View.cpp 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "DebugRenderer.h"
  25. #include "FileSystem.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "GraphicsImpl.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "RenderPath.h"
  35. #include "ResourceCache.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Technique.h"
  41. #include "Texture2D.h"
  42. #include "Texture3D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "DebugNew.h"
  48. namespace Urho3D
  49. {
  50. static const Vector3* directions[] =
  51. {
  52. &Vector3::RIGHT,
  53. &Vector3::LEFT,
  54. &Vector3::UP,
  55. &Vector3::DOWN,
  56. &Vector3::FORWARD,
  57. &Vector3::BACK
  58. };
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.003f;
  60. /// %Frustum octree query for shadowcasters.
  61. class ShadowCasterOctreeQuery : public FrustumOctreeQuery
  62. {
  63. public:
  64. /// Construct with frustum and query parameters.
  65. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  66. unsigned viewMask = DEFAULT_VIEWMASK) :
  67. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  68. {
  69. }
  70. /// Intersection test for drawables.
  71. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  72. {
  73. while (start != end)
  74. {
  75. Drawable* drawable = *start++;
  76. if (drawable->GetCastShadows() && (drawable->GetDrawableFlags() & drawableFlags_) &&
  77. (drawable->GetViewMask() & viewMask_))
  78. {
  79. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  80. result_.Push(drawable);
  81. }
  82. }
  83. }
  84. };
  85. /// %Frustum octree query for zones and occluders.
  86. class ZoneOccluderOctreeQuery : public FrustumOctreeQuery
  87. {
  88. public:
  89. /// Construct with frustum and query parameters.
  90. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  91. unsigned viewMask = DEFAULT_VIEWMASK) :
  92. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  93. {
  94. }
  95. /// Intersection test for drawables.
  96. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  97. {
  98. while (start != end)
  99. {
  100. Drawable* drawable = *start++;
  101. unsigned char flags = drawable->GetDrawableFlags();
  102. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && (drawable->GetViewMask() &
  103. viewMask_))
  104. {
  105. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  106. result_.Push(drawable);
  107. }
  108. }
  109. }
  110. };
  111. /// %Frustum octree query with occlusion.
  112. class OccludedFrustumOctreeQuery : public FrustumOctreeQuery
  113. {
  114. public:
  115. /// Construct with frustum, occlusion buffer and query parameters.
  116. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  117. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  118. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask),
  119. buffer_(buffer)
  120. {
  121. }
  122. /// Intersection test for an octant.
  123. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  124. {
  125. if (inside)
  126. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  127. else
  128. {
  129. Intersection result = frustum_.IsInside(box);
  130. if (result != OUTSIDE && !buffer_->IsVisible(box))
  131. result = OUTSIDE;
  132. return result;
  133. }
  134. }
  135. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  136. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  137. {
  138. while (start != end)
  139. {
  140. Drawable* drawable = *start++;
  141. if ((drawable->GetDrawableFlags() & drawableFlags_) && (drawable->GetViewMask() & viewMask_))
  142. {
  143. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  144. result_.Push(drawable);
  145. }
  146. }
  147. }
  148. /// Occlusion buffer.
  149. OcclusionBuffer* buffer_;
  150. };
  151. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  152. {
  153. View* view = reinterpret_cast<View*>(item->aux_);
  154. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  155. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  156. OcclusionBuffer* buffer = view->occlusionBuffer_;
  157. const Matrix3x4& viewMatrix = view->camera_->GetView();
  158. Vector3 viewZ = Vector3(viewMatrix.m20_, viewMatrix.m21_, viewMatrix.m22_);
  159. Vector3 absViewZ = viewZ.Abs();
  160. unsigned cameraViewMask = view->camera_->GetViewMask();
  161. bool cameraZoneOverride = view->cameraZoneOverride_;
  162. PerThreadSceneResult& result = view->sceneResults_[threadIndex];
  163. while (start != end)
  164. {
  165. Drawable* drawable = *start++;
  166. bool batchesUpdated = false;
  167. // If draw distance non-zero, update and check it
  168. float maxDistance = drawable->GetDrawDistance();
  169. if (maxDistance > 0.0f)
  170. {
  171. drawable->UpdateBatches(view->frame_);
  172. batchesUpdated = true;
  173. if (drawable->GetDistance() > maxDistance)
  174. continue;
  175. }
  176. if (!buffer || !drawable->IsOccludee() || buffer->IsVisible(drawable->GetWorldBoundingBox()))
  177. {
  178. if (!batchesUpdated)
  179. drawable->UpdateBatches(view->frame_);
  180. drawable->MarkInView(view->frame_);
  181. // For geometries, find zone, clear lights and calculate view space Z range
  182. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  183. {
  184. Zone* drawableZone = drawable->GetZone();
  185. if ((!drawableZone || (drawableZone->GetViewMask() & cameraViewMask) == 0) && !cameraZoneOverride)
  186. view->FindZone(drawable);
  187. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  188. Vector3 center = geomBox.Center();
  189. float viewCenterZ = viewZ.DotProduct(center) + viewMatrix.m23_;
  190. Vector3 edge = geomBox.Size() * 0.5f;
  191. float viewEdgeZ = absViewZ.DotProduct(edge);
  192. float minZ = viewCenterZ - viewEdgeZ;
  193. float maxZ = viewCenterZ + viewEdgeZ;
  194. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  195. drawable->ClearLights();
  196. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  197. if (drawable->GetType() != Skybox::GetTypeStatic())
  198. {
  199. result.minZ_ = Min(result.minZ_, minZ);
  200. result.maxZ_ = Max(result.maxZ_, maxZ);
  201. }
  202. result.geometries_.Push(drawable);
  203. }
  204. else if (drawable->GetDrawableFlags() & DRAWABLE_LIGHT)
  205. {
  206. Light* light = static_cast<Light*>(drawable);
  207. // Skip lights which are so dim that they can not contribute to a rendertarget
  208. if (light->GetColor().SumRGB() > LIGHT_INTENSITY_THRESHOLD)
  209. result.lights_.Push(light);
  210. }
  211. }
  212. }
  213. }
  214. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  215. {
  216. View* view = reinterpret_cast<View*>(item->aux_);
  217. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  218. view->ProcessLight(*query, threadIndex);
  219. }
  220. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  221. {
  222. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  223. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  224. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  225. while (start != end)
  226. {
  227. Drawable* drawable = *start++;
  228. drawable->UpdateGeometry(frame);
  229. }
  230. }
  231. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  232. {
  233. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  234. queue->SortFrontToBack();
  235. }
  236. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  237. {
  238. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  239. queue->SortBackToFront();
  240. }
  241. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  242. {
  243. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  244. start->litBatches_.SortFrontToBack();
  245. }
  246. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  247. {
  248. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  249. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  250. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  251. }
  252. View::View(Context* context) :
  253. Object(context),
  254. graphics_(GetSubsystem<Graphics>()),
  255. renderer_(GetSubsystem<Renderer>()),
  256. scene_(0),
  257. octree_(0),
  258. camera_(0),
  259. cameraZone_(0),
  260. farClipZone_(0),
  261. renderTarget_(0),
  262. substituteRenderTarget_(0)
  263. {
  264. // Create octree query and scene results vector for each thread
  265. unsigned numThreads = GetSubsystem<WorkQueue>()->GetNumThreads() + 1; // Worker threads + main thread
  266. tempDrawables_.Resize(numThreads);
  267. sceneResults_.Resize(numThreads);
  268. frame_.camera_ = 0;
  269. }
  270. View::~View()
  271. {
  272. }
  273. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  274. {
  275. Scene* scene = viewport->GetScene();
  276. Camera* camera = viewport->GetCamera();
  277. if (!scene || !camera || !camera->IsEnabledEffective())
  278. return false;
  279. // If scene is loading asynchronously, it is incomplete and should not be rendered
  280. if (scene->IsAsyncLoading())
  281. return false;
  282. Octree* octree = scene->GetComponent<Octree>();
  283. if (!octree)
  284. return false;
  285. // Do not accept view if camera projection is illegal
  286. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  287. if (!camera->IsProjectionValid())
  288. return false;
  289. scene_ = scene;
  290. octree_ = octree;
  291. camera_ = camera;
  292. cameraNode_ = camera->GetNode();
  293. renderTarget_ = renderTarget;
  294. renderPath_ = viewport->GetRenderPath();
  295. gBufferPassName_ = StringHash();
  296. basePassName_ = PASS_BASE;
  297. alphaPassName_ = PASS_ALPHA;
  298. lightPassName_ = PASS_LIGHT;
  299. litBasePassName_ = PASS_LITBASE;
  300. litAlphaPassName_ = PASS_LITALPHA;
  301. // Make sure that all necessary batch queues exist
  302. scenePasses_.Clear();
  303. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  304. {
  305. const RenderPathCommand& command = renderPath_->commands_[i];
  306. if (!command.enabled_)
  307. continue;
  308. if (command.type_ == CMD_SCENEPASS)
  309. {
  310. ScenePassInfo info;
  311. info.pass_ = command.pass_;
  312. info.allowInstancing_ = command.sortMode_ != SORT_BACKTOFRONT;
  313. info.markToStencil_ = command.markToStencil_;
  314. info.useScissor_ = command.useScissor_;
  315. info.vertexLights_ = command.vertexLights_;
  316. // Check scenepass metadata for defining custom passes which interact with lighting
  317. if (!command.metadata_.Empty())
  318. {
  319. if (command.metadata_ == "gbuffer")
  320. gBufferPassName_ = command.pass_;
  321. else if (command.metadata_ == "base" && command.pass_ != "base")
  322. {
  323. basePassName_ = command.pass_;
  324. litBasePassName_ = "lit" + command.pass_;
  325. }
  326. else if (command.metadata_ == "alpha" && command.pass_ != "alpha")
  327. {
  328. alphaPassName_ = command.pass_;
  329. litAlphaPassName_ = "lit" + command.pass_;
  330. }
  331. }
  332. HashMap<StringHash, BatchQueue>::Iterator j = batchQueues_.Find(command.pass_);
  333. if (j == batchQueues_.End())
  334. j = batchQueues_.Insert(Pair<StringHash, BatchQueue>(command.pass_, BatchQueue()));
  335. info.batchQueue_ = &j->second_;
  336. scenePasses_.Push(info);
  337. }
  338. // Allow a custom forward light pass
  339. else if (command.type_ == CMD_FORWARDLIGHTS && !command.pass_.Empty())
  340. lightPassName_ = command.pass_;
  341. }
  342. // Go through commands to check for deferred rendering
  343. deferred_ = false;
  344. deferredAmbient_ = false;
  345. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  346. {
  347. const RenderPathCommand& command = renderPath_->commands_[i];
  348. if (!command.enabled_)
  349. continue;
  350. // Check if ambient pass and G-buffer rendering happens at the same time
  351. if (command.type_ == CMD_SCENEPASS && command.outputNames_.Size() > 1)
  352. {
  353. if (CheckViewportWrite(command))
  354. deferredAmbient_ = true;
  355. }
  356. if (command.type_ == CMD_LIGHTVOLUMES)
  357. {
  358. lightVolumeVSName_ = command.vertexShaderName_;
  359. lightVolumePSName_ = command.pixelShaderName_;
  360. deferred_ = true;
  361. }
  362. }
  363. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  364. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  365. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  366. const IntRect& rect = viewport->GetRect();
  367. if (rect != IntRect::ZERO)
  368. {
  369. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  370. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  371. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  372. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  373. }
  374. else
  375. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  376. viewSize_ = viewRect_.Size();
  377. rtSize_ = IntVector2(rtWidth, rtHeight);
  378. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  379. #ifdef USE_OPENGL
  380. if (renderTarget_)
  381. {
  382. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  383. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  384. }
  385. #endif
  386. drawShadows_ = renderer_->GetDrawShadows();
  387. materialQuality_ = renderer_->GetMaterialQuality();
  388. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  389. minInstances_ = renderer_->GetMinInstances();
  390. // Set possible quality overrides from the camera
  391. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  392. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  393. materialQuality_ = QUALITY_LOW;
  394. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  395. drawShadows_ = false;
  396. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  397. maxOccluderTriangles_ = 0;
  398. // Occlusion buffer has constant width. If resulting height would be too large due to aspect ratio, disable occlusion
  399. if (viewSize_.y_ > viewSize_.x_ * 4)
  400. maxOccluderTriangles_ = 0;
  401. return true;
  402. }
  403. void View::Update(const FrameInfo& frame)
  404. {
  405. if (!camera_ || !octree_)
  406. return;
  407. frame_.camera_ = camera_;
  408. frame_.timeStep_ = frame.timeStep_;
  409. frame_.frameNumber_ = frame.frameNumber_;
  410. frame_.viewSize_ = viewSize_;
  411. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  412. // Clear buffers, geometry, light, occluder & batch list
  413. renderTargets_.Clear();
  414. geometries_.Clear();
  415. shadowGeometries_.Clear();
  416. lights_.Clear();
  417. zones_.Clear();
  418. occluders_.Clear();
  419. vertexLightQueues_.Clear();
  420. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  421. i->second_.Clear(maxSortedInstances);
  422. // Set automatic aspect ratio if required
  423. if (camera_->GetAutoAspectRatio())
  424. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  425. GetDrawables();
  426. GetBatches();
  427. }
  428. void View::Render()
  429. {
  430. if (!octree_ || !camera_)
  431. return;
  432. // Actually update geometry data now
  433. UpdateGeometries();
  434. // Allocate screen buffers as necessary
  435. AllocateScreenBuffers();
  436. // Forget parameter sources from the previous view
  437. graphics_->ClearParameterSources();
  438. // If stream offset is supported, write all instance transforms to a single large buffer
  439. // Else we must lock the instance buffer for each batch group
  440. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  441. PrepareInstancingBuffer();
  442. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  443. // again to ensure correct projection will be used
  444. if (camera_->GetAutoAspectRatio())
  445. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  446. // Bind the face selection and indirection cube maps for point light shadows
  447. if (renderer_->GetDrawShadows())
  448. {
  449. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  450. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  451. }
  452. // Set "view texture" to prevent destination texture sampling during all renderpasses
  453. if (renderTarget_)
  454. {
  455. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  456. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  457. // as a render texture produced on Direct3D9
  458. #ifdef USE_OPENGL
  459. camera_->SetFlipVertical(true);
  460. #endif
  461. }
  462. // Render
  463. ExecuteRenderPathCommands();
  464. #ifdef USE_OPENGL
  465. camera_->SetFlipVertical(false);
  466. #endif
  467. graphics_->SetDepthBias(0.0f, 0.0f);
  468. graphics_->SetScissorTest(false);
  469. graphics_->SetStencilTest(false);
  470. graphics_->SetViewTexture(0);
  471. graphics_->ResetStreamFrequencies();
  472. // Run framebuffer blitting if necessary
  473. if (currentRenderTarget_ != renderTarget_)
  474. BlitFramebuffer(static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture()), renderTarget_, true);
  475. // If this is a main view, draw the associated debug geometry now
  476. if (!renderTarget_)
  477. {
  478. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  479. if (debug)
  480. {
  481. debug->SetView(camera_);
  482. debug->Render();
  483. }
  484. }
  485. // "Forget" the scene, camera, octree and zone after rendering
  486. scene_ = 0;
  487. camera_ = 0;
  488. octree_ = 0;
  489. cameraZone_ = 0;
  490. farClipZone_ = 0;
  491. occlusionBuffer_ = 0;
  492. frame_.camera_ = 0;
  493. }
  494. Graphics* View::GetGraphics() const
  495. {
  496. return graphics_;
  497. }
  498. Renderer* View::GetRenderer() const
  499. {
  500. return renderer_;
  501. }
  502. void View::GetDrawables()
  503. {
  504. PROFILE(GetDrawables);
  505. WorkQueue* queue = GetSubsystem<WorkQueue>();
  506. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  507. // Get zones and occluders first
  508. {
  509. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE, camera_->GetViewMask());
  510. octree_->GetDrawables(query);
  511. }
  512. highestZonePriority_ = M_MIN_INT;
  513. int bestPriority = M_MIN_INT;
  514. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  515. // Get default zone first in case we do not have zones defined
  516. Zone* defaultZone = renderer_->GetDefaultZone();
  517. cameraZone_ = farClipZone_ = defaultZone;
  518. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  519. {
  520. Drawable* drawable = *i;
  521. unsigned char flags = drawable->GetDrawableFlags();
  522. if (flags & DRAWABLE_ZONE)
  523. {
  524. Zone* zone = static_cast<Zone*>(drawable);
  525. zones_.Push(zone);
  526. int priority = zone->GetPriority();
  527. if (priority > highestZonePriority_)
  528. highestZonePriority_ = priority;
  529. if (priority > bestPriority && zone->IsInside(cameraPos))
  530. {
  531. cameraZone_ = zone;
  532. bestPriority = priority;
  533. }
  534. }
  535. else
  536. occluders_.Push(drawable);
  537. }
  538. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  539. cameraZoneOverride_ = cameraZone_->GetOverride();
  540. if (!cameraZoneOverride_)
  541. {
  542. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  543. bestPriority = M_MIN_INT;
  544. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  545. {
  546. int priority = (*i)->GetPriority();
  547. if (priority > bestPriority && (*i)->IsInside(farClipPos))
  548. {
  549. farClipZone_ = *i;
  550. bestPriority = priority;
  551. }
  552. }
  553. }
  554. if (farClipZone_ == defaultZone)
  555. farClipZone_ = cameraZone_;
  556. // If occlusion in use, get & render the occluders
  557. occlusionBuffer_ = 0;
  558. if (maxOccluderTriangles_ > 0)
  559. {
  560. UpdateOccluders(occluders_, camera_);
  561. if (occluders_.Size())
  562. {
  563. PROFILE(DrawOcclusion);
  564. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  565. DrawOccluders(occlusionBuffer_, occluders_);
  566. }
  567. }
  568. // Get lights and geometries. Coarse occlusion for octants is used at this point
  569. if (occlusionBuffer_)
  570. {
  571. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  572. DRAWABLE_LIGHT, camera_->GetViewMask());
  573. octree_->GetDrawables(query);
  574. }
  575. else
  576. {
  577. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT,
  578. camera_->GetViewMask());
  579. octree_->GetDrawables(query);
  580. }
  581. // Check drawable occlusion, find zones for moved drawables and collect geometries & lights in worker threads
  582. {
  583. for (unsigned i = 0; i < sceneResults_.Size(); ++i)
  584. {
  585. PerThreadSceneResult& result = sceneResults_[i];
  586. result.geometries_.Clear();
  587. result.lights_.Clear();
  588. result.minZ_ = M_INFINITY;
  589. result.maxZ_ = 0.0f;
  590. }
  591. int numWorkItems = queue->GetNumThreads() + 1; // Worker threads + main thread
  592. int drawablesPerItem = tempDrawables.Size() / numWorkItems;
  593. WorkItem item;
  594. item.workFunction_ = CheckVisibilityWork;
  595. item.aux_ = this;
  596. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  597. // Create a work item for each thread
  598. for (int i = 0; i < numWorkItems; ++i)
  599. {
  600. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  601. if (i < numWorkItems - 1 && end - start > drawablesPerItem)
  602. end = start + drawablesPerItem;
  603. item.start_ = &(*start);
  604. item.end_ = &(*end);
  605. queue->AddWorkItem(item);
  606. start = end;
  607. }
  608. queue->Complete(M_MAX_UNSIGNED);
  609. }
  610. // Combine lights, geometries & scene Z range from the threads
  611. geometries_.Clear();
  612. lights_.Clear();
  613. minZ_ = M_INFINITY;
  614. maxZ_ = 0.0f;
  615. if (sceneResults_.Size() > 1)
  616. {
  617. for (unsigned i = 0; i < sceneResults_.Size(); ++i)
  618. {
  619. PerThreadSceneResult& result = sceneResults_[i];
  620. geometries_.Push(result.geometries_);
  621. lights_.Push(result.lights_);
  622. minZ_ = Min(minZ_, result.minZ_);
  623. maxZ_ = Max(maxZ_, result.maxZ_);
  624. }
  625. }
  626. else
  627. {
  628. // If just 1 thread, copy the results directly
  629. PerThreadSceneResult& result = sceneResults_[0];
  630. minZ_ = result.minZ_;
  631. maxZ_ = result.maxZ_;
  632. Swap(geometries_, result.geometries_);
  633. Swap(lights_, result.lights_);
  634. }
  635. if (minZ_ == M_INFINITY)
  636. minZ_ = 0.0f;
  637. // Sort the lights to brightest/closest first
  638. for (unsigned i = 0; i < lights_.Size(); ++i)
  639. {
  640. Light* light = lights_[i];
  641. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  642. light->SetLightQueue(0);
  643. }
  644. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  645. }
  646. void View::GetBatches()
  647. {
  648. WorkQueue* queue = GetSubsystem<WorkQueue>();
  649. PODVector<Light*> vertexLights;
  650. BatchQueue* alphaQueue = batchQueues_.Contains(alphaPassName_) ? &batchQueues_[alphaPassName_] : (BatchQueue*)0;
  651. // Check whether to use the lit base pass optimization
  652. bool useLitBase = true;
  653. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  654. {
  655. const RenderPathCommand& command = renderPath_->commands_[i];
  656. if (command.type_ == CMD_FORWARDLIGHTS)
  657. useLitBase = command.useLitBase_;
  658. }
  659. // Process lit geometries and shadow casters for each light
  660. {
  661. PROFILE(ProcessLights);
  662. lightQueryResults_.Resize(lights_.Size());
  663. WorkItem item;
  664. item.workFunction_ = ProcessLightWork;
  665. item.aux_ = this;
  666. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  667. {
  668. LightQueryResult& query = lightQueryResults_[i];
  669. query.light_ = lights_[i];
  670. item.start_ = &query;
  671. queue->AddWorkItem(item);
  672. }
  673. // Ensure all lights have been processed before proceeding
  674. queue->Complete(M_MAX_UNSIGNED);
  675. }
  676. // Build light queues and lit batches
  677. {
  678. PROFILE(GetLightBatches);
  679. // Preallocate light queues: per-pixel lights which have lit geometries
  680. unsigned numLightQueues = 0;
  681. unsigned usedLightQueues = 0;
  682. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  683. {
  684. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  685. ++numLightQueues;
  686. }
  687. lightQueues_.Resize(numLightQueues);
  688. maxLightsDrawables_.Clear();
  689. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  690. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  691. {
  692. LightQueryResult& query = *i;
  693. // If light has no affected geometries, no need to process further
  694. if (query.litGeometries_.Empty())
  695. continue;
  696. Light* light = query.light_;
  697. // Per-pixel light
  698. if (!light->GetPerVertex())
  699. {
  700. unsigned shadowSplits = query.numSplits_;
  701. // Initialize light queue and store it to the light so that it can be found later
  702. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  703. light->SetLightQueue(&lightQueue);
  704. lightQueue.light_ = light;
  705. lightQueue.shadowMap_ = 0;
  706. lightQueue.litBatches_.Clear(maxSortedInstances);
  707. lightQueue.volumeBatches_.Clear();
  708. // Allocate shadow map now
  709. if (shadowSplits > 0)
  710. {
  711. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  712. // If did not manage to get a shadow map, convert the light to unshadowed
  713. if (!lightQueue.shadowMap_)
  714. shadowSplits = 0;
  715. }
  716. // Setup shadow batch queues
  717. lightQueue.shadowSplits_.Resize(shadowSplits);
  718. for (unsigned j = 0; j < shadowSplits; ++j)
  719. {
  720. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  721. Camera* shadowCamera = query.shadowCameras_[j];
  722. shadowQueue.shadowCamera_ = shadowCamera;
  723. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  724. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  725. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  726. // Setup the shadow split viewport and finalize shadow camera parameters
  727. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  728. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  729. // Loop through shadow casters
  730. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  731. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  732. {
  733. Drawable* drawable = *k;
  734. if (!drawable->IsInView(frame_, false))
  735. {
  736. drawable->MarkInView(frame_, false);
  737. shadowGeometries_.Push(drawable);
  738. }
  739. Zone* zone = GetZone(drawable);
  740. const Vector<SourceBatch>& batches = drawable->GetBatches();
  741. for (unsigned l = 0; l < batches.Size(); ++l)
  742. {
  743. const SourceBatch& srcBatch = batches[l];
  744. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  745. if (!srcBatch.geometry_ || !srcBatch.numWorldTransforms_ || !tech)
  746. continue;
  747. Pass* pass = tech->GetPass(PASS_SHADOW);
  748. // Skip if material has no shadow pass
  749. if (!pass)
  750. continue;
  751. Batch destBatch(srcBatch);
  752. destBatch.pass_ = pass;
  753. destBatch.camera_ = shadowCamera;
  754. destBatch.zone_ = zone;
  755. destBatch.lightQueue_ = &lightQueue;
  756. AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech);
  757. }
  758. }
  759. }
  760. // Process lit geometries
  761. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  762. {
  763. Drawable* drawable = *j;
  764. drawable->AddLight(light);
  765. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  766. if (!drawable->GetMaxLights())
  767. GetLitBatches(drawable, lightQueue, alphaQueue, useLitBase);
  768. else
  769. maxLightsDrawables_.Insert(drawable);
  770. }
  771. // In deferred modes, store the light volume batch now
  772. if (deferred_)
  773. {
  774. Batch volumeBatch;
  775. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  776. volumeBatch.geometryType_ = GEOM_STATIC;
  777. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  778. volumeBatch.numWorldTransforms_ = 1;
  779. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  780. volumeBatch.camera_ = camera_;
  781. volumeBatch.lightQueue_ = &lightQueue;
  782. volumeBatch.distance_ = light->GetDistance();
  783. volumeBatch.material_ = 0;
  784. volumeBatch.pass_ = 0;
  785. volumeBatch.zone_ = 0;
  786. renderer_->SetLightVolumeBatchShaders(volumeBatch, lightVolumeVSName_, lightVolumePSName_);
  787. lightQueue.volumeBatches_.Push(volumeBatch);
  788. }
  789. }
  790. // Per-vertex light
  791. else
  792. {
  793. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  794. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  795. {
  796. Drawable* drawable = *j;
  797. drawable->AddVertexLight(light);
  798. }
  799. }
  800. }
  801. }
  802. // Process drawables with limited per-pixel light count
  803. if (maxLightsDrawables_.Size())
  804. {
  805. PROFILE(GetMaxLightsBatches);
  806. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  807. {
  808. Drawable* drawable = *i;
  809. drawable->LimitLights();
  810. const PODVector<Light*>& lights = drawable->GetLights();
  811. for (unsigned i = 0; i < lights.Size(); ++i)
  812. {
  813. Light* light = lights[i];
  814. // Find the correct light queue again
  815. LightBatchQueue* queue = light->GetLightQueue();
  816. if (queue)
  817. GetLitBatches(drawable, *queue, alphaQueue, useLitBase);
  818. }
  819. }
  820. }
  821. // Build base pass batches
  822. {
  823. PROFILE(GetBaseBatches);
  824. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  825. {
  826. Drawable* drawable = *i;
  827. Zone* zone = GetZone(drawable);
  828. const Vector<SourceBatch>& batches = drawable->GetBatches();
  829. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  830. if (!drawableVertexLights.Empty())
  831. drawable->LimitVertexLights();
  832. for (unsigned j = 0; j < batches.Size(); ++j)
  833. {
  834. const SourceBatch& srcBatch = batches[j];
  835. // Check here if the material refers to a rendertarget texture with camera(s) attached
  836. // Only check this for backbuffer views (null rendertarget)
  837. if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  838. CheckMaterialForAuxView(srcBatch.material_);
  839. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  840. if (!srcBatch.geometry_ || !srcBatch.numWorldTransforms_ || !tech)
  841. continue;
  842. Batch destBatch(srcBatch);
  843. destBatch.camera_ = camera_;
  844. destBatch.zone_ = zone;
  845. destBatch.isBase_ = true;
  846. destBatch.pass_ = 0;
  847. destBatch.lightMask_ = GetLightMask(drawable);
  848. // Check each of the scene passes
  849. for (unsigned k = 0; k < scenePasses_.Size(); ++k)
  850. {
  851. ScenePassInfo& info = scenePasses_[k];
  852. destBatch.pass_ = tech->GetPass(info.pass_);
  853. if (!destBatch.pass_)
  854. continue;
  855. // Skip forward base pass if the corresponding litbase pass already exists
  856. if (info.pass_ == basePassName_ && j < 32 && drawable->HasBasePass(j))
  857. continue;
  858. if (info.vertexLights_ && !drawableVertexLights.Empty())
  859. {
  860. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  861. // them to prevent double-lighting
  862. if (deferred_ && destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  863. {
  864. vertexLights.Clear();
  865. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  866. {
  867. if (drawableVertexLights[i]->GetPerVertex())
  868. vertexLights.Push(drawableVertexLights[i]);
  869. }
  870. }
  871. else
  872. vertexLights = drawableVertexLights;
  873. if (!vertexLights.Empty())
  874. {
  875. // Find a vertex light queue. If not found, create new
  876. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  877. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  878. if (i == vertexLightQueues_.End())
  879. {
  880. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  881. i->second_.light_ = 0;
  882. i->second_.shadowMap_ = 0;
  883. i->second_.vertexLights_ = vertexLights;
  884. }
  885. destBatch.lightQueue_ = &(i->second_);
  886. }
  887. }
  888. else
  889. destBatch.lightQueue_ = 0;
  890. bool allowInstancing = info.allowInstancing_;
  891. if (allowInstancing && info.markToStencil_ && destBatch.lightMask_ != (zone->GetLightMask() & 0xff))
  892. allowInstancing = false;
  893. AddBatchToQueue(*info.batchQueue_, destBatch, tech, allowInstancing);
  894. }
  895. }
  896. }
  897. }
  898. }
  899. void View::UpdateGeometries()
  900. {
  901. PROFILE(SortAndUpdateGeometry);
  902. WorkQueue* queue = GetSubsystem<WorkQueue>();
  903. // Sort batches
  904. {
  905. WorkItem item;
  906. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  907. {
  908. const RenderPathCommand& command = renderPath_->commands_[i];
  909. if (!IsNecessary(command))
  910. continue;
  911. if (command.type_ == CMD_SCENEPASS)
  912. {
  913. BatchQueue* passQueue = &batchQueues_[command.pass_];
  914. item.workFunction_ = command.sortMode_ == SORT_FRONTTOBACK ? SortBatchQueueFrontToBackWork :
  915. SortBatchQueueBackToFrontWork;
  916. item.start_ = &batchQueues_[command.pass_];
  917. queue->AddWorkItem(item);
  918. }
  919. }
  920. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  921. {
  922. item.workFunction_ = SortLightQueueWork;
  923. item.start_ = &(*i);
  924. queue->AddWorkItem(item);
  925. if (i->shadowSplits_.Size())
  926. {
  927. item.workFunction_ = SortShadowQueueWork;
  928. queue->AddWorkItem(item);
  929. }
  930. }
  931. }
  932. // Update geometries. Split into threaded and non-threaded updates.
  933. {
  934. nonThreadedGeometries_.Clear();
  935. threadedGeometries_.Clear();
  936. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  937. {
  938. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  939. if (type == UPDATE_MAIN_THREAD)
  940. nonThreadedGeometries_.Push(*i);
  941. else if (type == UPDATE_WORKER_THREAD)
  942. threadedGeometries_.Push(*i);
  943. }
  944. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  945. {
  946. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  947. if (type == UPDATE_MAIN_THREAD)
  948. nonThreadedGeometries_.Push(*i);
  949. else if (type == UPDATE_WORKER_THREAD)
  950. threadedGeometries_.Push(*i);
  951. }
  952. if (threadedGeometries_.Size())
  953. {
  954. int numWorkItems = queue->GetNumThreads() + 1; // Worker threads + main thread
  955. int drawablesPerItem = threadedGeometries_.Size() / numWorkItems;
  956. WorkItem item;
  957. item.workFunction_ = UpdateDrawableGeometriesWork;
  958. item.aux_ = const_cast<FrameInfo*>(&frame_);
  959. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  960. for (int i = 0; i < numWorkItems; ++i)
  961. {
  962. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  963. if (i < numWorkItems - 1 && end - start > drawablesPerItem)
  964. end = start + drawablesPerItem;
  965. item.start_ = &(*start);
  966. item.end_ = &(*end);
  967. queue->AddWorkItem(item);
  968. start = end;
  969. }
  970. }
  971. // While the work queue is processed, update non-threaded geometries
  972. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  973. (*i)->UpdateGeometry(frame_);
  974. }
  975. // Finally ensure all threaded work has completed
  976. queue->Complete(M_MAX_UNSIGNED);
  977. }
  978. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue, BatchQueue* alphaQueue, bool useLitBase)
  979. {
  980. Light* light = lightQueue.light_;
  981. Zone* zone = GetZone(drawable);
  982. const Vector<SourceBatch>& batches = drawable->GetBatches();
  983. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  984. // Shadows on transparencies can only be rendered if shadow maps are not reused
  985. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  986. bool allowLitBase = useLitBase && light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  987. for (unsigned i = 0; i < batches.Size(); ++i)
  988. {
  989. const SourceBatch& srcBatch = batches[i];
  990. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  991. if (!srcBatch.geometry_ || !srcBatch.numWorldTransforms_ || !tech)
  992. continue;
  993. // Do not create pixel lit forward passes for materials that render into the G-buffer
  994. if (gBufferPassName_.Value() && tech->HasPass(gBufferPassName_))
  995. continue;
  996. Batch destBatch(srcBatch);
  997. bool isLitAlpha = false;
  998. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  999. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  1000. if (i < 32 && allowLitBase)
  1001. {
  1002. destBatch.pass_ = tech->GetPass(litBasePassName_);
  1003. if (destBatch.pass_)
  1004. {
  1005. destBatch.isBase_ = true;
  1006. drawable->SetBasePass(i);
  1007. }
  1008. else
  1009. destBatch.pass_ = tech->GetPass(lightPassName_);
  1010. }
  1011. else
  1012. destBatch.pass_ = tech->GetPass(lightPassName_);
  1013. // If no lit pass, check for lit alpha
  1014. if (!destBatch.pass_)
  1015. {
  1016. destBatch.pass_ = tech->GetPass(litAlphaPassName_);
  1017. isLitAlpha = true;
  1018. }
  1019. // Skip if material does not receive light at all
  1020. if (!destBatch.pass_)
  1021. continue;
  1022. destBatch.camera_ = camera_;
  1023. destBatch.lightQueue_ = &lightQueue;
  1024. destBatch.zone_ = zone;
  1025. if (!isLitAlpha)
  1026. AddBatchToQueue(lightQueue.litBatches_, destBatch, tech);
  1027. else if (alphaQueue)
  1028. {
  1029. // Transparent batches can not be instanced
  1030. AddBatchToQueue(*alphaQueue, destBatch, tech, false, allowTransparentShadows);
  1031. }
  1032. }
  1033. }
  1034. void View::ExecuteRenderPathCommands()
  1035. {
  1036. // If not reusing shadowmaps, render all of them first
  1037. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1038. {
  1039. PROFILE(RenderShadowMaps);
  1040. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1041. {
  1042. if (i->shadowMap_)
  1043. RenderShadowMap(*i);
  1044. }
  1045. }
  1046. {
  1047. PROFILE(ExecuteRenderPath);
  1048. // Set for safety in case of empty renderpath
  1049. currentRenderTarget_ = substituteRenderTarget_ ? substituteRenderTarget_ : renderTarget_;
  1050. currentViewportTexture_ = 0;
  1051. bool viewportModified = false;
  1052. bool isPingponging = false;
  1053. unsigned lastCommandIndex = 0;
  1054. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1055. {
  1056. RenderPathCommand& command = renderPath_->commands_[i];
  1057. if (IsNecessary(command))
  1058. lastCommandIndex = i;
  1059. }
  1060. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1061. {
  1062. RenderPathCommand& command = renderPath_->commands_[i];
  1063. if (!IsNecessary(command))
  1064. continue;
  1065. bool viewportRead = CheckViewportRead(command);
  1066. bool viewportWrite = CheckViewportWrite(command);
  1067. bool beginPingpong = CheckPingpong(i);
  1068. // Has the viewport been modified and will be read as a texture by the current command?
  1069. if (viewportRead && viewportModified)
  1070. {
  1071. // Start pingponging without a blit if already rendering to the substitute render target
  1072. if (currentRenderTarget_ && currentRenderTarget_ == substituteRenderTarget_ && beginPingpong)
  1073. isPingponging = true;
  1074. // If not using pingponging, simply resolve/copy to the first viewport texture
  1075. if (!isPingponging)
  1076. {
  1077. if (!currentRenderTarget_)
  1078. {
  1079. graphics_->ResolveToTexture(viewportTextures_[0], viewRect_);
  1080. currentViewportTexture_ = viewportTextures_[0];
  1081. viewportModified = false;
  1082. }
  1083. else
  1084. {
  1085. if (viewportWrite)
  1086. {
  1087. BlitFramebuffer(static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture()),
  1088. viewportTextures_[0]->GetRenderSurface(), false);
  1089. currentViewportTexture_ = viewportTextures_[0];
  1090. viewportModified = false;
  1091. }
  1092. else
  1093. {
  1094. // If the current render target is already a texture, and we are not writing to it, can read that
  1095. // texture directly instead of blitting. However keep the viewport dirty flag in case a later command
  1096. // will do both read and write, and then we need to blit / resolve
  1097. currentViewportTexture_ = static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture());
  1098. }
  1099. }
  1100. }
  1101. else
  1102. {
  1103. // Swap the pingpong double buffer sides. Texture 0 will be read next
  1104. viewportTextures_[1] = viewportTextures_[0];
  1105. viewportTextures_[0] = static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture());
  1106. currentViewportTexture_ = viewportTextures_[0];
  1107. viewportModified = false;
  1108. }
  1109. }
  1110. if (beginPingpong)
  1111. isPingponging = true;
  1112. // Determine viewport write target
  1113. if (viewportWrite)
  1114. {
  1115. if (isPingponging)
  1116. {
  1117. currentRenderTarget_ = viewportTextures_[1]->GetRenderSurface();
  1118. // If the render path ends into a quad, it can be redirected to the final render target
  1119. if (i == lastCommandIndex && command.type_ == CMD_QUAD)
  1120. currentRenderTarget_ = renderTarget_;
  1121. }
  1122. else
  1123. currentRenderTarget_ = substituteRenderTarget_ ? substituteRenderTarget_ : renderTarget_;
  1124. }
  1125. switch (command.type_)
  1126. {
  1127. case CMD_CLEAR:
  1128. {
  1129. PROFILE(ClearRenderTarget);
  1130. Color clearColor = command.clearColor_;
  1131. if (command.useFogColor_)
  1132. clearColor = farClipZone_->GetFogColor();
  1133. SetRenderTargets(command);
  1134. graphics_->Clear(command.clearFlags_, clearColor, command.clearDepth_, command.clearStencil_);
  1135. }
  1136. break;
  1137. case CMD_SCENEPASS:
  1138. if (!batchQueues_[command.pass_].IsEmpty())
  1139. {
  1140. PROFILE(RenderScenePass);
  1141. SetRenderTargets(command);
  1142. SetTextures(command);
  1143. graphics_->SetFillMode(camera_->GetFillMode());
  1144. graphics_->SetClipPlane(camera_->GetUseClipping(), camera_->GetClipPlane(), camera_->GetView(), camera_->GetProjection());
  1145. batchQueues_[command.pass_].Draw(this, command.useScissor_, command.markToStencil_);
  1146. }
  1147. break;
  1148. case CMD_QUAD:
  1149. {
  1150. PROFILE(RenderQuad);
  1151. SetRenderTargets(command);
  1152. SetTextures(command);
  1153. RenderQuad(command);
  1154. }
  1155. break;
  1156. case CMD_FORWARDLIGHTS:
  1157. // Render shadow maps + opaque objects' additive lighting
  1158. if (!lightQueues_.Empty())
  1159. {
  1160. PROFILE(RenderLights);
  1161. SetRenderTargets(command);
  1162. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1163. {
  1164. // If reusing shadowmaps, render each of them before the lit batches
  1165. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1166. {
  1167. RenderShadowMap(*i);
  1168. SetRenderTargets(command);
  1169. }
  1170. SetTextures(command);
  1171. graphics_->SetFillMode(camera_->GetFillMode());
  1172. graphics_->SetClipPlane(camera_->GetUseClipping(), camera_->GetClipPlane(), camera_->GetView(), camera_->GetProjection());
  1173. i->litBatches_.Draw(i->light_, this);
  1174. }
  1175. graphics_->SetScissorTest(false);
  1176. graphics_->SetStencilTest(false);
  1177. }
  1178. break;
  1179. case CMD_LIGHTVOLUMES:
  1180. // Render shadow maps + light volumes
  1181. if (!lightQueues_.Empty())
  1182. {
  1183. PROFILE(RenderLightVolumes);
  1184. SetRenderTargets(command);
  1185. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1186. {
  1187. // If reusing shadowmaps, render each of them before the lit batches
  1188. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1189. {
  1190. RenderShadowMap(*i);
  1191. SetRenderTargets(command);
  1192. }
  1193. SetTextures(command);
  1194. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1195. {
  1196. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1197. i->volumeBatches_[j].Draw(this);
  1198. }
  1199. }
  1200. graphics_->SetScissorTest(false);
  1201. graphics_->SetStencilTest(false);
  1202. }
  1203. break;
  1204. default:
  1205. break;
  1206. }
  1207. // If current command output to the viewport, mark it modified
  1208. if (viewportWrite)
  1209. viewportModified = true;
  1210. }
  1211. }
  1212. // After executing all commands, reset rendertarget for debug geometry rendering
  1213. graphics_->SetRenderTarget(0, renderTarget_);
  1214. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1215. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1216. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1217. graphics_->SetViewport(viewRect_);
  1218. graphics_->SetFillMode(FILL_SOLID);
  1219. graphics_->SetClipPlane(false);
  1220. }
  1221. void View::SetRenderTargets(RenderPathCommand& command)
  1222. {
  1223. unsigned index = 0;
  1224. IntRect viewPort = viewRect_;
  1225. while (index < command.outputNames_.Size())
  1226. {
  1227. if (!command.outputNames_[index].Compare("viewport", false))
  1228. graphics_->SetRenderTarget(index, currentRenderTarget_);
  1229. else
  1230. {
  1231. StringHash nameHash(command.outputNames_[index]);
  1232. if (renderTargets_.Contains(nameHash))
  1233. {
  1234. Texture2D* texture = renderTargets_[nameHash];
  1235. graphics_->SetRenderTarget(index, texture);
  1236. if (!index)
  1237. {
  1238. // Determine viewport size from rendertarget info
  1239. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1240. {
  1241. const RenderTargetInfo& info = renderPath_->renderTargets_[i];
  1242. if (!info.name_.Compare(command.outputNames_[index], false))
  1243. {
  1244. switch (info.sizeMode_)
  1245. {
  1246. // If absolute or a divided viewport size, use the full texture
  1247. case SIZE_ABSOLUTE:
  1248. case SIZE_VIEWPORTDIVISOR:
  1249. viewPort = IntRect(0, 0, texture->GetWidth(), texture->GetHeight());
  1250. break;
  1251. // If a divided rendertarget size, retain the same viewport, but scaled
  1252. case SIZE_RENDERTARGETDIVISOR:
  1253. if (info.size_.x_ && info.size_.y_)
  1254. {
  1255. viewPort = IntRect(viewRect_.left_ / info.size_.x_, viewRect_.top_ / info.size_.y_,
  1256. viewRect_.right_ / info.size_.x_, viewRect_.bottom_ / info.size_.y_);
  1257. }
  1258. break;
  1259. }
  1260. break;
  1261. }
  1262. }
  1263. }
  1264. }
  1265. else
  1266. graphics_->SetRenderTarget(0, (RenderSurface*)0);
  1267. }
  1268. ++index;
  1269. }
  1270. while (index < MAX_RENDERTARGETS)
  1271. {
  1272. graphics_->SetRenderTarget(index, (RenderSurface*)0);
  1273. ++index;
  1274. }
  1275. graphics_->SetDepthStencil(GetDepthStencil(graphics_->GetRenderTarget(0)));
  1276. graphics_->SetViewport(viewPort);
  1277. graphics_->SetColorWrite(true);
  1278. }
  1279. void View::SetTextures(RenderPathCommand& command)
  1280. {
  1281. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1282. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1283. {
  1284. if (command.textureNames_[i].Empty())
  1285. continue;
  1286. // Bind the rendered output
  1287. if (!command.textureNames_[i].Compare("viewport", false))
  1288. {
  1289. graphics_->SetTexture(i, currentViewportTexture_);
  1290. continue;
  1291. }
  1292. // Bind a rendertarget
  1293. HashMap<StringHash, Texture2D*>::ConstIterator j = renderTargets_.Find(command.textureNames_[i]);
  1294. if (j != renderTargets_.End())
  1295. {
  1296. graphics_->SetTexture(i, j->second_);
  1297. continue;
  1298. }
  1299. // Bind a texture from the resource system
  1300. Texture* texture;
  1301. // Detect cube/3D textures by file extension: they are defined by an XML file
  1302. if (GetExtension(command.textureNames_[i]) == ".xml")
  1303. {
  1304. // Assume 3D textures are only bound to the volume map unit, otherwise it's a cube texture
  1305. if (i == TU_VOLUMEMAP)
  1306. texture = cache->GetResource<Texture3D>(command.textureNames_[i]);
  1307. else
  1308. texture = cache->GetResource<TextureCube>(command.textureNames_[i]);
  1309. }
  1310. else
  1311. texture = cache->GetResource<Texture2D>(command.textureNames_[i]);
  1312. if (texture)
  1313. graphics_->SetTexture(i, texture);
  1314. else
  1315. {
  1316. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1317. command.textureNames_[i] = String::EMPTY;
  1318. }
  1319. }
  1320. }
  1321. void View::RenderQuad(RenderPathCommand& command)
  1322. {
  1323. // If shader can not be found, clear it from the command to prevent redundant attempts
  1324. /// \todo Do not re-query each frame, as it involves string manipulation
  1325. ShaderVariation* vs = renderer_->GetShader(VS, command.vertexShaderName_, command.vertexShaderDefines_);
  1326. if (!vs)
  1327. command.vertexShaderName_ = String::EMPTY;
  1328. ShaderVariation* ps = renderer_->GetShader(PS, command.pixelShaderName_, command.pixelShaderDefines_);
  1329. if (!ps)
  1330. command.pixelShaderName_ = String::EMPTY;
  1331. // Set shaders & shader parameters and textures
  1332. graphics_->SetShaders(vs, ps);
  1333. const HashMap<StringHash, Variant>& parameters = command.shaderParameters_;
  1334. for (HashMap<StringHash, Variant>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1335. graphics_->SetShaderParameter(k->first_, k->second_);
  1336. graphics_->SetShaderParameter(VSP_DELTATIME, frame_.timeStep_);
  1337. graphics_->SetShaderParameter(PSP_DELTATIME, frame_.timeStep_);
  1338. float nearClip = camera_->GetNearClip();
  1339. float farClip = camera_->GetFarClip();
  1340. graphics_->SetShaderParameter(VSP_NEARCLIP, nearClip);
  1341. graphics_->SetShaderParameter(VSP_FARCLIP, farClip);
  1342. graphics_->SetShaderParameter(PSP_NEARCLIP, nearClip);
  1343. graphics_->SetShaderParameter(PSP_FARCLIP, farClip);
  1344. float rtWidth = (float)rtSize_.x_;
  1345. float rtHeight = (float)rtSize_.y_;
  1346. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1347. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1348. #ifdef USE_OPENGL
  1349. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1350. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1351. #else
  1352. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1353. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1354. #endif
  1355. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1356. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1357. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1358. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1359. {
  1360. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1361. if (!rtInfo.enabled_)
  1362. continue;
  1363. StringHash nameHash(rtInfo.name_);
  1364. if (!renderTargets_.Contains(nameHash))
  1365. continue;
  1366. String invSizeName = rtInfo.name_ + "InvSize";
  1367. String offsetsName = rtInfo.name_ + "Offsets";
  1368. float width = (float)renderTargets_[nameHash]->GetWidth();
  1369. float height = (float)renderTargets_[nameHash]->GetHeight();
  1370. graphics_->SetShaderParameter(invSizeName, Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1371. #ifdef USE_OPENGL
  1372. graphics_->SetShaderParameter(offsetsName, Vector4::ZERO);
  1373. #else
  1374. graphics_->SetShaderParameter(offsetsName, Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1375. #endif
  1376. }
  1377. graphics_->SetBlendMode(BLEND_REPLACE);
  1378. graphics_->SetDepthTest(CMP_ALWAYS);
  1379. graphics_->SetDepthWrite(false);
  1380. graphics_->SetFillMode(FILL_SOLID);
  1381. graphics_->SetClipPlane(false);
  1382. graphics_->SetScissorTest(false);
  1383. graphics_->SetStencilTest(false);
  1384. DrawFullscreenQuad(false);
  1385. }
  1386. bool View::IsNecessary(const RenderPathCommand& command)
  1387. {
  1388. return command.enabled_ && command.outputNames_.Size() && (command.type_ != CMD_SCENEPASS ||
  1389. !batchQueues_[command.pass_].IsEmpty());
  1390. }
  1391. bool View::CheckViewportRead(const RenderPathCommand& command)
  1392. {
  1393. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1394. {
  1395. if (!command.textureNames_[i].Empty() && !command.textureNames_[i].Compare("viewport", false))
  1396. return true;
  1397. }
  1398. return false;
  1399. }
  1400. bool View::CheckViewportWrite(const RenderPathCommand& command)
  1401. {
  1402. for (unsigned i = 0; i < command.outputNames_.Size(); ++i)
  1403. {
  1404. if (!command.outputNames_[i].Compare("viewport", false))
  1405. return true;
  1406. }
  1407. return false;
  1408. }
  1409. bool View::CheckPingpong(unsigned index)
  1410. {
  1411. // Current command must be a viewport-writing quad to begin the pingpong chain
  1412. RenderPathCommand& current = renderPath_->commands_[index];
  1413. if (current.type_ != CMD_QUAD || !CheckViewportWrite(current))
  1414. return false;
  1415. // If there are commands other than quads that target the viewport, we must keep rendering to the final target and resolving
  1416. // to a viewport texture when necessary instead of pingponging, as a scene pass is not guaranteed to fill the entire viewport
  1417. for (unsigned i = index + 1; i < renderPath_->commands_.Size(); ++i)
  1418. {
  1419. RenderPathCommand& command = renderPath_->commands_[i];
  1420. if (!IsNecessary(command))
  1421. continue;
  1422. if (CheckViewportWrite(command))
  1423. {
  1424. if (command.type_ != CMD_QUAD)
  1425. return false;
  1426. }
  1427. }
  1428. return true;
  1429. }
  1430. void View::AllocateScreenBuffers()
  1431. {
  1432. bool needSubstitute = false;
  1433. unsigned numViewportTextures = 0;
  1434. #ifdef USE_OPENGL
  1435. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1436. // Also, if rendering to a texture with full deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1437. if ((deferred_ && !renderTarget_) || (deferredAmbient_ && renderTarget_ && renderTarget_->GetParentTexture()->GetFormat() !=
  1438. Graphics::GetRGBAFormat()))
  1439. needSubstitute = true;
  1440. #endif
  1441. // If backbuffer is antialiased when using deferred rendering, need to reserve a buffer
  1442. if (deferred_ && !renderTarget_ && graphics_->GetMultiSample() > 1)
  1443. needSubstitute = true;
  1444. // Follow final rendertarget format, or use RGB to match the backbuffer format
  1445. unsigned format = renderTarget_ ? renderTarget_->GetParentTexture()->GetFormat() : Graphics::GetRGBFormat();
  1446. // If HDR rendering is enabled use RGBA16f and reserve a buffer
  1447. bool hdrRendering = renderer_->GetHDRRendering();
  1448. if (renderer_->GetHDRRendering())
  1449. {
  1450. format = Graphics::GetRGBAFloat16Format();
  1451. needSubstitute = true;
  1452. }
  1453. #ifdef USE_OPENGL
  1454. if (deferred_ && !hdrRendering)
  1455. format = Graphics::GetRGBAFormat();
  1456. #endif
  1457. // Check for commands which read the viewport, or pingpong between viewport textures
  1458. bool hasViewportRead = false;
  1459. bool hasPingpong = false;
  1460. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1461. {
  1462. const RenderPathCommand& command = renderPath_->commands_[i];
  1463. if (!IsNecessary(command))
  1464. continue;
  1465. if (CheckViewportRead(command))
  1466. hasViewportRead = true;
  1467. if (!hasPingpong && CheckPingpong(i))
  1468. hasPingpong = true;
  1469. }
  1470. if (hasViewportRead)
  1471. {
  1472. ++numViewportTextures;
  1473. // If OpenGL ES, use substitute target to avoid resolve from the backbuffer, which may be slow. However if multisampling
  1474. // is specified, there is no choice
  1475. #ifdef GL_ES_VERSION_2_0
  1476. if (!renderTarget_ && graphics_->GetMultiSample() < 2)
  1477. needSubstitute = true;
  1478. #endif
  1479. // If we have viewport read and target is a cube map, must allocate a substitute target instead as BlitFramebuffer()
  1480. // does not support reading a cube map
  1481. if (renderTarget_ && renderTarget_->GetParentTexture()->GetType() == TextureCube::GetTypeStatic())
  1482. needSubstitute = true;
  1483. if (hasPingpong && !needSubstitute)
  1484. ++numViewportTextures;
  1485. }
  1486. // Allocate screen buffers with filtering active in case the quad commands need that
  1487. // Follow the sRGB mode of the destination render target
  1488. bool sRGB = renderTarget_ ? renderTarget_->GetParentTexture()->GetSRGB() : graphics_->GetSRGB();
  1489. if (needSubstitute)
  1490. {
  1491. substituteRenderTarget_ = needSubstitute ?
  1492. renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true, sRGB)->GetRenderSurface() : (RenderSurface*)0;
  1493. }
  1494. for (unsigned i = 0; i < MAX_VIEWPORT_TEXTURES; ++i)
  1495. {
  1496. viewportTextures_[i] = i < numViewportTextures ? renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true, sRGB) :
  1497. (Texture2D*)0;
  1498. }
  1499. // If using a substitute render target and pingponging, the substitute can act as the second viewport texture
  1500. if (numViewportTextures == 1 && substituteRenderTarget_)
  1501. viewportTextures_[1] = static_cast<Texture2D*>(substituteRenderTarget_->GetParentTexture());
  1502. // Allocate extra render targets defined by the rendering path
  1503. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1504. {
  1505. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1506. if (!rtInfo.enabled_)
  1507. continue;
  1508. unsigned width = rtInfo.size_.x_;
  1509. unsigned height = rtInfo.size_.y_;
  1510. if (rtInfo.sizeMode_ == SIZE_VIEWPORTDIVISOR)
  1511. {
  1512. width = viewSize_.x_ / (width ? width : 1);
  1513. height = viewSize_.y_ / (height ? height : 1);
  1514. }
  1515. if (rtInfo.sizeMode_ == SIZE_RENDERTARGETDIVISOR)
  1516. {
  1517. width = rtSize_.x_ / (width ? width : 1);
  1518. height = rtSize_.y_ / (height ? height : 1);
  1519. }
  1520. renderTargets_[rtInfo.name_] = renderer_->GetScreenBuffer(width, height, rtInfo.format_, rtInfo.filtered_, rtInfo.sRGB_);
  1521. }
  1522. }
  1523. void View::BlitFramebuffer(Texture2D* source, RenderSurface* destination, bool depthWrite)
  1524. {
  1525. if (!source)
  1526. return;
  1527. PROFILE(BlitFramebuffer);
  1528. graphics_->SetBlendMode(BLEND_REPLACE);
  1529. graphics_->SetDepthTest(CMP_ALWAYS);
  1530. graphics_->SetDepthWrite(depthWrite);
  1531. graphics_->SetFillMode(FILL_SOLID);
  1532. graphics_->SetClipPlane(false);
  1533. graphics_->SetScissorTest(false);
  1534. graphics_->SetStencilTest(false);
  1535. graphics_->SetRenderTarget(0, destination);
  1536. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1537. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1538. graphics_->SetDepthStencil(GetDepthStencil(destination));
  1539. graphics_->SetViewport(viewRect_);
  1540. String shaderName = "CopyFramebuffer";
  1541. graphics_->SetShaders(renderer_->GetShader(VS, shaderName), renderer_->GetShader(PS, shaderName));
  1542. float rtWidth = (float)rtSize_.x_;
  1543. float rtHeight = (float)rtSize_.y_;
  1544. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1545. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1546. #ifdef USE_OPENGL
  1547. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1548. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1549. #else
  1550. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1551. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1552. #endif
  1553. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1554. graphics_->SetTexture(TU_DIFFUSE, source);
  1555. DrawFullscreenQuad(false);
  1556. }
  1557. void View::DrawFullscreenQuad(bool nearQuad)
  1558. {
  1559. Light* quadDirLight = renderer_->GetQuadDirLight();
  1560. Geometry* geometry = renderer_->GetLightGeometry(quadDirLight);
  1561. Matrix3x4 model = Matrix3x4::IDENTITY;
  1562. Matrix4 projection = Matrix4::IDENTITY;
  1563. #ifdef USE_OPENGL
  1564. if (camera_->GetFlipVertical())
  1565. projection.m11_ = -1.0f;
  1566. model.m23_ = nearQuad ? -1.0f : 1.0f;
  1567. #else
  1568. model.m23_ = nearQuad ? 0.0f : 1.0f;
  1569. #endif
  1570. graphics_->SetCullMode(CULL_NONE);
  1571. graphics_->SetShaderParameter(VSP_MODEL, model);
  1572. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1573. graphics_->ClearTransformSources();
  1574. geometry->Draw(graphics_);
  1575. }
  1576. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1577. {
  1578. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1579. float halfViewSize = camera->GetHalfViewSize();
  1580. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1581. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1582. {
  1583. Drawable* occluder = *i;
  1584. bool erase = false;
  1585. if (!occluder->IsInView(frame_, false))
  1586. occluder->UpdateBatches(frame_);
  1587. // Check occluder's draw distance (in main camera view)
  1588. float maxDistance = occluder->GetDrawDistance();
  1589. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1590. {
  1591. // Check that occluder is big enough on the screen
  1592. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1593. float diagonal = box.Size().Length();
  1594. float compare;
  1595. if (!camera->IsOrthographic())
  1596. compare = diagonal * halfViewSize / occluder->GetDistance();
  1597. else
  1598. compare = diagonal * invOrthoSize;
  1599. if (compare < occluderSizeThreshold_)
  1600. erase = true;
  1601. else
  1602. {
  1603. // Store amount of triangles divided by screen size as a sorting key
  1604. // (best occluders are big and have few triangles)
  1605. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1606. }
  1607. }
  1608. else
  1609. erase = true;
  1610. if (erase)
  1611. i = occluders.Erase(i);
  1612. else
  1613. ++i;
  1614. }
  1615. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1616. if (occluders.Size())
  1617. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1618. }
  1619. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1620. {
  1621. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1622. buffer->Clear();
  1623. for (unsigned i = 0; i < occluders.Size(); ++i)
  1624. {
  1625. Drawable* occluder = occluders[i];
  1626. if (i > 0)
  1627. {
  1628. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1629. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1630. continue;
  1631. }
  1632. // Check for running out of triangles
  1633. if (!occluder->DrawOcclusion(buffer))
  1634. break;
  1635. }
  1636. buffer->BuildDepthHierarchy();
  1637. }
  1638. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1639. {
  1640. Light* light = query.light_;
  1641. LightType type = light->GetLightType();
  1642. const Frustum& frustum = camera_->GetFrustum();
  1643. // Check if light should be shadowed
  1644. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1645. // If shadow distance non-zero, check it
  1646. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1647. isShadowed = false;
  1648. // OpenGL ES can not support point light shadows
  1649. #ifdef GL_ES_VERSION_2_0
  1650. if (isShadowed && type == LIGHT_POINT)
  1651. isShadowed = false;
  1652. #endif
  1653. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1654. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1655. query.litGeometries_.Clear();
  1656. switch (type)
  1657. {
  1658. case LIGHT_DIRECTIONAL:
  1659. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1660. {
  1661. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1662. query.litGeometries_.Push(geometries_[i]);
  1663. }
  1664. break;
  1665. case LIGHT_SPOT:
  1666. {
  1667. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1668. octree_->GetDrawables(octreeQuery);
  1669. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1670. {
  1671. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1672. query.litGeometries_.Push(tempDrawables[i]);
  1673. }
  1674. }
  1675. break;
  1676. case LIGHT_POINT:
  1677. {
  1678. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1679. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1680. octree_->GetDrawables(octreeQuery);
  1681. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1682. {
  1683. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1684. query.litGeometries_.Push(tempDrawables[i]);
  1685. }
  1686. }
  1687. break;
  1688. }
  1689. // If no lit geometries or not shadowed, no need to process shadow cameras
  1690. if (query.litGeometries_.Empty() || !isShadowed)
  1691. {
  1692. query.numSplits_ = 0;
  1693. return;
  1694. }
  1695. // Determine number of shadow cameras and setup their initial positions
  1696. SetupShadowCameras(query);
  1697. // Process each split for shadow casters
  1698. query.shadowCasters_.Clear();
  1699. for (unsigned i = 0; i < query.numSplits_; ++i)
  1700. {
  1701. Camera* shadowCamera = query.shadowCameras_[i];
  1702. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1703. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1704. // For point light check that the face is visible: if not, can skip the split
  1705. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1706. continue;
  1707. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1708. if (type == LIGHT_DIRECTIONAL)
  1709. {
  1710. if (minZ_ > query.shadowFarSplits_[i])
  1711. continue;
  1712. if (maxZ_ < query.shadowNearSplits_[i])
  1713. continue;
  1714. // Reuse lit geometry query for all except directional lights
  1715. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1716. camera_->GetViewMask());
  1717. octree_->GetDrawables(query);
  1718. }
  1719. // Check which shadow casters actually contribute to the shadowing
  1720. ProcessShadowCasters(query, tempDrawables, i);
  1721. }
  1722. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1723. // only cost has been the shadow camera setup & queries
  1724. if (query.shadowCasters_.Empty())
  1725. query.numSplits_ = 0;
  1726. }
  1727. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1728. {
  1729. Light* light = query.light_;
  1730. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1731. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1732. const Matrix3x4& lightView = shadowCamera->GetView();
  1733. const Matrix4& lightProj = shadowCamera->GetProjection();
  1734. LightType type = light->GetLightType();
  1735. query.shadowCasterBox_[splitIndex].defined_ = false;
  1736. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1737. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1738. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1739. Frustum lightViewFrustum;
  1740. if (type != LIGHT_DIRECTIONAL)
  1741. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1742. else
  1743. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1744. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1745. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1746. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1747. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1748. return;
  1749. BoundingBox lightViewBox;
  1750. BoundingBox lightProjBox;
  1751. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1752. {
  1753. Drawable* drawable = *i;
  1754. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1755. // Check for that first
  1756. if (!drawable->GetCastShadows())
  1757. continue;
  1758. // Check shadow mask
  1759. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1760. continue;
  1761. // For point light, check that this drawable is inside the split shadow camera frustum
  1762. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1763. continue;
  1764. // Check shadow distance
  1765. float maxShadowDistance = drawable->GetShadowDistance();
  1766. float drawDistance = drawable->GetDrawDistance();
  1767. bool batchesUpdated = drawable->IsInView(frame_, false);
  1768. if (drawDistance > 0.0f && (maxShadowDistance <= 0.0f || drawDistance < maxShadowDistance))
  1769. maxShadowDistance = drawDistance;
  1770. if (maxShadowDistance > 0.0f)
  1771. {
  1772. if (!batchesUpdated)
  1773. {
  1774. drawable->UpdateBatches(frame_);
  1775. batchesUpdated = true;
  1776. }
  1777. if (drawable->GetDistance() > maxShadowDistance)
  1778. continue;
  1779. }
  1780. // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several
  1781. // times. However, this should not cause problems as no scene modification happens at this point.
  1782. if (!batchesUpdated)
  1783. drawable->UpdateBatches(frame_);
  1784. // Project shadow caster bounding box to light view space for visibility check
  1785. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1786. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1787. {
  1788. // Merge to shadow caster bounding box and add to the list
  1789. if (type == LIGHT_DIRECTIONAL)
  1790. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1791. else
  1792. {
  1793. lightProjBox = lightViewBox.Projected(lightProj);
  1794. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1795. }
  1796. query.shadowCasters_.Push(drawable);
  1797. }
  1798. }
  1799. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1800. }
  1801. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1802. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1803. {
  1804. if (shadowCamera->IsOrthographic())
  1805. {
  1806. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1807. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1808. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1809. }
  1810. else
  1811. {
  1812. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1813. if (drawable->IsInView(frame_))
  1814. return true;
  1815. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1816. Vector3 center = lightViewBox.Center();
  1817. Ray extrusionRay(center, center);
  1818. float extrusionDistance = shadowCamera->GetFarClip();
  1819. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1820. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1821. float sizeFactor = extrusionDistance / originalDistance;
  1822. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1823. // than necessary, so the test will be conservative
  1824. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1825. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1826. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1827. lightViewBox.Merge(extrudedBox);
  1828. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1829. }
  1830. }
  1831. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1832. {
  1833. unsigned width = shadowMap->GetWidth();
  1834. unsigned height = shadowMap->GetHeight();
  1835. int maxCascades = renderer_->GetMaxShadowCascades();
  1836. switch (light->GetLightType())
  1837. {
  1838. case LIGHT_DIRECTIONAL:
  1839. if (maxCascades == 1)
  1840. return IntRect(0, 0, width, height);
  1841. else if (maxCascades == 2)
  1842. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1843. else
  1844. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1845. (splitIndex / 2 + 1) * height / 2);
  1846. case LIGHT_SPOT:
  1847. return IntRect(0, 0, width, height);
  1848. case LIGHT_POINT:
  1849. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1850. (splitIndex / 2 + 1) * height / 3);
  1851. }
  1852. return IntRect();
  1853. }
  1854. void View::SetupShadowCameras(LightQueryResult& query)
  1855. {
  1856. Light* light = query.light_;
  1857. int splits = 0;
  1858. switch (light->GetLightType())
  1859. {
  1860. case LIGHT_DIRECTIONAL:
  1861. {
  1862. const CascadeParameters& cascade = light->GetShadowCascade();
  1863. float nearSplit = camera_->GetNearClip();
  1864. float farSplit;
  1865. while (splits < renderer_->GetMaxShadowCascades())
  1866. {
  1867. // If split is completely beyond camera far clip, we are done
  1868. if (nearSplit > camera_->GetFarClip())
  1869. break;
  1870. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1871. if (farSplit <= nearSplit)
  1872. break;
  1873. // Setup the shadow camera for the split
  1874. Camera* shadowCamera = renderer_->GetShadowCamera();
  1875. query.shadowCameras_[splits] = shadowCamera;
  1876. query.shadowNearSplits_[splits] = nearSplit;
  1877. query.shadowFarSplits_[splits] = farSplit;
  1878. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1879. nearSplit = farSplit;
  1880. ++splits;
  1881. }
  1882. }
  1883. break;
  1884. case LIGHT_SPOT:
  1885. {
  1886. Camera* shadowCamera = renderer_->GetShadowCamera();
  1887. query.shadowCameras_[0] = shadowCamera;
  1888. Node* cameraNode = shadowCamera->GetNode();
  1889. Node* lightNode = light->GetNode();
  1890. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1891. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1892. shadowCamera->SetFarClip(light->GetRange());
  1893. shadowCamera->SetFov(light->GetFov());
  1894. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1895. splits = 1;
  1896. }
  1897. break;
  1898. case LIGHT_POINT:
  1899. {
  1900. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1901. {
  1902. Camera* shadowCamera = renderer_->GetShadowCamera();
  1903. query.shadowCameras_[i] = shadowCamera;
  1904. Node* cameraNode = shadowCamera->GetNode();
  1905. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1906. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1907. cameraNode->SetDirection(*directions[i]);
  1908. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1909. shadowCamera->SetFarClip(light->GetRange());
  1910. shadowCamera->SetFov(90.0f);
  1911. shadowCamera->SetAspectRatio(1.0f);
  1912. }
  1913. splits = MAX_CUBEMAP_FACES;
  1914. }
  1915. break;
  1916. }
  1917. query.numSplits_ = splits;
  1918. }
  1919. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1920. {
  1921. Node* shadowCameraNode = shadowCamera->GetNode();
  1922. Node* lightNode = light->GetNode();
  1923. float extrusionDistance = camera_->GetFarClip();
  1924. const FocusParameters& parameters = light->GetShadowFocus();
  1925. // Calculate initial position & rotation
  1926. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightNode->GetWorldDirection();
  1927. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1928. // Calculate main camera shadowed frustum in light's view space
  1929. farSplit = Min(farSplit, camera_->GetFarClip());
  1930. // Use the scene Z bounds to limit frustum size if applicable
  1931. if (parameters.focus_)
  1932. {
  1933. nearSplit = Max(minZ_, nearSplit);
  1934. farSplit = Min(maxZ_, farSplit);
  1935. }
  1936. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1937. Polyhedron frustumVolume;
  1938. frustumVolume.Define(splitFrustum);
  1939. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1940. if (parameters.focus_)
  1941. {
  1942. BoundingBox litGeometriesBox;
  1943. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1944. {
  1945. Drawable* drawable = geometries_[i];
  1946. // Skip skyboxes as they have undefinedly large bounding box size
  1947. if (drawable->GetType() == Skybox::GetTypeStatic())
  1948. continue;
  1949. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1950. (GetLightMask(drawable) & light->GetLightMask()))
  1951. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1952. }
  1953. if (litGeometriesBox.defined_)
  1954. {
  1955. frustumVolume.Clip(litGeometriesBox);
  1956. // If volume became empty, restore it to avoid zero size
  1957. if (frustumVolume.Empty())
  1958. frustumVolume.Define(splitFrustum);
  1959. }
  1960. }
  1961. // Transform frustum volume to light space
  1962. const Matrix3x4& lightView = shadowCamera->GetView();
  1963. frustumVolume.Transform(lightView);
  1964. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1965. BoundingBox shadowBox;
  1966. if (!parameters.nonUniform_)
  1967. shadowBox.Define(Sphere(frustumVolume));
  1968. else
  1969. shadowBox.Define(frustumVolume);
  1970. shadowCamera->SetOrthographic(true);
  1971. shadowCamera->SetAspectRatio(1.0f);
  1972. shadowCamera->SetNearClip(0.0f);
  1973. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1974. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1975. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1976. }
  1977. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1978. const BoundingBox& shadowCasterBox)
  1979. {
  1980. const FocusParameters& parameters = light->GetShadowFocus();
  1981. float shadowMapWidth = (float)(shadowViewport.Width());
  1982. LightType type = light->GetLightType();
  1983. if (type == LIGHT_DIRECTIONAL)
  1984. {
  1985. BoundingBox shadowBox;
  1986. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1987. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1988. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1989. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1990. // Requantize and snap to shadow map texels
  1991. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1992. }
  1993. if (type == LIGHT_SPOT)
  1994. {
  1995. if (parameters.focus_)
  1996. {
  1997. float viewSizeX = Max(Abs(shadowCasterBox.min_.x_), Abs(shadowCasterBox.max_.x_));
  1998. float viewSizeY = Max(Abs(shadowCasterBox.min_.y_), Abs(shadowCasterBox.max_.y_));
  1999. float viewSize = Max(viewSizeX, viewSizeY);
  2000. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  2001. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  2002. float quantize = parameters.quantize_ * invOrthoSize;
  2003. float minView = parameters.minView_ * invOrthoSize;
  2004. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  2005. if (viewSize < 1.0f)
  2006. shadowCamera->SetZoom(1.0f / viewSize);
  2007. }
  2008. }
  2009. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  2010. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  2011. if (shadowCamera->GetZoom() >= 1.0f)
  2012. {
  2013. if (light->GetLightType() != LIGHT_POINT)
  2014. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  2015. else
  2016. {
  2017. #ifdef USE_OPENGL
  2018. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  2019. #else
  2020. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  2021. #endif
  2022. }
  2023. }
  2024. }
  2025. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  2026. const BoundingBox& viewBox)
  2027. {
  2028. Node* shadowCameraNode = shadowCamera->GetNode();
  2029. const FocusParameters& parameters = light->GetShadowFocus();
  2030. float shadowMapWidth = (float)(shadowViewport.Width());
  2031. float minX = viewBox.min_.x_;
  2032. float minY = viewBox.min_.y_;
  2033. float maxX = viewBox.max_.x_;
  2034. float maxY = viewBox.max_.y_;
  2035. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  2036. Vector2 viewSize(maxX - minX, maxY - minY);
  2037. // Quantize size to reduce swimming
  2038. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  2039. if (parameters.nonUniform_)
  2040. {
  2041. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  2042. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  2043. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  2044. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  2045. }
  2046. else if (parameters.focus_)
  2047. {
  2048. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  2049. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  2050. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  2051. viewSize.y_ = viewSize.x_;
  2052. }
  2053. shadowCamera->SetOrthoSize(viewSize);
  2054. // Center shadow camera to the view space bounding box
  2055. Quaternion rot(shadowCameraNode->GetWorldRotation());
  2056. Vector3 adjust(center.x_, center.y_, 0.0f);
  2057. shadowCameraNode->Translate(rot * adjust);
  2058. // If the shadow map viewport is known, snap to whole texels
  2059. if (shadowMapWidth > 0.0f)
  2060. {
  2061. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  2062. // Take into account that shadow map border will not be used
  2063. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  2064. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  2065. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  2066. shadowCameraNode->Translate(rot * snap);
  2067. }
  2068. }
  2069. void View::FindZone(Drawable* drawable)
  2070. {
  2071. Vector3 center = drawable->GetWorldBoundingBox().Center();
  2072. int bestPriority = M_MIN_INT;
  2073. Zone* newZone = 0;
  2074. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  2075. // (possibly incorrect) and must be re-evaluated on the next frame
  2076. bool temporary = !camera_->GetFrustum().IsInside(center);
  2077. // First check if the last zone remains a conclusive result
  2078. Zone* lastZone = drawable->GetLastZone();
  2079. if (lastZone && (lastZone->GetViewMask() & camera_->GetViewMask()) && lastZone->GetPriority() >= highestZonePriority_ &&
  2080. (drawable->GetZoneMask() & lastZone->GetZoneMask()) && lastZone->IsInside(center))
  2081. newZone = lastZone;
  2082. else
  2083. {
  2084. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  2085. {
  2086. Zone* zone = *i;
  2087. int priority = zone->GetPriority();
  2088. if (priority > bestPriority && (drawable->GetZoneMask() & zone->GetZoneMask()) && zone->IsInside(center))
  2089. {
  2090. newZone = zone;
  2091. bestPriority = priority;
  2092. }
  2093. }
  2094. }
  2095. drawable->SetZone(newZone, temporary);
  2096. }
  2097. Technique* View::GetTechnique(Drawable* drawable, Material* material)
  2098. {
  2099. if (!material)
  2100. {
  2101. const Vector<TechniqueEntry>& techniques = renderer_->GetDefaultMaterial()->GetTechniques();
  2102. return techniques.Size() ? techniques[0].technique_ : (Technique*)0;
  2103. }
  2104. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  2105. // If only one technique, no choice
  2106. if (techniques.Size() == 1)
  2107. return techniques[0].technique_;
  2108. else
  2109. {
  2110. float lodDistance = drawable->GetLodDistance();
  2111. // Check for suitable technique. Techniques should be ordered like this:
  2112. // Most distant & highest quality
  2113. // Most distant & lowest quality
  2114. // Second most distant & highest quality
  2115. // ...
  2116. for (unsigned i = 0; i < techniques.Size(); ++i)
  2117. {
  2118. const TechniqueEntry& entry = techniques[i];
  2119. Technique* tech = entry.technique_;
  2120. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  2121. continue;
  2122. if (lodDistance >= entry.lodDistance_)
  2123. return tech;
  2124. }
  2125. // If no suitable technique found, fallback to the last
  2126. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  2127. }
  2128. }
  2129. void View::CheckMaterialForAuxView(Material* material)
  2130. {
  2131. const SharedPtr<Texture>* textures = material->GetTextures();
  2132. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  2133. {
  2134. Texture* texture = textures[i];
  2135. if (texture && texture->GetUsage() == TEXTURE_RENDERTARGET)
  2136. {
  2137. // Have to check cube & 2D textures separately
  2138. if (texture->GetType() == Texture2D::GetTypeStatic())
  2139. {
  2140. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  2141. RenderSurface* target = tex2D->GetRenderSurface();
  2142. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  2143. target->QueueUpdate();
  2144. }
  2145. else if (texture->GetType() == TextureCube::GetTypeStatic())
  2146. {
  2147. TextureCube* texCube = static_cast<TextureCube*>(texture);
  2148. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  2149. {
  2150. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  2151. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  2152. target->QueueUpdate();
  2153. }
  2154. }
  2155. }
  2156. }
  2157. // Flag as processed so we can early-out next time we come across this material on the same frame
  2158. material->MarkForAuxView(frame_.frameNumber_);
  2159. }
  2160. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  2161. {
  2162. if (!batch.material_)
  2163. batch.material_ = renderer_->GetDefaultMaterial();
  2164. // Convert to instanced if possible
  2165. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && batch.geometry_->GetIndexBuffer() && !batch.overrideView_)
  2166. batch.geometryType_ = GEOM_INSTANCED;
  2167. if (batch.geometryType_ == GEOM_INSTANCED)
  2168. {
  2169. HashMap<BatchGroupKey, BatchGroup>* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_;
  2170. BatchGroupKey key(batch);
  2171. HashMap<BatchGroupKey, BatchGroup>::Iterator i = groups->Find(key);
  2172. if (i == groups->End())
  2173. {
  2174. // Create a new group based on the batch
  2175. // In case the group remains below the instancing limit, do not enable instancing shaders yet
  2176. BatchGroup newGroup(batch);
  2177. newGroup.geometryType_ = GEOM_STATIC;
  2178. renderer_->SetBatchShaders(newGroup, tech, allowShadows);
  2179. newGroup.CalculateSortKey();
  2180. i = groups->Insert(MakePair(key, newGroup));
  2181. }
  2182. int oldSize = i->second_.instances_.Size();
  2183. i->second_.AddTransforms(batch);
  2184. // Convert to using instancing shaders when the instancing limit is reached
  2185. if (oldSize < minInstances_ && (int)i->second_.instances_.Size() >= minInstances_)
  2186. {
  2187. i->second_.geometryType_ = GEOM_INSTANCED;
  2188. renderer_->SetBatchShaders(i->second_, tech, allowShadows);
  2189. i->second_.CalculateSortKey();
  2190. }
  2191. }
  2192. else
  2193. {
  2194. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2195. batch.CalculateSortKey();
  2196. batchQueue.batches_.Push(batch);
  2197. }
  2198. }
  2199. void View::PrepareInstancingBuffer()
  2200. {
  2201. PROFILE(PrepareInstancingBuffer);
  2202. unsigned totalInstances = 0;
  2203. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2204. totalInstances += i->second_.GetNumInstances();
  2205. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2206. {
  2207. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2208. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances();
  2209. totalInstances += i->litBatches_.GetNumInstances();
  2210. }
  2211. // If fail to set buffer size, fall back to per-group locking
  2212. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2213. {
  2214. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2215. unsigned freeIndex = 0;
  2216. void* dest = instancingBuffer->Lock(0, totalInstances, true);
  2217. if (!dest)
  2218. return;
  2219. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2220. i->second_.SetTransforms(dest, freeIndex);
  2221. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2222. {
  2223. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2224. i->shadowSplits_[j].shadowBatches_.SetTransforms(dest, freeIndex);
  2225. i->litBatches_.SetTransforms(dest, freeIndex);
  2226. }
  2227. instancingBuffer->Unlock();
  2228. }
  2229. }
  2230. void View::SetupLightVolumeBatch(Batch& batch)
  2231. {
  2232. Light* light = batch.lightQueue_->light_;
  2233. LightType type = light->GetLightType();
  2234. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2235. float lightDist;
  2236. graphics_->SetBlendMode(BLEND_ADD);
  2237. graphics_->SetDepthBias(0.0f, 0.0f);
  2238. graphics_->SetDepthWrite(false);
  2239. graphics_->SetFillMode(FILL_SOLID);
  2240. graphics_->SetClipPlane(false);
  2241. if (type != LIGHT_DIRECTIONAL)
  2242. {
  2243. if (type == LIGHT_POINT)
  2244. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2245. else
  2246. lightDist = light->GetFrustum().Distance(cameraPos);
  2247. // Draw front faces if not inside light volume
  2248. if (lightDist < camera_->GetNearClip() * 2.0f)
  2249. {
  2250. renderer_->SetCullMode(CULL_CW, camera_);
  2251. graphics_->SetDepthTest(CMP_GREATER);
  2252. }
  2253. else
  2254. {
  2255. renderer_->SetCullMode(CULL_CCW, camera_);
  2256. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2257. }
  2258. }
  2259. else
  2260. {
  2261. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2262. // refresh the directional light's model transform before rendering
  2263. light->GetVolumeTransform(camera_);
  2264. graphics_->SetCullMode(CULL_NONE);
  2265. graphics_->SetDepthTest(CMP_ALWAYS);
  2266. }
  2267. graphics_->SetScissorTest(false);
  2268. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2269. }
  2270. void View::RenderShadowMap(const LightBatchQueue& queue)
  2271. {
  2272. PROFILE(RenderShadowMap);
  2273. Texture2D* shadowMap = queue.shadowMap_;
  2274. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2275. graphics_->SetColorWrite(false);
  2276. graphics_->SetFillMode(FILL_SOLID);
  2277. graphics_->SetClipPlane(false);
  2278. graphics_->SetStencilTest(false);
  2279. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2280. graphics_->SetDepthStencil(shadowMap);
  2281. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2282. graphics_->Clear(CLEAR_DEPTH);
  2283. // Set shadow depth bias
  2284. const BiasParameters& parameters = queue.light_->GetShadowBias();
  2285. // Render each of the splits
  2286. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2287. {
  2288. float multiplier = 1.0f;
  2289. // For directional light cascade splits, adjust depth bias according to the far clip ratio of the splits
  2290. if (i > 0 && queue.light_->GetLightType() == LIGHT_DIRECTIONAL)
  2291. {
  2292. multiplier = Max(queue.shadowSplits_[i].shadowCamera_->GetFarClip() / queue.shadowSplits_[0].shadowCamera_->GetFarClip(), 1.0f);
  2293. multiplier = 1.0f + (multiplier - 1.0f) * queue.light_->GetShadowCascade().biasAutoAdjust_;
  2294. }
  2295. graphics_->SetDepthBias(multiplier * parameters.constantBias_, multiplier * parameters.slopeScaledBias_);
  2296. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2297. if (!shadowQueue.shadowBatches_.IsEmpty())
  2298. {
  2299. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2300. shadowQueue.shadowBatches_.Draw(this);
  2301. }
  2302. }
  2303. graphics_->SetColorWrite(true);
  2304. graphics_->SetDepthBias(0.0f, 0.0f);
  2305. }
  2306. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2307. {
  2308. // If using the backbuffer, return the backbuffer depth-stencil
  2309. if (!renderTarget)
  2310. return 0;
  2311. // Then check for linked depth-stencil
  2312. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2313. // Finally get one from Renderer
  2314. if (!depthStencil)
  2315. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2316. return depthStencil;
  2317. }
  2318. }