View.cpp 107 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "DebugRenderer.h"
  25. #include "FileSystem.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "GraphicsImpl.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "RenderPath.h"
  35. #include "ResourceCache.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Technique.h"
  41. #include "Texture2D.h"
  42. #include "Texture3D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "DebugNew.h"
  48. namespace Urho3D
  49. {
  50. static const Vector3* directions[] =
  51. {
  52. &Vector3::RIGHT,
  53. &Vector3::LEFT,
  54. &Vector3::UP,
  55. &Vector3::DOWN,
  56. &Vector3::FORWARD,
  57. &Vector3::BACK
  58. };
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.003f;
  60. /// %Frustum octree query for shadowcasters.
  61. class ShadowCasterOctreeQuery : public FrustumOctreeQuery
  62. {
  63. public:
  64. /// Construct with frustum and query parameters.
  65. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  66. unsigned viewMask = DEFAULT_VIEWMASK) :
  67. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  68. {
  69. }
  70. /// Intersection test for drawables.
  71. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  72. {
  73. while (start != end)
  74. {
  75. Drawable* drawable = *start++;
  76. if (drawable->GetCastShadows() && (drawable->GetDrawableFlags() & drawableFlags_) &&
  77. (drawable->GetViewMask() & viewMask_))
  78. {
  79. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  80. result_.Push(drawable);
  81. }
  82. }
  83. }
  84. };
  85. /// %Frustum octree query for zones and occluders.
  86. class ZoneOccluderOctreeQuery : public FrustumOctreeQuery
  87. {
  88. public:
  89. /// Construct with frustum and query parameters.
  90. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  91. unsigned viewMask = DEFAULT_VIEWMASK) :
  92. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  93. {
  94. }
  95. /// Intersection test for drawables.
  96. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  97. {
  98. while (start != end)
  99. {
  100. Drawable* drawable = *start++;
  101. unsigned char flags = drawable->GetDrawableFlags();
  102. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && (drawable->GetViewMask() &
  103. viewMask_))
  104. {
  105. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  106. result_.Push(drawable);
  107. }
  108. }
  109. }
  110. };
  111. /// %Frustum octree query with occlusion.
  112. class OccludedFrustumOctreeQuery : public FrustumOctreeQuery
  113. {
  114. public:
  115. /// Construct with frustum, occlusion buffer and query parameters.
  116. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  117. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  118. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask),
  119. buffer_(buffer)
  120. {
  121. }
  122. /// Intersection test for an octant.
  123. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  124. {
  125. if (inside)
  126. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  127. else
  128. {
  129. Intersection result = frustum_.IsInside(box);
  130. if (result != OUTSIDE && !buffer_->IsVisible(box))
  131. result = OUTSIDE;
  132. return result;
  133. }
  134. }
  135. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  136. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  137. {
  138. while (start != end)
  139. {
  140. Drawable* drawable = *start++;
  141. if ((drawable->GetDrawableFlags() & drawableFlags_) && (drawable->GetViewMask() & viewMask_))
  142. {
  143. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  144. result_.Push(drawable);
  145. }
  146. }
  147. }
  148. /// Occlusion buffer.
  149. OcclusionBuffer* buffer_;
  150. };
  151. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  152. {
  153. View* view = reinterpret_cast<View*>(item->aux_);
  154. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  155. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  156. OcclusionBuffer* buffer = view->occlusionBuffer_;
  157. const Matrix3x4& viewMatrix = view->camera_->GetView();
  158. Vector3 viewZ = Vector3(viewMatrix.m20_, viewMatrix.m21_, viewMatrix.m22_);
  159. Vector3 absViewZ = viewZ.Abs();
  160. unsigned cameraViewMask = view->camera_->GetViewMask();
  161. bool cameraZoneOverride = view->cameraZoneOverride_;
  162. PerThreadSceneResult& result = view->sceneResults_[threadIndex];
  163. while (start != end)
  164. {
  165. Drawable* drawable = *start++;
  166. bool batchesUpdated = false;
  167. // If draw distance non-zero, update and check it
  168. float maxDistance = drawable->GetDrawDistance();
  169. if (maxDistance > 0.0f)
  170. {
  171. drawable->UpdateBatches(view->frame_);
  172. batchesUpdated = true;
  173. if (drawable->GetDistance() > maxDistance)
  174. continue;
  175. }
  176. if (!buffer || !drawable->IsOccludee() || buffer->IsVisible(drawable->GetWorldBoundingBox()))
  177. {
  178. if (!batchesUpdated)
  179. drawable->UpdateBatches(view->frame_);
  180. drawable->MarkInView(view->frame_);
  181. // For geometries, find zone, clear lights and calculate view space Z range
  182. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  183. {
  184. Zone* drawableZone = drawable->GetZone();
  185. if ((!drawableZone || (drawableZone->GetViewMask() & cameraViewMask) == 0) && !cameraZoneOverride)
  186. view->FindZone(drawable);
  187. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  188. Vector3 center = geomBox.Center();
  189. float viewCenterZ = viewZ.DotProduct(center) + viewMatrix.m23_;
  190. Vector3 edge = geomBox.Size() * 0.5f;
  191. float viewEdgeZ = absViewZ.DotProduct(edge);
  192. float minZ = viewCenterZ - viewEdgeZ;
  193. float maxZ = viewCenterZ + viewEdgeZ;
  194. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  195. drawable->ClearLights();
  196. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  197. if (drawable->GetType() != Skybox::GetTypeStatic())
  198. {
  199. result.minZ_ = Min(result.minZ_, minZ);
  200. result.maxZ_ = Max(result.maxZ_, maxZ);
  201. }
  202. result.geometries_.Push(drawable);
  203. }
  204. else if (drawable->GetDrawableFlags() & DRAWABLE_LIGHT)
  205. {
  206. Light* light = static_cast<Light*>(drawable);
  207. // Skip lights which are so dim that they can not contribute to a rendertarget
  208. if (light->GetColor().SumRGB() > LIGHT_INTENSITY_THRESHOLD)
  209. result.lights_.Push(light);
  210. }
  211. }
  212. }
  213. }
  214. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  215. {
  216. View* view = reinterpret_cast<View*>(item->aux_);
  217. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  218. view->ProcessLight(*query, threadIndex);
  219. }
  220. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  221. {
  222. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  223. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  224. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  225. while (start != end)
  226. {
  227. Drawable* drawable = *start++;
  228. drawable->UpdateGeometry(frame);
  229. }
  230. }
  231. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  232. {
  233. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  234. queue->SortFrontToBack();
  235. }
  236. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  237. {
  238. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  239. queue->SortBackToFront();
  240. }
  241. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  242. {
  243. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  244. start->litBatches_.SortFrontToBack();
  245. }
  246. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  247. {
  248. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  249. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  250. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  251. }
  252. View::View(Context* context) :
  253. Object(context),
  254. graphics_(GetSubsystem<Graphics>()),
  255. renderer_(GetSubsystem<Renderer>()),
  256. scene_(0),
  257. octree_(0),
  258. camera_(0),
  259. cameraZone_(0),
  260. farClipZone_(0),
  261. renderTarget_(0),
  262. substituteRenderTarget_(0)
  263. {
  264. // Create octree query and scene results vector for each thread
  265. unsigned numThreads = GetSubsystem<WorkQueue>()->GetNumThreads() + 1; // Worker threads + main thread
  266. tempDrawables_.Resize(numThreads);
  267. sceneResults_.Resize(numThreads);
  268. frame_.camera_ = 0;
  269. }
  270. View::~View()
  271. {
  272. }
  273. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  274. {
  275. Scene* scene = viewport->GetScene();
  276. Camera* camera = viewport->GetCamera();
  277. if (!scene || !camera || !camera->IsEnabledEffective())
  278. return false;
  279. // If scene is loading asynchronously, it is incomplete and should not be rendered
  280. if (scene->IsAsyncLoading())
  281. return false;
  282. Octree* octree = scene->GetComponent<Octree>();
  283. if (!octree)
  284. return false;
  285. // Do not accept view if camera projection is illegal
  286. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  287. if (!camera->IsProjectionValid())
  288. return false;
  289. scene_ = scene;
  290. octree_ = octree;
  291. camera_ = camera;
  292. cameraNode_ = camera->GetNode();
  293. renderTarget_ = renderTarget;
  294. renderPath_ = viewport->GetRenderPath();
  295. gBufferPassName_ = StringHash();
  296. basePassName_ = PASS_BASE;
  297. alphaPassName_ = PASS_ALPHA;
  298. lightPassName_ = PASS_LIGHT;
  299. litBasePassName_ = PASS_LITBASE;
  300. litAlphaPassName_ = PASS_LITALPHA;
  301. // Make sure that all necessary batch queues exist
  302. scenePasses_.Clear();
  303. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  304. {
  305. const RenderPathCommand& command = renderPath_->commands_[i];
  306. if (!command.enabled_)
  307. continue;
  308. if (command.type_ == CMD_SCENEPASS)
  309. {
  310. ScenePassInfo info;
  311. info.pass_ = command.pass_;
  312. info.allowInstancing_ = command.sortMode_ != SORT_BACKTOFRONT;
  313. info.markToStencil_ = command.markToStencil_;
  314. info.useScissor_ = command.useScissor_;
  315. info.vertexLights_ = command.vertexLights_;
  316. // Check scenepass metadata for defining custom passes which interact with lighting
  317. if (!command.metadata_.Empty())
  318. {
  319. if (command.metadata_ == "gbuffer")
  320. gBufferPassName_ = command.pass_;
  321. else if (command.metadata_ == "base" && command.pass_ != "base")
  322. {
  323. basePassName_ = command.pass_;
  324. litBasePassName_ = "lit" + command.pass_;
  325. }
  326. else if (command.metadata_ == "alpha" && command.pass_ != "alpha")
  327. {
  328. alphaPassName_ = command.pass_;
  329. litAlphaPassName_ = "lit" + command.pass_;
  330. }
  331. }
  332. HashMap<StringHash, BatchQueue>::Iterator j = batchQueues_.Find(command.pass_);
  333. if (j == batchQueues_.End())
  334. j = batchQueues_.Insert(Pair<StringHash, BatchQueue>(command.pass_, BatchQueue()));
  335. info.batchQueue_ = &j->second_;
  336. scenePasses_.Push(info);
  337. }
  338. // Allow a custom forward light pass
  339. else if (command.type_ == CMD_FORWARDLIGHTS && !command.pass_.Empty())
  340. lightPassName_ = command.pass_;
  341. }
  342. // Go through commands to check for deferred rendering
  343. deferred_ = false;
  344. deferredAmbient_ = false;
  345. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  346. {
  347. const RenderPathCommand& command = renderPath_->commands_[i];
  348. if (!command.enabled_)
  349. continue;
  350. // Check if ambient pass and G-buffer rendering happens at the same time
  351. if (command.type_ == CMD_SCENEPASS && command.outputNames_.Size() > 1)
  352. {
  353. if (CheckViewportWrite(command))
  354. deferredAmbient_ = true;
  355. }
  356. if (command.type_ == CMD_LIGHTVOLUMES)
  357. {
  358. lightVolumeVSName_ = command.vertexShaderName_;
  359. lightVolumePSName_ = command.pixelShaderName_;
  360. deferred_ = true;
  361. }
  362. }
  363. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  364. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  365. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  366. const IntRect& rect = viewport->GetRect();
  367. if (rect != IntRect::ZERO)
  368. {
  369. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  370. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  371. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  372. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  373. }
  374. else
  375. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  376. viewSize_ = viewRect_.Size();
  377. rtSize_ = IntVector2(rtWidth, rtHeight);
  378. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  379. #ifdef USE_OPENGL
  380. if (renderTarget_)
  381. {
  382. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  383. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  384. }
  385. #endif
  386. drawShadows_ = renderer_->GetDrawShadows();
  387. materialQuality_ = renderer_->GetMaterialQuality();
  388. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  389. minInstances_ = renderer_->GetMinInstances();
  390. // Set possible quality overrides from the camera
  391. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  392. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  393. materialQuality_ = QUALITY_LOW;
  394. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  395. drawShadows_ = false;
  396. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  397. maxOccluderTriangles_ = 0;
  398. // Occlusion buffer has constant width. If resulting height would be too large due to aspect ratio, disable occlusion
  399. if (viewSize_.y_ > viewSize_.x_ * 4)
  400. maxOccluderTriangles_ = 0;
  401. return true;
  402. }
  403. void View::Update(const FrameInfo& frame)
  404. {
  405. if (!camera_ || !octree_)
  406. return;
  407. frame_.camera_ = camera_;
  408. frame_.timeStep_ = frame.timeStep_;
  409. frame_.frameNumber_ = frame.frameNumber_;
  410. frame_.viewSize_ = viewSize_;
  411. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  412. // Clear buffers, geometry, light, occluder & batch list
  413. renderTargets_.Clear();
  414. geometries_.Clear();
  415. shadowGeometries_.Clear();
  416. lights_.Clear();
  417. zones_.Clear();
  418. occluders_.Clear();
  419. vertexLightQueues_.Clear();
  420. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  421. i->second_.Clear(maxSortedInstances);
  422. // Set automatic aspect ratio if required
  423. if (camera_->GetAutoAspectRatio())
  424. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  425. GetDrawables();
  426. GetBatches();
  427. }
  428. void View::Render()
  429. {
  430. if (!octree_ || !camera_)
  431. return;
  432. // Actually update geometry data now
  433. UpdateGeometries();
  434. // Allocate screen buffers as necessary
  435. AllocateScreenBuffers();
  436. // Forget parameter sources from the previous view
  437. graphics_->ClearParameterSources();
  438. // If stream offset is supported, write all instance transforms to a single large buffer
  439. // Else we must lock the instance buffer for each batch group
  440. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  441. PrepareInstancingBuffer();
  442. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  443. // again to ensure correct projection will be used
  444. if (camera_->GetAutoAspectRatio())
  445. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  446. // Bind the face selection and indirection cube maps for point light shadows
  447. if (renderer_->GetDrawShadows())
  448. {
  449. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  450. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  451. }
  452. if (renderTarget_)
  453. {
  454. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  455. // as a render texture produced on Direct3D9
  456. #ifdef USE_OPENGL
  457. camera_->SetFlipVertical(true);
  458. #endif
  459. }
  460. // Render
  461. ExecuteRenderPathCommands();
  462. #ifdef USE_OPENGL
  463. camera_->SetFlipVertical(false);
  464. #endif
  465. graphics_->SetDepthBias(0.0f, 0.0f);
  466. graphics_->SetScissorTest(false);
  467. graphics_->SetStencilTest(false);
  468. graphics_->ResetStreamFrequencies();
  469. // Run framebuffer blitting if necessary
  470. if (currentRenderTarget_ != renderTarget_)
  471. BlitFramebuffer(static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture()), renderTarget_, true);
  472. // If this is a main view, draw the associated debug geometry now
  473. if (!renderTarget_)
  474. {
  475. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  476. if (debug)
  477. {
  478. debug->SetView(camera_);
  479. debug->Render();
  480. }
  481. }
  482. // "Forget" the scene, camera, octree and zone after rendering
  483. scene_ = 0;
  484. camera_ = 0;
  485. octree_ = 0;
  486. cameraZone_ = 0;
  487. farClipZone_ = 0;
  488. occlusionBuffer_ = 0;
  489. frame_.camera_ = 0;
  490. }
  491. Graphics* View::GetGraphics() const
  492. {
  493. return graphics_;
  494. }
  495. Renderer* View::GetRenderer() const
  496. {
  497. return renderer_;
  498. }
  499. void View::GetDrawables()
  500. {
  501. PROFILE(GetDrawables);
  502. WorkQueue* queue = GetSubsystem<WorkQueue>();
  503. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  504. // Get zones and occluders first
  505. {
  506. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE, camera_->GetViewMask());
  507. octree_->GetDrawables(query);
  508. }
  509. highestZonePriority_ = M_MIN_INT;
  510. int bestPriority = M_MIN_INT;
  511. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  512. // Get default zone first in case we do not have zones defined
  513. Zone* defaultZone = renderer_->GetDefaultZone();
  514. cameraZone_ = farClipZone_ = defaultZone;
  515. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  516. {
  517. Drawable* drawable = *i;
  518. unsigned char flags = drawable->GetDrawableFlags();
  519. if (flags & DRAWABLE_ZONE)
  520. {
  521. Zone* zone = static_cast<Zone*>(drawable);
  522. zones_.Push(zone);
  523. int priority = zone->GetPriority();
  524. if (priority > highestZonePriority_)
  525. highestZonePriority_ = priority;
  526. if (priority > bestPriority && zone->IsInside(cameraPos))
  527. {
  528. cameraZone_ = zone;
  529. bestPriority = priority;
  530. }
  531. }
  532. else
  533. occluders_.Push(drawable);
  534. }
  535. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  536. cameraZoneOverride_ = cameraZone_->GetOverride();
  537. if (!cameraZoneOverride_)
  538. {
  539. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  540. bestPriority = M_MIN_INT;
  541. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  542. {
  543. int priority = (*i)->GetPriority();
  544. if (priority > bestPriority && (*i)->IsInside(farClipPos))
  545. {
  546. farClipZone_ = *i;
  547. bestPriority = priority;
  548. }
  549. }
  550. }
  551. if (farClipZone_ == defaultZone)
  552. farClipZone_ = cameraZone_;
  553. // If occlusion in use, get & render the occluders
  554. occlusionBuffer_ = 0;
  555. if (maxOccluderTriangles_ > 0)
  556. {
  557. UpdateOccluders(occluders_, camera_);
  558. if (occluders_.Size())
  559. {
  560. PROFILE(DrawOcclusion);
  561. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  562. DrawOccluders(occlusionBuffer_, occluders_);
  563. }
  564. }
  565. // Get lights and geometries. Coarse occlusion for octants is used at this point
  566. if (occlusionBuffer_)
  567. {
  568. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  569. DRAWABLE_LIGHT, camera_->GetViewMask());
  570. octree_->GetDrawables(query);
  571. }
  572. else
  573. {
  574. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT,
  575. camera_->GetViewMask());
  576. octree_->GetDrawables(query);
  577. }
  578. // Check drawable occlusion, find zones for moved drawables and collect geometries & lights in worker threads
  579. {
  580. for (unsigned i = 0; i < sceneResults_.Size(); ++i)
  581. {
  582. PerThreadSceneResult& result = sceneResults_[i];
  583. result.geometries_.Clear();
  584. result.lights_.Clear();
  585. result.minZ_ = M_INFINITY;
  586. result.maxZ_ = 0.0f;
  587. }
  588. int numWorkItems = queue->GetNumThreads() + 1; // Worker threads + main thread
  589. int drawablesPerItem = tempDrawables.Size() / numWorkItems;
  590. WorkItem item;
  591. item.workFunction_ = CheckVisibilityWork;
  592. item.aux_ = this;
  593. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  594. // Create a work item for each thread
  595. for (int i = 0; i < numWorkItems; ++i)
  596. {
  597. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  598. if (i < numWorkItems - 1 && end - start > drawablesPerItem)
  599. end = start + drawablesPerItem;
  600. item.start_ = &(*start);
  601. item.end_ = &(*end);
  602. queue->AddWorkItem(item);
  603. start = end;
  604. }
  605. queue->Complete(M_MAX_UNSIGNED);
  606. }
  607. // Combine lights, geometries & scene Z range from the threads
  608. geometries_.Clear();
  609. lights_.Clear();
  610. minZ_ = M_INFINITY;
  611. maxZ_ = 0.0f;
  612. if (sceneResults_.Size() > 1)
  613. {
  614. for (unsigned i = 0; i < sceneResults_.Size(); ++i)
  615. {
  616. PerThreadSceneResult& result = sceneResults_[i];
  617. geometries_.Push(result.geometries_);
  618. lights_.Push(result.lights_);
  619. minZ_ = Min(minZ_, result.minZ_);
  620. maxZ_ = Max(maxZ_, result.maxZ_);
  621. }
  622. }
  623. else
  624. {
  625. // If just 1 thread, copy the results directly
  626. PerThreadSceneResult& result = sceneResults_[0];
  627. minZ_ = result.minZ_;
  628. maxZ_ = result.maxZ_;
  629. Swap(geometries_, result.geometries_);
  630. Swap(lights_, result.lights_);
  631. }
  632. if (minZ_ == M_INFINITY)
  633. minZ_ = 0.0f;
  634. // Sort the lights to brightest/closest first
  635. for (unsigned i = 0; i < lights_.Size(); ++i)
  636. {
  637. Light* light = lights_[i];
  638. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  639. light->SetLightQueue(0);
  640. }
  641. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  642. }
  643. void View::GetBatches()
  644. {
  645. WorkQueue* queue = GetSubsystem<WorkQueue>();
  646. PODVector<Light*> vertexLights;
  647. BatchQueue* alphaQueue = batchQueues_.Contains(alphaPassName_) ? &batchQueues_[alphaPassName_] : (BatchQueue*)0;
  648. // Check whether to use the lit base pass optimization
  649. bool useLitBase = true;
  650. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  651. {
  652. const RenderPathCommand& command = renderPath_->commands_[i];
  653. if (command.type_ == CMD_FORWARDLIGHTS)
  654. useLitBase = command.useLitBase_;
  655. }
  656. // Process lit geometries and shadow casters for each light
  657. {
  658. PROFILE(ProcessLights);
  659. lightQueryResults_.Resize(lights_.Size());
  660. WorkItem item;
  661. item.workFunction_ = ProcessLightWork;
  662. item.aux_ = this;
  663. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  664. {
  665. LightQueryResult& query = lightQueryResults_[i];
  666. query.light_ = lights_[i];
  667. item.start_ = &query;
  668. queue->AddWorkItem(item);
  669. }
  670. // Ensure all lights have been processed before proceeding
  671. queue->Complete(M_MAX_UNSIGNED);
  672. }
  673. // Build light queues and lit batches
  674. {
  675. PROFILE(GetLightBatches);
  676. // Preallocate light queues: per-pixel lights which have lit geometries
  677. unsigned numLightQueues = 0;
  678. unsigned usedLightQueues = 0;
  679. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  680. {
  681. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  682. ++numLightQueues;
  683. }
  684. lightQueues_.Resize(numLightQueues);
  685. maxLightsDrawables_.Clear();
  686. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  687. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  688. {
  689. LightQueryResult& query = *i;
  690. // If light has no affected geometries, no need to process further
  691. if (query.litGeometries_.Empty())
  692. continue;
  693. Light* light = query.light_;
  694. // Per-pixel light
  695. if (!light->GetPerVertex())
  696. {
  697. unsigned shadowSplits = query.numSplits_;
  698. // Initialize light queue and store it to the light so that it can be found later
  699. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  700. light->SetLightQueue(&lightQueue);
  701. lightQueue.light_ = light;
  702. lightQueue.shadowMap_ = 0;
  703. lightQueue.litBatches_.Clear(maxSortedInstances);
  704. lightQueue.volumeBatches_.Clear();
  705. // Allocate shadow map now
  706. if (shadowSplits > 0)
  707. {
  708. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  709. // If did not manage to get a shadow map, convert the light to unshadowed
  710. if (!lightQueue.shadowMap_)
  711. shadowSplits = 0;
  712. }
  713. // Setup shadow batch queues
  714. lightQueue.shadowSplits_.Resize(shadowSplits);
  715. for (unsigned j = 0; j < shadowSplits; ++j)
  716. {
  717. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  718. Camera* shadowCamera = query.shadowCameras_[j];
  719. shadowQueue.shadowCamera_ = shadowCamera;
  720. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  721. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  722. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  723. // Setup the shadow split viewport and finalize shadow camera parameters
  724. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  725. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  726. // Loop through shadow casters
  727. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  728. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  729. {
  730. Drawable* drawable = *k;
  731. if (!drawable->IsInView(frame_, false))
  732. {
  733. drawable->MarkInView(frame_, false);
  734. shadowGeometries_.Push(drawable);
  735. }
  736. Zone* zone = GetZone(drawable);
  737. const Vector<SourceBatch>& batches = drawable->GetBatches();
  738. for (unsigned l = 0; l < batches.Size(); ++l)
  739. {
  740. const SourceBatch& srcBatch = batches[l];
  741. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  742. if (!srcBatch.geometry_ || !srcBatch.numWorldTransforms_ || !tech)
  743. continue;
  744. Pass* pass = tech->GetPass(PASS_SHADOW);
  745. // Skip if material has no shadow pass
  746. if (!pass)
  747. continue;
  748. Batch destBatch(srcBatch);
  749. destBatch.pass_ = pass;
  750. destBatch.camera_ = shadowCamera;
  751. destBatch.zone_ = zone;
  752. destBatch.lightQueue_ = &lightQueue;
  753. AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech);
  754. }
  755. }
  756. }
  757. // Process lit geometries
  758. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  759. {
  760. Drawable* drawable = *j;
  761. drawable->AddLight(light);
  762. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  763. if (!drawable->GetMaxLights())
  764. GetLitBatches(drawable, lightQueue, alphaQueue, useLitBase);
  765. else
  766. maxLightsDrawables_.Insert(drawable);
  767. }
  768. // In deferred modes, store the light volume batch now
  769. if (deferred_)
  770. {
  771. Batch volumeBatch;
  772. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  773. volumeBatch.geometryType_ = GEOM_STATIC;
  774. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  775. volumeBatch.numWorldTransforms_ = 1;
  776. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  777. volumeBatch.camera_ = camera_;
  778. volumeBatch.lightQueue_ = &lightQueue;
  779. volumeBatch.distance_ = light->GetDistance();
  780. volumeBatch.material_ = 0;
  781. volumeBatch.pass_ = 0;
  782. volumeBatch.zone_ = 0;
  783. renderer_->SetLightVolumeBatchShaders(volumeBatch, lightVolumeVSName_, lightVolumePSName_);
  784. lightQueue.volumeBatches_.Push(volumeBatch);
  785. }
  786. }
  787. // Per-vertex light
  788. else
  789. {
  790. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  791. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  792. {
  793. Drawable* drawable = *j;
  794. drawable->AddVertexLight(light);
  795. }
  796. }
  797. }
  798. }
  799. // Process drawables with limited per-pixel light count
  800. if (maxLightsDrawables_.Size())
  801. {
  802. PROFILE(GetMaxLightsBatches);
  803. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  804. {
  805. Drawable* drawable = *i;
  806. drawable->LimitLights();
  807. const PODVector<Light*>& lights = drawable->GetLights();
  808. for (unsigned i = 0; i < lights.Size(); ++i)
  809. {
  810. Light* light = lights[i];
  811. // Find the correct light queue again
  812. LightBatchQueue* queue = light->GetLightQueue();
  813. if (queue)
  814. GetLitBatches(drawable, *queue, alphaQueue, useLitBase);
  815. }
  816. }
  817. }
  818. // Build base pass batches
  819. {
  820. PROFILE(GetBaseBatches);
  821. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  822. {
  823. Drawable* drawable = *i;
  824. Zone* zone = GetZone(drawable);
  825. const Vector<SourceBatch>& batches = drawable->GetBatches();
  826. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  827. if (!drawableVertexLights.Empty())
  828. drawable->LimitVertexLights();
  829. for (unsigned j = 0; j < batches.Size(); ++j)
  830. {
  831. const SourceBatch& srcBatch = batches[j];
  832. // Check here if the material refers to a rendertarget texture with camera(s) attached
  833. // Only check this for backbuffer views (null rendertarget)
  834. if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  835. CheckMaterialForAuxView(srcBatch.material_);
  836. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  837. if (!srcBatch.geometry_ || !srcBatch.numWorldTransforms_ || !tech)
  838. continue;
  839. Batch destBatch(srcBatch);
  840. destBatch.camera_ = camera_;
  841. destBatch.zone_ = zone;
  842. destBatch.isBase_ = true;
  843. destBatch.pass_ = 0;
  844. destBatch.lightMask_ = GetLightMask(drawable);
  845. // Check each of the scene passes
  846. for (unsigned k = 0; k < scenePasses_.Size(); ++k)
  847. {
  848. ScenePassInfo& info = scenePasses_[k];
  849. destBatch.pass_ = tech->GetPass(info.pass_);
  850. if (!destBatch.pass_)
  851. continue;
  852. // Skip forward base pass if the corresponding litbase pass already exists
  853. if (info.pass_ == basePassName_ && j < 32 && drawable->HasBasePass(j))
  854. continue;
  855. if (info.vertexLights_ && !drawableVertexLights.Empty())
  856. {
  857. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  858. // them to prevent double-lighting
  859. if (deferred_ && destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  860. {
  861. vertexLights.Clear();
  862. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  863. {
  864. if (drawableVertexLights[i]->GetPerVertex())
  865. vertexLights.Push(drawableVertexLights[i]);
  866. }
  867. }
  868. else
  869. vertexLights = drawableVertexLights;
  870. if (!vertexLights.Empty())
  871. {
  872. // Find a vertex light queue. If not found, create new
  873. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  874. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  875. if (i == vertexLightQueues_.End())
  876. {
  877. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  878. i->second_.light_ = 0;
  879. i->second_.shadowMap_ = 0;
  880. i->second_.vertexLights_ = vertexLights;
  881. }
  882. destBatch.lightQueue_ = &(i->second_);
  883. }
  884. }
  885. else
  886. destBatch.lightQueue_ = 0;
  887. bool allowInstancing = info.allowInstancing_;
  888. if (allowInstancing && info.markToStencil_ && destBatch.lightMask_ != (zone->GetLightMask() & 0xff))
  889. allowInstancing = false;
  890. AddBatchToQueue(*info.batchQueue_, destBatch, tech, allowInstancing);
  891. }
  892. }
  893. }
  894. }
  895. }
  896. void View::UpdateGeometries()
  897. {
  898. PROFILE(SortAndUpdateGeometry);
  899. WorkQueue* queue = GetSubsystem<WorkQueue>();
  900. // Sort batches
  901. {
  902. WorkItem item;
  903. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  904. {
  905. const RenderPathCommand& command = renderPath_->commands_[i];
  906. if (!IsNecessary(command))
  907. continue;
  908. if (command.type_ == CMD_SCENEPASS)
  909. {
  910. BatchQueue* passQueue = &batchQueues_[command.pass_];
  911. item.workFunction_ = command.sortMode_ == SORT_FRONTTOBACK ? SortBatchQueueFrontToBackWork :
  912. SortBatchQueueBackToFrontWork;
  913. item.start_ = &batchQueues_[command.pass_];
  914. queue->AddWorkItem(item);
  915. }
  916. }
  917. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  918. {
  919. item.workFunction_ = SortLightQueueWork;
  920. item.start_ = &(*i);
  921. queue->AddWorkItem(item);
  922. if (i->shadowSplits_.Size())
  923. {
  924. item.workFunction_ = SortShadowQueueWork;
  925. queue->AddWorkItem(item);
  926. }
  927. }
  928. }
  929. // Update geometries. Split into threaded and non-threaded updates.
  930. {
  931. nonThreadedGeometries_.Clear();
  932. threadedGeometries_.Clear();
  933. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  934. {
  935. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  936. if (type == UPDATE_MAIN_THREAD)
  937. nonThreadedGeometries_.Push(*i);
  938. else if (type == UPDATE_WORKER_THREAD)
  939. threadedGeometries_.Push(*i);
  940. }
  941. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  942. {
  943. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  944. if (type == UPDATE_MAIN_THREAD)
  945. nonThreadedGeometries_.Push(*i);
  946. else if (type == UPDATE_WORKER_THREAD)
  947. threadedGeometries_.Push(*i);
  948. }
  949. if (threadedGeometries_.Size())
  950. {
  951. int numWorkItems = queue->GetNumThreads() + 1; // Worker threads + main thread
  952. int drawablesPerItem = threadedGeometries_.Size() / numWorkItems;
  953. WorkItem item;
  954. item.workFunction_ = UpdateDrawableGeometriesWork;
  955. item.aux_ = const_cast<FrameInfo*>(&frame_);
  956. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  957. for (int i = 0; i < numWorkItems; ++i)
  958. {
  959. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  960. if (i < numWorkItems - 1 && end - start > drawablesPerItem)
  961. end = start + drawablesPerItem;
  962. item.start_ = &(*start);
  963. item.end_ = &(*end);
  964. queue->AddWorkItem(item);
  965. start = end;
  966. }
  967. }
  968. // While the work queue is processed, update non-threaded geometries
  969. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  970. (*i)->UpdateGeometry(frame_);
  971. }
  972. // Finally ensure all threaded work has completed
  973. queue->Complete(M_MAX_UNSIGNED);
  974. }
  975. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue, BatchQueue* alphaQueue, bool useLitBase)
  976. {
  977. Light* light = lightQueue.light_;
  978. Zone* zone = GetZone(drawable);
  979. const Vector<SourceBatch>& batches = drawable->GetBatches();
  980. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  981. // Shadows on transparencies can only be rendered if shadow maps are not reused
  982. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  983. bool allowLitBase = useLitBase && light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  984. for (unsigned i = 0; i < batches.Size(); ++i)
  985. {
  986. const SourceBatch& srcBatch = batches[i];
  987. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  988. if (!srcBatch.geometry_ || !srcBatch.numWorldTransforms_ || !tech)
  989. continue;
  990. // Do not create pixel lit forward passes for materials that render into the G-buffer
  991. if (gBufferPassName_.Value() && tech->HasPass(gBufferPassName_))
  992. continue;
  993. Batch destBatch(srcBatch);
  994. bool isLitAlpha = false;
  995. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  996. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  997. if (i < 32 && allowLitBase)
  998. {
  999. destBatch.pass_ = tech->GetPass(litBasePassName_);
  1000. if (destBatch.pass_)
  1001. {
  1002. destBatch.isBase_ = true;
  1003. drawable->SetBasePass(i);
  1004. }
  1005. else
  1006. destBatch.pass_ = tech->GetPass(lightPassName_);
  1007. }
  1008. else
  1009. destBatch.pass_ = tech->GetPass(lightPassName_);
  1010. // If no lit pass, check for lit alpha
  1011. if (!destBatch.pass_)
  1012. {
  1013. destBatch.pass_ = tech->GetPass(litAlphaPassName_);
  1014. isLitAlpha = true;
  1015. }
  1016. // Skip if material does not receive light at all
  1017. if (!destBatch.pass_)
  1018. continue;
  1019. destBatch.camera_ = camera_;
  1020. destBatch.lightQueue_ = &lightQueue;
  1021. destBatch.zone_ = zone;
  1022. if (!isLitAlpha)
  1023. AddBatchToQueue(lightQueue.litBatches_, destBatch, tech);
  1024. else if (alphaQueue)
  1025. {
  1026. // Transparent batches can not be instanced
  1027. AddBatchToQueue(*alphaQueue, destBatch, tech, false, allowTransparentShadows);
  1028. }
  1029. }
  1030. }
  1031. void View::ExecuteRenderPathCommands()
  1032. {
  1033. // If not reusing shadowmaps, render all of them first
  1034. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1035. {
  1036. PROFILE(RenderShadowMaps);
  1037. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1038. {
  1039. if (i->shadowMap_)
  1040. RenderShadowMap(*i);
  1041. }
  1042. }
  1043. {
  1044. PROFILE(ExecuteRenderPath);
  1045. // Set for safety in case of empty renderpath
  1046. currentRenderTarget_ = substituteRenderTarget_ ? substituteRenderTarget_ : renderTarget_;
  1047. currentViewportTexture_ = 0;
  1048. bool viewportModified = false;
  1049. bool isPingponging = false;
  1050. unsigned lastCommandIndex = 0;
  1051. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1052. {
  1053. RenderPathCommand& command = renderPath_->commands_[i];
  1054. if (IsNecessary(command))
  1055. lastCommandIndex = i;
  1056. }
  1057. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1058. {
  1059. RenderPathCommand& command = renderPath_->commands_[i];
  1060. if (!IsNecessary(command))
  1061. continue;
  1062. bool viewportRead = CheckViewportRead(command);
  1063. bool viewportWrite = CheckViewportWrite(command);
  1064. bool beginPingpong = CheckPingpong(i);
  1065. // Has the viewport been modified and will be read as a texture by the current command?
  1066. if (viewportRead && viewportModified)
  1067. {
  1068. // Start pingponging without a blit if already rendering to the substitute render target
  1069. if (currentRenderTarget_ && currentRenderTarget_ == substituteRenderTarget_ && beginPingpong)
  1070. isPingponging = true;
  1071. // If not using pingponging, simply resolve/copy to the first viewport texture
  1072. if (!isPingponging)
  1073. {
  1074. if (!currentRenderTarget_)
  1075. {
  1076. graphics_->ResolveToTexture(viewportTextures_[0], viewRect_);
  1077. currentViewportTexture_ = viewportTextures_[0];
  1078. viewportModified = false;
  1079. }
  1080. else
  1081. {
  1082. if (viewportWrite)
  1083. {
  1084. BlitFramebuffer(static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture()),
  1085. viewportTextures_[0]->GetRenderSurface(), false);
  1086. currentViewportTexture_ = viewportTextures_[0];
  1087. viewportModified = false;
  1088. }
  1089. else
  1090. {
  1091. // If the current render target is already a texture, and we are not writing to it, can read that
  1092. // texture directly instead of blitting. However keep the viewport dirty flag in case a later command
  1093. // will do both read and write, and then we need to blit / resolve
  1094. currentViewportTexture_ = static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture());
  1095. }
  1096. }
  1097. }
  1098. else
  1099. {
  1100. // Swap the pingpong double buffer sides. Texture 0 will be read next
  1101. viewportTextures_[1] = viewportTextures_[0];
  1102. viewportTextures_[0] = static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture());
  1103. currentViewportTexture_ = viewportTextures_[0];
  1104. viewportModified = false;
  1105. }
  1106. }
  1107. if (beginPingpong)
  1108. isPingponging = true;
  1109. // Determine viewport write target
  1110. if (viewportWrite)
  1111. {
  1112. if (isPingponging)
  1113. {
  1114. currentRenderTarget_ = viewportTextures_[1]->GetRenderSurface();
  1115. // If the render path ends into a quad, it can be redirected to the final render target
  1116. if (i == lastCommandIndex && command.type_ == CMD_QUAD)
  1117. currentRenderTarget_ = renderTarget_;
  1118. }
  1119. else
  1120. currentRenderTarget_ = substituteRenderTarget_ ? substituteRenderTarget_ : renderTarget_;
  1121. }
  1122. switch (command.type_)
  1123. {
  1124. case CMD_CLEAR:
  1125. {
  1126. PROFILE(ClearRenderTarget);
  1127. Color clearColor = command.clearColor_;
  1128. if (command.useFogColor_)
  1129. clearColor = farClipZone_->GetFogColor();
  1130. SetRenderTargets(command);
  1131. graphics_->Clear(command.clearFlags_, clearColor, command.clearDepth_, command.clearStencil_);
  1132. }
  1133. break;
  1134. case CMD_SCENEPASS:
  1135. if (!batchQueues_[command.pass_].IsEmpty())
  1136. {
  1137. PROFILE(RenderScenePass);
  1138. SetRenderTargets(command);
  1139. SetTextures(command);
  1140. graphics_->SetFillMode(camera_->GetFillMode());
  1141. graphics_->SetClipPlane(camera_->GetUseClipping(), camera_->GetClipPlane(), camera_->GetView(), camera_->GetProjection());
  1142. batchQueues_[command.pass_].Draw(this, command.useScissor_, command.markToStencil_);
  1143. }
  1144. break;
  1145. case CMD_QUAD:
  1146. {
  1147. PROFILE(RenderQuad);
  1148. SetRenderTargets(command);
  1149. SetTextures(command);
  1150. RenderQuad(command);
  1151. }
  1152. break;
  1153. case CMD_FORWARDLIGHTS:
  1154. // Render shadow maps + opaque objects' additive lighting
  1155. if (!lightQueues_.Empty())
  1156. {
  1157. PROFILE(RenderLights);
  1158. SetRenderTargets(command);
  1159. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1160. {
  1161. // If reusing shadowmaps, render each of them before the lit batches
  1162. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1163. {
  1164. RenderShadowMap(*i);
  1165. SetRenderTargets(command);
  1166. }
  1167. SetTextures(command);
  1168. graphics_->SetFillMode(camera_->GetFillMode());
  1169. graphics_->SetClipPlane(camera_->GetUseClipping(), camera_->GetClipPlane(), camera_->GetView(), camera_->GetProjection());
  1170. i->litBatches_.Draw(i->light_, this);
  1171. }
  1172. graphics_->SetScissorTest(false);
  1173. graphics_->SetStencilTest(false);
  1174. }
  1175. break;
  1176. case CMD_LIGHTVOLUMES:
  1177. // Render shadow maps + light volumes
  1178. if (!lightQueues_.Empty())
  1179. {
  1180. PROFILE(RenderLightVolumes);
  1181. SetRenderTargets(command);
  1182. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1183. {
  1184. // If reusing shadowmaps, render each of them before the lit batches
  1185. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1186. {
  1187. RenderShadowMap(*i);
  1188. SetRenderTargets(command);
  1189. }
  1190. SetTextures(command);
  1191. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1192. {
  1193. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1194. i->volumeBatches_[j].Draw(this);
  1195. }
  1196. }
  1197. graphics_->SetScissorTest(false);
  1198. graphics_->SetStencilTest(false);
  1199. }
  1200. break;
  1201. default:
  1202. break;
  1203. }
  1204. // If current command output to the viewport, mark it modified
  1205. if (viewportWrite)
  1206. viewportModified = true;
  1207. }
  1208. }
  1209. // After executing all commands, reset rendertarget for debug geometry rendering
  1210. graphics_->SetRenderTarget(0, renderTarget_);
  1211. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1212. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1213. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1214. graphics_->SetViewport(viewRect_);
  1215. graphics_->SetFillMode(FILL_SOLID);
  1216. graphics_->SetClipPlane(false);
  1217. }
  1218. void View::SetRenderTargets(RenderPathCommand& command)
  1219. {
  1220. unsigned index = 0;
  1221. IntRect viewPort = viewRect_;
  1222. while (index < command.outputNames_.Size())
  1223. {
  1224. if (!command.outputNames_[index].Compare("viewport", false))
  1225. graphics_->SetRenderTarget(index, currentRenderTarget_);
  1226. else
  1227. {
  1228. StringHash nameHash(command.outputNames_[index]);
  1229. if (renderTargets_.Contains(nameHash))
  1230. {
  1231. Texture2D* texture = renderTargets_[nameHash];
  1232. graphics_->SetRenderTarget(index, texture);
  1233. if (!index)
  1234. {
  1235. // Determine viewport size from rendertarget info
  1236. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1237. {
  1238. const RenderTargetInfo& info = renderPath_->renderTargets_[i];
  1239. if (!info.name_.Compare(command.outputNames_[index], false))
  1240. {
  1241. switch (info.sizeMode_)
  1242. {
  1243. // If absolute or a divided viewport size, use the full texture
  1244. case SIZE_ABSOLUTE:
  1245. case SIZE_VIEWPORTDIVISOR:
  1246. viewPort = IntRect(0, 0, texture->GetWidth(), texture->GetHeight());
  1247. break;
  1248. // If a divided rendertarget size, retain the same viewport, but scaled
  1249. case SIZE_RENDERTARGETDIVISOR:
  1250. if (info.size_.x_ && info.size_.y_)
  1251. {
  1252. viewPort = IntRect(viewRect_.left_ / info.size_.x_, viewRect_.top_ / info.size_.y_,
  1253. viewRect_.right_ / info.size_.x_, viewRect_.bottom_ / info.size_.y_);
  1254. }
  1255. break;
  1256. }
  1257. break;
  1258. }
  1259. }
  1260. }
  1261. }
  1262. else
  1263. graphics_->SetRenderTarget(0, (RenderSurface*)0);
  1264. }
  1265. ++index;
  1266. }
  1267. while (index < MAX_RENDERTARGETS)
  1268. {
  1269. graphics_->SetRenderTarget(index, (RenderSurface*)0);
  1270. ++index;
  1271. }
  1272. graphics_->SetDepthStencil(GetDepthStencil(graphics_->GetRenderTarget(0)));
  1273. graphics_->SetViewport(viewPort);
  1274. graphics_->SetColorWrite(true);
  1275. }
  1276. void View::SetTextures(RenderPathCommand& command)
  1277. {
  1278. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1279. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1280. {
  1281. if (command.textureNames_[i].Empty())
  1282. continue;
  1283. // Bind the rendered output
  1284. if (!command.textureNames_[i].Compare("viewport", false))
  1285. {
  1286. graphics_->SetTexture(i, currentViewportTexture_);
  1287. continue;
  1288. }
  1289. // Bind a rendertarget
  1290. HashMap<StringHash, Texture2D*>::ConstIterator j = renderTargets_.Find(command.textureNames_[i]);
  1291. if (j != renderTargets_.End())
  1292. {
  1293. graphics_->SetTexture(i, j->second_);
  1294. continue;
  1295. }
  1296. // Bind a texture from the resource system
  1297. Texture* texture;
  1298. // Detect cube/3D textures by file extension: they are defined by an XML file
  1299. if (GetExtension(command.textureNames_[i]) == ".xml")
  1300. {
  1301. // Assume 3D textures are only bound to the volume map unit, otherwise it's a cube texture
  1302. if (i == TU_VOLUMEMAP)
  1303. texture = cache->GetResource<Texture3D>(command.textureNames_[i]);
  1304. else
  1305. texture = cache->GetResource<TextureCube>(command.textureNames_[i]);
  1306. }
  1307. else
  1308. texture = cache->GetResource<Texture2D>(command.textureNames_[i]);
  1309. if (texture)
  1310. graphics_->SetTexture(i, texture);
  1311. else
  1312. {
  1313. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1314. command.textureNames_[i] = String::EMPTY;
  1315. }
  1316. }
  1317. }
  1318. void View::RenderQuad(RenderPathCommand& command)
  1319. {
  1320. // If shader can not be found, clear it from the command to prevent redundant attempts
  1321. /// \todo Do not re-query each frame, as it involves string manipulation
  1322. ShaderVariation* vs = renderer_->GetShader(VS, command.vertexShaderName_, command.vertexShaderDefines_);
  1323. if (!vs)
  1324. command.vertexShaderName_ = String::EMPTY;
  1325. ShaderVariation* ps = renderer_->GetShader(PS, command.pixelShaderName_, command.pixelShaderDefines_);
  1326. if (!ps)
  1327. command.pixelShaderName_ = String::EMPTY;
  1328. // Set shaders & shader parameters and textures
  1329. graphics_->SetShaders(vs, ps);
  1330. const HashMap<StringHash, Variant>& parameters = command.shaderParameters_;
  1331. for (HashMap<StringHash, Variant>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1332. graphics_->SetShaderParameter(k->first_, k->second_);
  1333. graphics_->SetShaderParameter(VSP_DELTATIME, frame_.timeStep_);
  1334. graphics_->SetShaderParameter(PSP_DELTATIME, frame_.timeStep_);
  1335. float nearClip = camera_->GetNearClip();
  1336. float farClip = camera_->GetFarClip();
  1337. graphics_->SetShaderParameter(VSP_NEARCLIP, nearClip);
  1338. graphics_->SetShaderParameter(VSP_FARCLIP, farClip);
  1339. graphics_->SetShaderParameter(PSP_NEARCLIP, nearClip);
  1340. graphics_->SetShaderParameter(PSP_FARCLIP, farClip);
  1341. float rtWidth = (float)rtSize_.x_;
  1342. float rtHeight = (float)rtSize_.y_;
  1343. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1344. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1345. #ifdef USE_OPENGL
  1346. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1347. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1348. #else
  1349. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1350. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1351. #endif
  1352. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1353. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1354. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1355. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1356. {
  1357. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1358. if (!rtInfo.enabled_)
  1359. continue;
  1360. StringHash nameHash(rtInfo.name_);
  1361. if (!renderTargets_.Contains(nameHash))
  1362. continue;
  1363. String invSizeName = rtInfo.name_ + "InvSize";
  1364. String offsetsName = rtInfo.name_ + "Offsets";
  1365. float width = (float)renderTargets_[nameHash]->GetWidth();
  1366. float height = (float)renderTargets_[nameHash]->GetHeight();
  1367. graphics_->SetShaderParameter(invSizeName, Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1368. #ifdef USE_OPENGL
  1369. graphics_->SetShaderParameter(offsetsName, Vector4::ZERO);
  1370. #else
  1371. graphics_->SetShaderParameter(offsetsName, Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1372. #endif
  1373. }
  1374. graphics_->SetBlendMode(BLEND_REPLACE);
  1375. graphics_->SetDepthTest(CMP_ALWAYS);
  1376. graphics_->SetDepthWrite(false);
  1377. graphics_->SetFillMode(FILL_SOLID);
  1378. graphics_->SetClipPlane(false);
  1379. graphics_->SetScissorTest(false);
  1380. graphics_->SetStencilTest(false);
  1381. DrawFullscreenQuad(false);
  1382. }
  1383. bool View::IsNecessary(const RenderPathCommand& command)
  1384. {
  1385. return command.enabled_ && command.outputNames_.Size() && (command.type_ != CMD_SCENEPASS ||
  1386. !batchQueues_[command.pass_].IsEmpty());
  1387. }
  1388. bool View::CheckViewportRead(const RenderPathCommand& command)
  1389. {
  1390. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1391. {
  1392. if (!command.textureNames_[i].Empty() && !command.textureNames_[i].Compare("viewport", false))
  1393. return true;
  1394. }
  1395. return false;
  1396. }
  1397. bool View::CheckViewportWrite(const RenderPathCommand& command)
  1398. {
  1399. for (unsigned i = 0; i < command.outputNames_.Size(); ++i)
  1400. {
  1401. if (!command.outputNames_[i].Compare("viewport", false))
  1402. return true;
  1403. }
  1404. return false;
  1405. }
  1406. bool View::CheckPingpong(unsigned index)
  1407. {
  1408. // Current command must be a viewport-reading & writing quad to begin the pingpong chain
  1409. RenderPathCommand& current = renderPath_->commands_[index];
  1410. if (current.type_ != CMD_QUAD || !CheckViewportRead(current) || !CheckViewportWrite(current))
  1411. return false;
  1412. // If there are commands other than quads that target the viewport, we must keep rendering to the final target and resolving
  1413. // to a viewport texture when necessary instead of pingponging, as a scene pass is not guaranteed to fill the entire viewport
  1414. for (unsigned i = index + 1; i < renderPath_->commands_.Size(); ++i)
  1415. {
  1416. RenderPathCommand& command = renderPath_->commands_[i];
  1417. if (!IsNecessary(command))
  1418. continue;
  1419. if (CheckViewportWrite(command))
  1420. {
  1421. if (command.type_ != CMD_QUAD)
  1422. return false;
  1423. }
  1424. }
  1425. return true;
  1426. }
  1427. void View::AllocateScreenBuffers()
  1428. {
  1429. bool needSubstitute = false;
  1430. unsigned numViewportTextures = 0;
  1431. #ifdef USE_OPENGL
  1432. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1433. // Also, if rendering to a texture with full deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1434. if ((deferred_ && !renderTarget_) || (deferredAmbient_ && renderTarget_ && renderTarget_->GetParentTexture()->GetFormat() !=
  1435. Graphics::GetRGBAFormat()))
  1436. needSubstitute = true;
  1437. #endif
  1438. // If backbuffer is antialiased when using deferred rendering, need to reserve a buffer
  1439. if (deferred_ && !renderTarget_ && graphics_->GetMultiSample() > 1)
  1440. needSubstitute = true;
  1441. // Follow final rendertarget format, or use RGB to match the backbuffer format
  1442. unsigned format = renderTarget_ ? renderTarget_->GetParentTexture()->GetFormat() : Graphics::GetRGBFormat();
  1443. // If HDR rendering is enabled use RGBA16f and reserve a buffer
  1444. bool hdrRendering = renderer_->GetHDRRendering();
  1445. if (renderer_->GetHDRRendering())
  1446. {
  1447. format = Graphics::GetRGBAFloat16Format();
  1448. needSubstitute = true;
  1449. }
  1450. #ifdef USE_OPENGL
  1451. if (deferred_ && !hdrRendering)
  1452. format = Graphics::GetRGBAFormat();
  1453. #endif
  1454. // Check for commands which read the viewport, or pingpong between viewport textures
  1455. bool hasViewportRead = false;
  1456. bool hasPingpong = false;
  1457. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1458. {
  1459. const RenderPathCommand& command = renderPath_->commands_[i];
  1460. if (!IsNecessary(command))
  1461. continue;
  1462. if (CheckViewportRead(command))
  1463. hasViewportRead = true;
  1464. if (!hasPingpong && CheckPingpong(i))
  1465. hasPingpong = true;
  1466. }
  1467. if (hasViewportRead)
  1468. {
  1469. ++numViewportTextures;
  1470. // If OpenGL ES, use substitute target to avoid resolve from the backbuffer, which may be slow. However if multisampling
  1471. // is specified, there is no choice
  1472. #ifdef GL_ES_VERSION_2_0
  1473. if (!renderTarget_ && graphics_->GetMultiSample() < 2)
  1474. needSubstitute = true;
  1475. #endif
  1476. // If we have viewport read and target is a cube map, must allocate a substitute target instead as BlitFramebuffer()
  1477. // does not support reading a cube map
  1478. if (renderTarget_ && renderTarget_->GetParentTexture()->GetType() == TextureCube::GetTypeStatic())
  1479. needSubstitute = true;
  1480. if (hasPingpong && !needSubstitute)
  1481. ++numViewportTextures;
  1482. }
  1483. // Allocate screen buffers with filtering active in case the quad commands need that
  1484. // Follow the sRGB mode of the destination render target
  1485. bool sRGB = renderTarget_ ? renderTarget_->GetParentTexture()->GetSRGB() : graphics_->GetSRGB();
  1486. substituteRenderTarget_ = needSubstitute ? renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true,
  1487. sRGB)->GetRenderSurface() : (RenderSurface*)0;
  1488. for (unsigned i = 0; i < MAX_VIEWPORT_TEXTURES; ++i)
  1489. {
  1490. viewportTextures_[i] = i < numViewportTextures ? renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true, sRGB) :
  1491. (Texture2D*)0;
  1492. }
  1493. // If using a substitute render target and pingponging, the substitute can act as the second viewport texture
  1494. if (numViewportTextures == 1 && substituteRenderTarget_)
  1495. viewportTextures_[1] = static_cast<Texture2D*>(substituteRenderTarget_->GetParentTexture());
  1496. // Allocate extra render targets defined by the rendering path
  1497. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1498. {
  1499. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1500. if (!rtInfo.enabled_)
  1501. continue;
  1502. unsigned width = rtInfo.size_.x_;
  1503. unsigned height = rtInfo.size_.y_;
  1504. if (rtInfo.sizeMode_ == SIZE_VIEWPORTDIVISOR)
  1505. {
  1506. width = viewSize_.x_ / (width ? width : 1);
  1507. height = viewSize_.y_ / (height ? height : 1);
  1508. }
  1509. if (rtInfo.sizeMode_ == SIZE_RENDERTARGETDIVISOR)
  1510. {
  1511. width = rtSize_.x_ / (width ? width : 1);
  1512. height = rtSize_.y_ / (height ? height : 1);
  1513. }
  1514. renderTargets_[rtInfo.name_] = renderer_->GetScreenBuffer(width, height, rtInfo.format_, rtInfo.filtered_, rtInfo.sRGB_);
  1515. }
  1516. }
  1517. void View::BlitFramebuffer(Texture2D* source, RenderSurface* destination, bool depthWrite)
  1518. {
  1519. if (!source)
  1520. return;
  1521. PROFILE(BlitFramebuffer);
  1522. graphics_->SetBlendMode(BLEND_REPLACE);
  1523. graphics_->SetDepthTest(CMP_ALWAYS);
  1524. graphics_->SetDepthWrite(depthWrite);
  1525. graphics_->SetFillMode(FILL_SOLID);
  1526. graphics_->SetClipPlane(false);
  1527. graphics_->SetScissorTest(false);
  1528. graphics_->SetStencilTest(false);
  1529. graphics_->SetRenderTarget(0, destination);
  1530. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1531. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1532. graphics_->SetDepthStencil(GetDepthStencil(destination));
  1533. graphics_->SetViewport(viewRect_);
  1534. String shaderName = "CopyFramebuffer";
  1535. graphics_->SetShaders(renderer_->GetShader(VS, shaderName), renderer_->GetShader(PS, shaderName));
  1536. float rtWidth = (float)rtSize_.x_;
  1537. float rtHeight = (float)rtSize_.y_;
  1538. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1539. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1540. #ifdef USE_OPENGL
  1541. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1542. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1543. #else
  1544. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1545. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1546. #endif
  1547. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1548. graphics_->SetTexture(TU_DIFFUSE, source);
  1549. DrawFullscreenQuad(false);
  1550. }
  1551. void View::DrawFullscreenQuad(bool nearQuad)
  1552. {
  1553. Light* quadDirLight = renderer_->GetQuadDirLight();
  1554. Geometry* geometry = renderer_->GetLightGeometry(quadDirLight);
  1555. Matrix3x4 model = Matrix3x4::IDENTITY;
  1556. Matrix4 projection = Matrix4::IDENTITY;
  1557. #ifdef USE_OPENGL
  1558. if (camera_->GetFlipVertical())
  1559. projection.m11_ = -1.0f;
  1560. model.m23_ = nearQuad ? -1.0f : 1.0f;
  1561. #else
  1562. model.m23_ = nearQuad ? 0.0f : 1.0f;
  1563. #endif
  1564. graphics_->SetCullMode(CULL_NONE);
  1565. graphics_->SetShaderParameter(VSP_MODEL, model);
  1566. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1567. graphics_->ClearTransformSources();
  1568. geometry->Draw(graphics_);
  1569. }
  1570. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1571. {
  1572. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1573. float halfViewSize = camera->GetHalfViewSize();
  1574. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1575. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1576. {
  1577. Drawable* occluder = *i;
  1578. bool erase = false;
  1579. if (!occluder->IsInView(frame_, false))
  1580. occluder->UpdateBatches(frame_);
  1581. // Check occluder's draw distance (in main camera view)
  1582. float maxDistance = occluder->GetDrawDistance();
  1583. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1584. {
  1585. // Check that occluder is big enough on the screen
  1586. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1587. float diagonal = box.Size().Length();
  1588. float compare;
  1589. if (!camera->IsOrthographic())
  1590. compare = diagonal * halfViewSize / occluder->GetDistance();
  1591. else
  1592. compare = diagonal * invOrthoSize;
  1593. if (compare < occluderSizeThreshold_)
  1594. erase = true;
  1595. else
  1596. {
  1597. // Store amount of triangles divided by screen size as a sorting key
  1598. // (best occluders are big and have few triangles)
  1599. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1600. }
  1601. }
  1602. else
  1603. erase = true;
  1604. if (erase)
  1605. i = occluders.Erase(i);
  1606. else
  1607. ++i;
  1608. }
  1609. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1610. if (occluders.Size())
  1611. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1612. }
  1613. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1614. {
  1615. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1616. buffer->Clear();
  1617. for (unsigned i = 0; i < occluders.Size(); ++i)
  1618. {
  1619. Drawable* occluder = occluders[i];
  1620. if (i > 0)
  1621. {
  1622. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1623. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1624. continue;
  1625. }
  1626. // Check for running out of triangles
  1627. if (!occluder->DrawOcclusion(buffer))
  1628. break;
  1629. }
  1630. buffer->BuildDepthHierarchy();
  1631. }
  1632. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1633. {
  1634. Light* light = query.light_;
  1635. LightType type = light->GetLightType();
  1636. const Frustum& frustum = camera_->GetFrustum();
  1637. // Check if light should be shadowed
  1638. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1639. // If shadow distance non-zero, check it
  1640. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1641. isShadowed = false;
  1642. // OpenGL ES can not support point light shadows
  1643. #ifdef GL_ES_VERSION_2_0
  1644. if (isShadowed && type == LIGHT_POINT)
  1645. isShadowed = false;
  1646. #endif
  1647. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1648. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1649. query.litGeometries_.Clear();
  1650. switch (type)
  1651. {
  1652. case LIGHT_DIRECTIONAL:
  1653. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1654. {
  1655. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1656. query.litGeometries_.Push(geometries_[i]);
  1657. }
  1658. break;
  1659. case LIGHT_SPOT:
  1660. {
  1661. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1662. octree_->GetDrawables(octreeQuery);
  1663. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1664. {
  1665. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1666. query.litGeometries_.Push(tempDrawables[i]);
  1667. }
  1668. }
  1669. break;
  1670. case LIGHT_POINT:
  1671. {
  1672. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1673. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1674. octree_->GetDrawables(octreeQuery);
  1675. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1676. {
  1677. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1678. query.litGeometries_.Push(tempDrawables[i]);
  1679. }
  1680. }
  1681. break;
  1682. }
  1683. // If no lit geometries or not shadowed, no need to process shadow cameras
  1684. if (query.litGeometries_.Empty() || !isShadowed)
  1685. {
  1686. query.numSplits_ = 0;
  1687. return;
  1688. }
  1689. // Determine number of shadow cameras and setup their initial positions
  1690. SetupShadowCameras(query);
  1691. // Process each split for shadow casters
  1692. query.shadowCasters_.Clear();
  1693. for (unsigned i = 0; i < query.numSplits_; ++i)
  1694. {
  1695. Camera* shadowCamera = query.shadowCameras_[i];
  1696. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1697. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1698. // For point light check that the face is visible: if not, can skip the split
  1699. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1700. continue;
  1701. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1702. if (type == LIGHT_DIRECTIONAL)
  1703. {
  1704. if (minZ_ > query.shadowFarSplits_[i])
  1705. continue;
  1706. if (maxZ_ < query.shadowNearSplits_[i])
  1707. continue;
  1708. // Reuse lit geometry query for all except directional lights
  1709. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1710. camera_->GetViewMask());
  1711. octree_->GetDrawables(query);
  1712. }
  1713. // Check which shadow casters actually contribute to the shadowing
  1714. ProcessShadowCasters(query, tempDrawables, i);
  1715. }
  1716. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1717. // only cost has been the shadow camera setup & queries
  1718. if (query.shadowCasters_.Empty())
  1719. query.numSplits_ = 0;
  1720. }
  1721. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1722. {
  1723. Light* light = query.light_;
  1724. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1725. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1726. const Matrix3x4& lightView = shadowCamera->GetView();
  1727. const Matrix4& lightProj = shadowCamera->GetProjection();
  1728. LightType type = light->GetLightType();
  1729. query.shadowCasterBox_[splitIndex].defined_ = false;
  1730. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1731. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1732. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1733. Frustum lightViewFrustum;
  1734. if (type != LIGHT_DIRECTIONAL)
  1735. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1736. else
  1737. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1738. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1739. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1740. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1741. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1742. return;
  1743. BoundingBox lightViewBox;
  1744. BoundingBox lightProjBox;
  1745. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1746. {
  1747. Drawable* drawable = *i;
  1748. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1749. // Check for that first
  1750. if (!drawable->GetCastShadows())
  1751. continue;
  1752. // Check shadow mask
  1753. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1754. continue;
  1755. // For point light, check that this drawable is inside the split shadow camera frustum
  1756. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1757. continue;
  1758. // Check shadow distance
  1759. float maxShadowDistance = drawable->GetShadowDistance();
  1760. float drawDistance = drawable->GetDrawDistance();
  1761. bool batchesUpdated = drawable->IsInView(frame_, false);
  1762. if (drawDistance > 0.0f && (maxShadowDistance <= 0.0f || drawDistance < maxShadowDistance))
  1763. maxShadowDistance = drawDistance;
  1764. if (maxShadowDistance > 0.0f)
  1765. {
  1766. if (!batchesUpdated)
  1767. {
  1768. drawable->UpdateBatches(frame_);
  1769. batchesUpdated = true;
  1770. }
  1771. if (drawable->GetDistance() > maxShadowDistance)
  1772. continue;
  1773. }
  1774. // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several
  1775. // times. However, this should not cause problems as no scene modification happens at this point.
  1776. if (!batchesUpdated)
  1777. drawable->UpdateBatches(frame_);
  1778. // Project shadow caster bounding box to light view space for visibility check
  1779. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1780. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1781. {
  1782. // Merge to shadow caster bounding box and add to the list
  1783. if (type == LIGHT_DIRECTIONAL)
  1784. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1785. else
  1786. {
  1787. lightProjBox = lightViewBox.Projected(lightProj);
  1788. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1789. }
  1790. query.shadowCasters_.Push(drawable);
  1791. }
  1792. }
  1793. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1794. }
  1795. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1796. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1797. {
  1798. if (shadowCamera->IsOrthographic())
  1799. {
  1800. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1801. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1802. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1803. }
  1804. else
  1805. {
  1806. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1807. if (drawable->IsInView(frame_))
  1808. return true;
  1809. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1810. Vector3 center = lightViewBox.Center();
  1811. Ray extrusionRay(center, center);
  1812. float extrusionDistance = shadowCamera->GetFarClip();
  1813. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1814. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1815. float sizeFactor = extrusionDistance / originalDistance;
  1816. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1817. // than necessary, so the test will be conservative
  1818. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1819. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1820. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1821. lightViewBox.Merge(extrudedBox);
  1822. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1823. }
  1824. }
  1825. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1826. {
  1827. unsigned width = shadowMap->GetWidth();
  1828. unsigned height = shadowMap->GetHeight();
  1829. int maxCascades = renderer_->GetMaxShadowCascades();
  1830. switch (light->GetLightType())
  1831. {
  1832. case LIGHT_DIRECTIONAL:
  1833. if (maxCascades == 1)
  1834. return IntRect(0, 0, width, height);
  1835. else if (maxCascades == 2)
  1836. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1837. else
  1838. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1839. (splitIndex / 2 + 1) * height / 2);
  1840. case LIGHT_SPOT:
  1841. return IntRect(0, 0, width, height);
  1842. case LIGHT_POINT:
  1843. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1844. (splitIndex / 2 + 1) * height / 3);
  1845. }
  1846. return IntRect();
  1847. }
  1848. void View::SetupShadowCameras(LightQueryResult& query)
  1849. {
  1850. Light* light = query.light_;
  1851. int splits = 0;
  1852. switch (light->GetLightType())
  1853. {
  1854. case LIGHT_DIRECTIONAL:
  1855. {
  1856. const CascadeParameters& cascade = light->GetShadowCascade();
  1857. float nearSplit = camera_->GetNearClip();
  1858. float farSplit;
  1859. while (splits < renderer_->GetMaxShadowCascades())
  1860. {
  1861. // If split is completely beyond camera far clip, we are done
  1862. if (nearSplit > camera_->GetFarClip())
  1863. break;
  1864. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1865. if (farSplit <= nearSplit)
  1866. break;
  1867. // Setup the shadow camera for the split
  1868. Camera* shadowCamera = renderer_->GetShadowCamera();
  1869. query.shadowCameras_[splits] = shadowCamera;
  1870. query.shadowNearSplits_[splits] = nearSplit;
  1871. query.shadowFarSplits_[splits] = farSplit;
  1872. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1873. nearSplit = farSplit;
  1874. ++splits;
  1875. }
  1876. }
  1877. break;
  1878. case LIGHT_SPOT:
  1879. {
  1880. Camera* shadowCamera = renderer_->GetShadowCamera();
  1881. query.shadowCameras_[0] = shadowCamera;
  1882. Node* cameraNode = shadowCamera->GetNode();
  1883. Node* lightNode = light->GetNode();
  1884. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1885. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1886. shadowCamera->SetFarClip(light->GetRange());
  1887. shadowCamera->SetFov(light->GetFov());
  1888. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1889. splits = 1;
  1890. }
  1891. break;
  1892. case LIGHT_POINT:
  1893. {
  1894. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1895. {
  1896. Camera* shadowCamera = renderer_->GetShadowCamera();
  1897. query.shadowCameras_[i] = shadowCamera;
  1898. Node* cameraNode = shadowCamera->GetNode();
  1899. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1900. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1901. cameraNode->SetDirection(*directions[i]);
  1902. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1903. shadowCamera->SetFarClip(light->GetRange());
  1904. shadowCamera->SetFov(90.0f);
  1905. shadowCamera->SetAspectRatio(1.0f);
  1906. }
  1907. splits = MAX_CUBEMAP_FACES;
  1908. }
  1909. break;
  1910. }
  1911. query.numSplits_ = splits;
  1912. }
  1913. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1914. {
  1915. Node* shadowCameraNode = shadowCamera->GetNode();
  1916. Node* lightNode = light->GetNode();
  1917. float extrusionDistance = camera_->GetFarClip();
  1918. const FocusParameters& parameters = light->GetShadowFocus();
  1919. // Calculate initial position & rotation
  1920. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightNode->GetWorldDirection();
  1921. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1922. // Calculate main camera shadowed frustum in light's view space
  1923. farSplit = Min(farSplit, camera_->GetFarClip());
  1924. // Use the scene Z bounds to limit frustum size if applicable
  1925. if (parameters.focus_)
  1926. {
  1927. nearSplit = Max(minZ_, nearSplit);
  1928. farSplit = Min(maxZ_, farSplit);
  1929. }
  1930. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1931. Polyhedron frustumVolume;
  1932. frustumVolume.Define(splitFrustum);
  1933. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1934. if (parameters.focus_)
  1935. {
  1936. BoundingBox litGeometriesBox;
  1937. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1938. {
  1939. Drawable* drawable = geometries_[i];
  1940. // Skip skyboxes as they have undefinedly large bounding box size
  1941. if (drawable->GetType() == Skybox::GetTypeStatic())
  1942. continue;
  1943. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1944. (GetLightMask(drawable) & light->GetLightMask()))
  1945. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1946. }
  1947. if (litGeometriesBox.defined_)
  1948. {
  1949. frustumVolume.Clip(litGeometriesBox);
  1950. // If volume became empty, restore it to avoid zero size
  1951. if (frustumVolume.Empty())
  1952. frustumVolume.Define(splitFrustum);
  1953. }
  1954. }
  1955. // Transform frustum volume to light space
  1956. const Matrix3x4& lightView = shadowCamera->GetView();
  1957. frustumVolume.Transform(lightView);
  1958. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1959. BoundingBox shadowBox;
  1960. if (!parameters.nonUniform_)
  1961. shadowBox.Define(Sphere(frustumVolume));
  1962. else
  1963. shadowBox.Define(frustumVolume);
  1964. shadowCamera->SetOrthographic(true);
  1965. shadowCamera->SetAspectRatio(1.0f);
  1966. shadowCamera->SetNearClip(0.0f);
  1967. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1968. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1969. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1970. }
  1971. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1972. const BoundingBox& shadowCasterBox)
  1973. {
  1974. const FocusParameters& parameters = light->GetShadowFocus();
  1975. float shadowMapWidth = (float)(shadowViewport.Width());
  1976. LightType type = light->GetLightType();
  1977. if (type == LIGHT_DIRECTIONAL)
  1978. {
  1979. BoundingBox shadowBox;
  1980. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1981. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1982. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1983. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1984. // Requantize and snap to shadow map texels
  1985. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1986. }
  1987. if (type == LIGHT_SPOT)
  1988. {
  1989. if (parameters.focus_)
  1990. {
  1991. float viewSizeX = Max(Abs(shadowCasterBox.min_.x_), Abs(shadowCasterBox.max_.x_));
  1992. float viewSizeY = Max(Abs(shadowCasterBox.min_.y_), Abs(shadowCasterBox.max_.y_));
  1993. float viewSize = Max(viewSizeX, viewSizeY);
  1994. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1995. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1996. float quantize = parameters.quantize_ * invOrthoSize;
  1997. float minView = parameters.minView_ * invOrthoSize;
  1998. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1999. if (viewSize < 1.0f)
  2000. shadowCamera->SetZoom(1.0f / viewSize);
  2001. }
  2002. }
  2003. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  2004. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  2005. if (shadowCamera->GetZoom() >= 1.0f)
  2006. {
  2007. if (light->GetLightType() != LIGHT_POINT)
  2008. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  2009. else
  2010. {
  2011. #ifdef USE_OPENGL
  2012. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  2013. #else
  2014. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  2015. #endif
  2016. }
  2017. }
  2018. }
  2019. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  2020. const BoundingBox& viewBox)
  2021. {
  2022. Node* shadowCameraNode = shadowCamera->GetNode();
  2023. const FocusParameters& parameters = light->GetShadowFocus();
  2024. float shadowMapWidth = (float)(shadowViewport.Width());
  2025. float minX = viewBox.min_.x_;
  2026. float minY = viewBox.min_.y_;
  2027. float maxX = viewBox.max_.x_;
  2028. float maxY = viewBox.max_.y_;
  2029. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  2030. Vector2 viewSize(maxX - minX, maxY - minY);
  2031. // Quantize size to reduce swimming
  2032. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  2033. if (parameters.nonUniform_)
  2034. {
  2035. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  2036. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  2037. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  2038. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  2039. }
  2040. else if (parameters.focus_)
  2041. {
  2042. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  2043. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  2044. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  2045. viewSize.y_ = viewSize.x_;
  2046. }
  2047. shadowCamera->SetOrthoSize(viewSize);
  2048. // Center shadow camera to the view space bounding box
  2049. Quaternion rot(shadowCameraNode->GetWorldRotation());
  2050. Vector3 adjust(center.x_, center.y_, 0.0f);
  2051. shadowCameraNode->Translate(rot * adjust);
  2052. // If the shadow map viewport is known, snap to whole texels
  2053. if (shadowMapWidth > 0.0f)
  2054. {
  2055. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  2056. // Take into account that shadow map border will not be used
  2057. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  2058. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  2059. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  2060. shadowCameraNode->Translate(rot * snap);
  2061. }
  2062. }
  2063. void View::FindZone(Drawable* drawable)
  2064. {
  2065. Vector3 center = drawable->GetWorldBoundingBox().Center();
  2066. int bestPriority = M_MIN_INT;
  2067. Zone* newZone = 0;
  2068. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  2069. // (possibly incorrect) and must be re-evaluated on the next frame
  2070. bool temporary = !camera_->GetFrustum().IsInside(center);
  2071. // First check if the last zone remains a conclusive result
  2072. Zone* lastZone = drawable->GetLastZone();
  2073. if (lastZone && (lastZone->GetViewMask() & camera_->GetViewMask()) && lastZone->GetPriority() >= highestZonePriority_ &&
  2074. (drawable->GetZoneMask() & lastZone->GetZoneMask()) && lastZone->IsInside(center))
  2075. newZone = lastZone;
  2076. else
  2077. {
  2078. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  2079. {
  2080. Zone* zone = *i;
  2081. int priority = zone->GetPriority();
  2082. if (priority > bestPriority && (drawable->GetZoneMask() & zone->GetZoneMask()) && zone->IsInside(center))
  2083. {
  2084. newZone = zone;
  2085. bestPriority = priority;
  2086. }
  2087. }
  2088. }
  2089. drawable->SetZone(newZone, temporary);
  2090. }
  2091. Technique* View::GetTechnique(Drawable* drawable, Material* material)
  2092. {
  2093. if (!material)
  2094. {
  2095. const Vector<TechniqueEntry>& techniques = renderer_->GetDefaultMaterial()->GetTechniques();
  2096. return techniques.Size() ? techniques[0].technique_ : (Technique*)0;
  2097. }
  2098. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  2099. // If only one technique, no choice
  2100. if (techniques.Size() == 1)
  2101. return techniques[0].technique_;
  2102. else
  2103. {
  2104. float lodDistance = drawable->GetLodDistance();
  2105. // Check for suitable technique. Techniques should be ordered like this:
  2106. // Most distant & highest quality
  2107. // Most distant & lowest quality
  2108. // Second most distant & highest quality
  2109. // ...
  2110. for (unsigned i = 0; i < techniques.Size(); ++i)
  2111. {
  2112. const TechniqueEntry& entry = techniques[i];
  2113. Technique* tech = entry.technique_;
  2114. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  2115. continue;
  2116. if (lodDistance >= entry.lodDistance_)
  2117. return tech;
  2118. }
  2119. // If no suitable technique found, fallback to the last
  2120. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  2121. }
  2122. }
  2123. void View::CheckMaterialForAuxView(Material* material)
  2124. {
  2125. const SharedPtr<Texture>* textures = material->GetTextures();
  2126. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  2127. {
  2128. Texture* texture = textures[i];
  2129. if (texture && texture->GetUsage() == TEXTURE_RENDERTARGET)
  2130. {
  2131. // Have to check cube & 2D textures separately
  2132. if (texture->GetType() == Texture2D::GetTypeStatic())
  2133. {
  2134. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  2135. RenderSurface* target = tex2D->GetRenderSurface();
  2136. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  2137. target->QueueUpdate();
  2138. }
  2139. else if (texture->GetType() == TextureCube::GetTypeStatic())
  2140. {
  2141. TextureCube* texCube = static_cast<TextureCube*>(texture);
  2142. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  2143. {
  2144. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  2145. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  2146. target->QueueUpdate();
  2147. }
  2148. }
  2149. }
  2150. }
  2151. // Flag as processed so we can early-out next time we come across this material on the same frame
  2152. material->MarkForAuxView(frame_.frameNumber_);
  2153. }
  2154. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  2155. {
  2156. if (!batch.material_)
  2157. batch.material_ = renderer_->GetDefaultMaterial();
  2158. // Convert to instanced if possible
  2159. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && batch.geometry_->GetIndexBuffer() && !batch.overrideView_)
  2160. batch.geometryType_ = GEOM_INSTANCED;
  2161. if (batch.geometryType_ == GEOM_INSTANCED)
  2162. {
  2163. HashMap<BatchGroupKey, BatchGroup>* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_;
  2164. BatchGroupKey key(batch);
  2165. HashMap<BatchGroupKey, BatchGroup>::Iterator i = groups->Find(key);
  2166. if (i == groups->End())
  2167. {
  2168. // Create a new group based on the batch
  2169. // In case the group remains below the instancing limit, do not enable instancing shaders yet
  2170. BatchGroup newGroup(batch);
  2171. newGroup.geometryType_ = GEOM_STATIC;
  2172. renderer_->SetBatchShaders(newGroup, tech, allowShadows);
  2173. newGroup.CalculateSortKey();
  2174. i = groups->Insert(MakePair(key, newGroup));
  2175. }
  2176. int oldSize = i->second_.instances_.Size();
  2177. i->second_.AddTransforms(batch);
  2178. // Convert to using instancing shaders when the instancing limit is reached
  2179. if (oldSize < minInstances_ && (int)i->second_.instances_.Size() >= minInstances_)
  2180. {
  2181. i->second_.geometryType_ = GEOM_INSTANCED;
  2182. renderer_->SetBatchShaders(i->second_, tech, allowShadows);
  2183. i->second_.CalculateSortKey();
  2184. }
  2185. }
  2186. else
  2187. {
  2188. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2189. batch.CalculateSortKey();
  2190. batchQueue.batches_.Push(batch);
  2191. }
  2192. }
  2193. void View::PrepareInstancingBuffer()
  2194. {
  2195. PROFILE(PrepareInstancingBuffer);
  2196. unsigned totalInstances = 0;
  2197. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2198. totalInstances += i->second_.GetNumInstances();
  2199. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2200. {
  2201. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2202. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances();
  2203. totalInstances += i->litBatches_.GetNumInstances();
  2204. }
  2205. // If fail to set buffer size, fall back to per-group locking
  2206. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2207. {
  2208. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2209. unsigned freeIndex = 0;
  2210. void* dest = instancingBuffer->Lock(0, totalInstances, true);
  2211. if (!dest)
  2212. return;
  2213. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2214. i->second_.SetTransforms(dest, freeIndex);
  2215. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2216. {
  2217. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2218. i->shadowSplits_[j].shadowBatches_.SetTransforms(dest, freeIndex);
  2219. i->litBatches_.SetTransforms(dest, freeIndex);
  2220. }
  2221. instancingBuffer->Unlock();
  2222. }
  2223. }
  2224. void View::SetupLightVolumeBatch(Batch& batch)
  2225. {
  2226. Light* light = batch.lightQueue_->light_;
  2227. LightType type = light->GetLightType();
  2228. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2229. float lightDist;
  2230. graphics_->SetBlendMode(BLEND_ADD);
  2231. graphics_->SetDepthBias(0.0f, 0.0f);
  2232. graphics_->SetDepthWrite(false);
  2233. graphics_->SetFillMode(FILL_SOLID);
  2234. graphics_->SetClipPlane(false);
  2235. if (type != LIGHT_DIRECTIONAL)
  2236. {
  2237. if (type == LIGHT_POINT)
  2238. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2239. else
  2240. lightDist = light->GetFrustum().Distance(cameraPos);
  2241. // Draw front faces if not inside light volume
  2242. if (lightDist < camera_->GetNearClip() * 2.0f)
  2243. {
  2244. renderer_->SetCullMode(CULL_CW, camera_);
  2245. graphics_->SetDepthTest(CMP_GREATER);
  2246. }
  2247. else
  2248. {
  2249. renderer_->SetCullMode(CULL_CCW, camera_);
  2250. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2251. }
  2252. }
  2253. else
  2254. {
  2255. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2256. // refresh the directional light's model transform before rendering
  2257. light->GetVolumeTransform(camera_);
  2258. graphics_->SetCullMode(CULL_NONE);
  2259. graphics_->SetDepthTest(CMP_ALWAYS);
  2260. }
  2261. graphics_->SetScissorTest(false);
  2262. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2263. }
  2264. void View::RenderShadowMap(const LightBatchQueue& queue)
  2265. {
  2266. PROFILE(RenderShadowMap);
  2267. Texture2D* shadowMap = queue.shadowMap_;
  2268. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2269. graphics_->SetColorWrite(false);
  2270. graphics_->SetFillMode(FILL_SOLID);
  2271. graphics_->SetClipPlane(false);
  2272. graphics_->SetStencilTest(false);
  2273. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2274. graphics_->SetDepthStencil(shadowMap);
  2275. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2276. graphics_->Clear(CLEAR_DEPTH);
  2277. // Set shadow depth bias
  2278. const BiasParameters& parameters = queue.light_->GetShadowBias();
  2279. // Render each of the splits
  2280. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2281. {
  2282. float multiplier = 1.0f;
  2283. // For directional light cascade splits, adjust depth bias according to the far clip ratio of the splits
  2284. if (i > 0 && queue.light_->GetLightType() == LIGHT_DIRECTIONAL)
  2285. {
  2286. multiplier = Max(queue.shadowSplits_[i].shadowCamera_->GetFarClip() / queue.shadowSplits_[0].shadowCamera_->GetFarClip(), 1.0f);
  2287. multiplier = 1.0f + (multiplier - 1.0f) * queue.light_->GetShadowCascade().biasAutoAdjust_;
  2288. }
  2289. graphics_->SetDepthBias(multiplier * parameters.constantBias_, multiplier * parameters.slopeScaledBias_);
  2290. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2291. if (!shadowQueue.shadowBatches_.IsEmpty())
  2292. {
  2293. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2294. shadowQueue.shadowBatches_.Draw(this);
  2295. }
  2296. }
  2297. graphics_->SetColorWrite(true);
  2298. graphics_->SetDepthBias(0.0f, 0.0f);
  2299. }
  2300. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2301. {
  2302. // If using the backbuffer, return the backbuffer depth-stencil
  2303. if (!renderTarget)
  2304. return 0;
  2305. // Then check for linked depth-stencil
  2306. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2307. // Finally get one from Renderer
  2308. if (!depthStencil)
  2309. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2310. return depthStencil;
  2311. }
  2312. }