEmitter2D::UpdateParticle(Particle2D& particle, float timeStep, float worldScale)
  239. {
  240. timeStep = Min(timeStep, particle.timeToLive_);
  241. particle.timeToLive_ -= timeStep;
  242. if (model_->GetEmitterType() == EMITTER_TYPE_RADIAL)
  243. {
  244. particle.rotation_ += particle.rotationDelta_ * timeStep;
  245. particle.radius_ -= particle.radiusDelta_ * timeStep;
  246. Vector3 worldPosition = GetNode()->GetWorldPosition();
  247. particle.position_.x_ = worldPosition.x_ - cosf(particle.rotation_) * particle.radius_;
  248. particle.position_.y_ = worldPosition.y_ - sinf(particle.rotation_) * particle.radius_;
  249. if (particle.radius_ < model_->GetMinRadius() * worldScale)
  250. particle.timeToLive_ = 0.0f;
  251. }
  252. else
  253. {
  254. float distanceX = particle.position_.x_ - particle.startPos_.x_;
  255. float distanceY = particle.position_.y_ - particle.startPos_.y_;
  256. float distanceScalar = Max(0.01f, sqrtf(distanceX * distanceX + distanceY * distanceY));
  257. float radialX = distanceX / distanceScalar;
  258. float radialY = distanceY / distanceScalar;
  259. float tangentialX = radialX;
  260. float tangentialY = radialY;
  261. radialX *= particle.radialAccel_;
  262. radialY *= particle.radialAccel_;
  263. float newY = tangentialX;
  264. tangentialX = -tangentialY * particle.tangentialAccel_;
  265. tangentialY = newY * particle.tangentialAccel_;
  266. particle.velocity_.x_ += timeStep * (model_->GetGravity().x_ + radialX + tangentialX);
  267. particle.velocity_.y_ += timeStep * (model_->GetGravity().y_ + radialY + tangentialY);
  268. particle.position_.x_ += particle.velocity_.x_ * timeStep;
  269. particle.position_.y_ += particle.velocity_.y_ * timeStep;
  270. }
  271. particle.size_ += particle.sizeDelta_ * timeStep;
  272. particle.color_.r_ += particle.colorDelta_.r_ * timeStep;
  273. particle.color_.g_ += particle.colorDelta_.g_ * timeStep;
  274. particle.color_.b_ += particle.colorDelta_.b_ * timeStep;
  275. particle.color_.a_ += particle.colorDelta_.a_ * timeStep;
  276. }
  277. }