PhysicsWorld.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Model.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  42. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  43. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  44. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  45. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  46. extern ContactAddedCallback gContactAddedCallback;
  47. namespace Urho3D
  48. {
  49. const char* PHYSICS_CATEGORY = "Physics";
  50. extern const char* SUBSYSTEM_CATEGORY;
  51. static const int MAX_SOLVER_ITERATIONS = 256;
  52. static const int DEFAULT_FPS = 60;
  53. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  54. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  55. {
  56. return lhs.distance_ < rhs.distance_;
  57. }
  58. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  59. {
  60. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  61. }
  62. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  63. {
  64. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  65. }
  66. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  67. {
  68. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  69. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  70. cp.m_combinedRestitution = colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  71. return true;
  72. }
  73. /// Callback for physics world queries.
  74. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  75. {
  76. /// Construct.
  77. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) : result_(result),
  78. collisionMask_(collisionMask)
  79. {
  80. }
  81. /// Add a contact result.
  82. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObjectWrapper *colObj0Wrap, int, int, const btCollisionObjectWrapper *colObj1Wrap, int, int)
  83. {
  84. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  85. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  86. result_.Push(body);
  87. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  88. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  89. result_.Push(body);
  90. return 0.0f;
  91. }
  92. /// Found rigid bodies.
  93. PODVector<RigidBody*>& result_;
  94. /// Collision mask for the query.
  95. unsigned collisionMask_;
  96. };
  97. PhysicsWorld::PhysicsWorld(Context* context) :
  98. Component(context),
  99. collisionConfiguration_(0),
  100. collisionDispatcher_(0),
  101. broadphase_(0),
  102. solver_(0),
  103. world_(0),
  104. fps_(DEFAULT_FPS),
  105. timeAcc_(0.0f),
  106. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  107. interpolation_(true),
  108. internalEdge_(true),
  109. applyingTransforms_(false),
  110. debugRenderer_(0),
  111. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  112. {
  113. gContactAddedCallback = CustomMaterialCombinerCallback;
  114. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  115. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  116. broadphase_ = new btDbvtBroadphase();
  117. solver_ = new btSequentialImpulseConstraintSolver();
  118. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  119. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  120. world_->getDispatchInfo().m_useContinuous = true;
  121. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  122. world_->setDebugDrawer(this);
  123. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  124. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  125. }
  126. PhysicsWorld::~PhysicsWorld()
  127. {
  128. if (scene_)
  129. {
  130. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  131. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  132. (*i)->ReleaseConstraint();
  133. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  134. (*i)->ReleaseBody();
  135. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  136. (*i)->ReleaseShape();
  137. }
  138. delete world_;
  139. world_ = 0;
  140. delete solver_;
  141. solver_ = 0;
  142. delete broadphase_;
  143. broadphase_ = 0;
  144. delete collisionDispatcher_;
  145. collisionDispatcher_ = 0;
  146. delete collisionConfiguration_;
  147. collisionConfiguration_ = 0;
  148. }
  149. void PhysicsWorld::RegisterObject(Context* context)
  150. {
  151. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  152. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  153. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  154. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_INT, "Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  155. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  156. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  157. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Internal Edge Utility", internalEdge_, true, AM_DEFAULT);
  158. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  159. }
  160. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  161. {
  162. if (debugRenderer_)
  163. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  164. else
  165. return false;
  166. }
  167. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  168. {
  169. if (debugRenderer_)
  170. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  171. }
  172. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  173. {
  174. if (debug)
  175. {
  176. PROFILE(PhysicsDrawDebug);
  177. debugRenderer_ = debug;
  178. debugDepthTest_ = depthTest;
  179. world_->debugDrawWorld();
  180. debugRenderer_ = 0;
  181. }
  182. }
  183. void PhysicsWorld::reportErrorWarning(const char* warningString)
  184. {
  185. LOGWARNING("Physics: " + String(warningString));
  186. }
  187. void PhysicsWorld::Update(float timeStep)
  188. {
  189. PROFILE(UpdatePhysics);
  190. float internalTimeStep = 1.0f / fps_;
  191. delayedWorldTransforms_.Clear();
  192. if (interpolation_)
  193. {
  194. int maxSubSteps = (int)(timeStep * fps_) + 1;
  195. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  196. }
  197. else
  198. {
  199. timeAcc_ += timeStep;
  200. while (timeAcc_ >= internalTimeStep)
  201. {
  202. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  203. timeAcc_ -= internalTimeStep;
  204. }
  205. }
  206. // Apply delayed (parented) world transforms now
  207. while (!delayedWorldTransforms_.Empty())
  208. {
  209. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  210. i != delayedWorldTransforms_.End(); ++i)
  211. {
  212. const DelayedWorldTransform& transform = i->second_;
  213. // If parent's transform has already been assigned, can proceed
  214. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  215. {
  216. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  217. delayedWorldTransforms_.Erase(i);
  218. }
  219. }
  220. }
  221. }
  222. void PhysicsWorld::UpdateCollisions()
  223. {
  224. world_->performDiscreteCollisionDetection();
  225. }
  226. void PhysicsWorld::SetFps(int fps)
  227. {
  228. fps_ = Clamp(fps, 1, 1000);
  229. MarkNetworkUpdate();
  230. }
  231. void PhysicsWorld::SetGravity(Vector3 gravity)
  232. {
  233. world_->setGravity(ToBtVector3(gravity));
  234. MarkNetworkUpdate();
  235. }
  236. void PhysicsWorld::SetNumIterations(int num)
  237. {
  238. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  239. world_->getSolverInfo().m_numIterations = num;
  240. MarkNetworkUpdate();
  241. }
  242. void PhysicsWorld::SetInterpolation(bool enable)
  243. {
  244. interpolation_ = enable;
  245. }
  246. void PhysicsWorld::SetInternalEdge(bool enable)
  247. {
  248. internalEdge_ = enable;
  249. MarkNetworkUpdate();
  250. }
  251. void PhysicsWorld::SetSplitImpulse(bool enable)
  252. {
  253. world_->getSolverInfo().m_splitImpulse = enable;
  254. MarkNetworkUpdate();
  255. }
  256. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  257. {
  258. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  259. MarkNetworkUpdate();
  260. }
  261. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  262. {
  263. PROFILE(PhysicsRaycast);
  264. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  265. maxDistance * ray.direction_));
  266. rayCallback.m_collisionFilterGroup = (short)0xffff;
  267. rayCallback.m_collisionFilterMask = collisionMask;
  268. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  269. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  270. {
  271. PhysicsRaycastResult newResult;
  272. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  273. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  274. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  275. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  276. result.Push(newResult);
  277. }
  278. Sort(result.Begin(), result.End(), CompareRaycastResults);
  279. }
  280. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  281. {
  282. PROFILE(PhysicsRaycastSingle);
  283. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  284. maxDistance * ray.direction_));
  285. rayCallback.m_collisionFilterGroup = (short)0xffff;
  286. rayCallback.m_collisionFilterMask = collisionMask;
  287. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  288. if (rayCallback.hasHit())
  289. {
  290. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  291. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  292. result.distance_ = (result.position_ - ray.origin_).Length();
  293. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  294. }
  295. else
  296. {
  297. result.position_ = Vector3::ZERO;
  298. result.normal_ = Vector3::ZERO;
  299. result.distance_ = M_INFINITY;
  300. result.body_ = 0;
  301. }
  302. }
  303. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  304. {
  305. PROFILE(PhysicsSphereCast);
  306. btSphereShape shape(radius);
  307. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  308. maxDistance * ray.direction_));
  309. convexCallback.m_collisionFilterGroup = (short)0xffff;
  310. convexCallback.m_collisionFilterMask = collisionMask;
  311. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  312. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  313. if (convexCallback.hasHit())
  314. {
  315. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  316. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  317. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  318. result.distance_ = (result.position_ - ray.origin_).Length();
  319. }
  320. else
  321. {
  322. result.body_ = 0;
  323. result.position_ = Vector3::ZERO;
  324. result.normal_ = Vector3::ZERO;
  325. result.distance_ = M_INFINITY;
  326. }
  327. }
  328. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  329. {
  330. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  331. i != triMeshCache_.End();)
  332. {
  333. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  334. if (current->first_.first_ == model)
  335. triMeshCache_.Erase(current);
  336. }
  337. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  338. i != convexCache_.End();)
  339. {
  340. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  341. if (current->first_.first_ == model)
  342. convexCache_.Erase(current);
  343. }
  344. }
  345. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  346. {
  347. PROFILE(PhysicsSphereQuery);
  348. result.Clear();
  349. btSphereShape sphereShape(sphere.radius_);
  350. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  351. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  352. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  353. tempRigidBody->activate();
  354. world_->addRigidBody(tempRigidBody);
  355. PhysicsQueryCallback callback(result, collisionMask);
  356. world_->contactTest(tempRigidBody, callback);
  357. world_->removeRigidBody(tempRigidBody);
  358. delete tempRigidBody;
  359. }
  360. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  361. {
  362. PROFILE(PhysicsBoxQuery);
  363. result.Clear();
  364. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  365. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  366. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  367. tempRigidBody->activate();
  368. world_->addRigidBody(tempRigidBody);
  369. PhysicsQueryCallback callback(result, collisionMask);
  370. world_->contactTest(tempRigidBody, callback);
  371. world_->removeRigidBody(tempRigidBody);
  372. delete tempRigidBody;
  373. }
  374. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  375. {
  376. PROFILE(GetCollidingBodies);
  377. result.Clear();
  378. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  379. i != currentCollisions_.End(); ++i)
  380. {
  381. if (i->first_.first_ == body)
  382. result.Push(i->first_.second_);
  383. else if (i->first_.second_ == body)
  384. result.Push(i->first_.first_);
  385. }
  386. }
  387. Vector3 PhysicsWorld::GetGravity() const
  388. {
  389. return ToVector3(world_->getGravity());
  390. }
  391. int PhysicsWorld::GetNumIterations() const
  392. {
  393. return world_->getSolverInfo().m_numIterations;
  394. }
  395. bool PhysicsWorld::GetSplitImpulse() const
  396. {
  397. return world_->getSolverInfo().m_splitImpulse != 0;
  398. }
  399. void PhysicsWorld::AddRigidBody(RigidBody* body)
  400. {
  401. rigidBodies_.Push(body);
  402. }
  403. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  404. {
  405. rigidBodies_.Remove(body);
  406. }
  407. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  408. {
  409. collisionShapes_.Push(shape);
  410. }
  411. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  412. {
  413. collisionShapes_.Remove(shape);
  414. }
  415. void PhysicsWorld::AddConstraint(Constraint* constraint)
  416. {
  417. constraints_.Push(constraint);
  418. }
  419. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  420. {
  421. constraints_.Remove(constraint);
  422. }
  423. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  424. {
  425. delayedWorldTransforms_[transform.rigidBody_] = transform;
  426. }
  427. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  428. {
  429. DebugRenderer* debug = GetComponent<DebugRenderer>();
  430. DrawDebugGeometry(debug, depthTest);
  431. }
  432. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  433. {
  434. debugRenderer_ = debug;
  435. }
  436. void PhysicsWorld::SetDebugDepthTest(bool enable)
  437. {
  438. debugDepthTest_ = enable;
  439. }
  440. void PhysicsWorld::CleanupGeometryCache()
  441. {
  442. // Remove cached shapes whose only reference is the cache itself
  443. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  444. i != triMeshCache_.End();)
  445. {
  446. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  447. if (current->second_.Refs() == 1)
  448. triMeshCache_.Erase(current);
  449. }
  450. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  451. i != convexCache_.End();)
  452. {
  453. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  454. if (current->second_.Refs() == 1)
  455. convexCache_.Erase(current);
  456. }
  457. }
  458. void PhysicsWorld::OnNodeSet(Node* node)
  459. {
  460. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  461. if (node)
  462. {
  463. scene_ = GetScene();
  464. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  465. }
  466. }
  467. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  468. {
  469. using namespace SceneSubsystemUpdate;
  470. Update(eventData[P_TIMESTEP].GetFloat());
  471. }
  472. void PhysicsWorld::PreStep(float timeStep)
  473. {
  474. // Send pre-step event
  475. using namespace PhysicsPreStep;
  476. VariantMap& eventData = GetEventDataMap();
  477. eventData[P_WORLD] = this;
  478. eventData[P_TIMESTEP] = timeStep;
  479. SendEvent(E_PHYSICSPRESTEP, eventData);
  480. // Start profiling block for the actual simulation step
  481. #ifdef URHO3D_PROFILING
  482. Profiler* profiler = GetSubsystem<Profiler>();
  483. if (profiler)
  484. profiler->BeginBlock("StepSimulation");
  485. #endif
  486. }
  487. void PhysicsWorld::PostStep(float timeStep)
  488. {
  489. #ifdef URHO3D_PROFILING
  490. Profiler* profiler = GetSubsystem<Profiler>();
  491. if (profiler)
  492. profiler->EndBlock();
  493. #endif
  494. SendCollisionEvents();
  495. // Send post-step event
  496. using namespace PhysicsPreStep;
  497. VariantMap& eventData = GetEventDataMap();
  498. eventData[P_WORLD] = this;
  499. eventData[P_TIMESTEP] = timeStep;
  500. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  501. }
  502. void PhysicsWorld::SendCollisionEvents()
  503. {
  504. PROFILE(SendCollisionEvents);
  505. currentCollisions_.Clear();
  506. physicsCollisionData_.Clear();
  507. nodeCollisionData_.Clear();
  508. int numManifolds = collisionDispatcher_->getNumManifolds();
  509. if (numManifolds)
  510. {
  511. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  512. for (int i = 0; i < numManifolds; ++i)
  513. {
  514. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  515. int numContacts = contactManifold->getNumContacts();
  516. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  517. if (!numContacts)
  518. continue;
  519. const btCollisionObject* objectA = contactManifold->getBody0();
  520. const btCollisionObject* objectB = contactManifold->getBody1();
  521. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  522. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  523. // If it's not a rigidbody, maybe a ghost object
  524. if (!bodyA || !bodyB)
  525. continue;
  526. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  527. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  528. continue;
  529. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  530. continue;
  531. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  532. !bodyA->IsActive() && !bodyB->IsActive())
  533. continue;
  534. WeakPtr<RigidBody> bodyWeakA(bodyA);
  535. WeakPtr<RigidBody> bodyWeakB(bodyB);
  536. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  537. if (bodyA < bodyB)
  538. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  539. else
  540. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  541. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  542. // objects during collision event handling
  543. currentCollisions_[bodyPair] = contactManifold;
  544. }
  545. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  546. i != currentCollisions_.End(); ++i)
  547. {
  548. RigidBody* bodyA = i->first_.first_;
  549. RigidBody* bodyB = i->first_.second_;
  550. if (!bodyA || !bodyB)
  551. continue;
  552. btPersistentManifold* contactManifold = i->second_;
  553. int numContacts = contactManifold->getNumContacts();
  554. Node* nodeA = bodyA->GetNode();
  555. Node* nodeB = bodyB->GetNode();
  556. WeakPtr<Node> nodeWeakA(nodeA);
  557. WeakPtr<Node> nodeWeakB(nodeB);
  558. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  559. bool newCollision = !previousCollisions_.Contains(i->first_);
  560. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  561. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  562. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  563. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  564. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  565. contacts_.Clear();
  566. for (int j = 0; j < numContacts; ++j)
  567. {
  568. btManifoldPoint& point = contactManifold->getContactPoint(j);
  569. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  570. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  571. contacts_.WriteFloat(point.m_distance1);
  572. contacts_.WriteFloat(point.m_appliedImpulse);
  573. }
  574. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  575. // Send separate collision start event if collision is new
  576. if (newCollision)
  577. {
  578. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  579. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  580. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  581. continue;
  582. }
  583. // Then send the ongoing collision event
  584. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  585. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  586. continue;
  587. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  588. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  589. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  590. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  591. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  592. if (newCollision)
  593. {
  594. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  595. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  596. continue;
  597. }
  598. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  599. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  600. continue;
  601. contacts_.Clear();
  602. for (int j = 0; j < numContacts; ++j)
  603. {
  604. btManifoldPoint& point = contactManifold->getContactPoint(j);
  605. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  606. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  607. contacts_.WriteFloat(point.m_distance1);
  608. contacts_.WriteFloat(point.m_appliedImpulse);
  609. }
  610. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  611. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  612. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  613. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  614. if (newCollision)
  615. {
  616. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  617. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  618. continue;
  619. }
  620. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  621. }
  622. }
  623. // Send collision end events as applicable
  624. {
  625. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  626. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  627. {
  628. if (!currentCollisions_.Contains(i->first_))
  629. {
  630. RigidBody* bodyA = i->first_.first_;
  631. RigidBody* bodyB = i->first_.second_;
  632. if (!bodyA || !bodyB)
  633. continue;
  634. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  635. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  636. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  637. continue;
  638. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  639. continue;
  640. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  641. !bodyA->IsActive() && !bodyB->IsActive())
  642. continue;
  643. Node* nodeA = bodyA->GetNode();
  644. Node* nodeB = bodyB->GetNode();
  645. WeakPtr<Node> nodeWeakA(nodeA);
  646. WeakPtr<Node> nodeWeakB(nodeB);
  647. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  648. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  649. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  650. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  651. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  652. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  653. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  654. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  655. continue;
  656. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  657. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  658. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  659. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  660. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  661. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  662. continue;
  663. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  664. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  665. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  666. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  667. }
  668. }
  669. }
  670. previousCollisions_ = currentCollisions_;
  671. }
  672. void RegisterPhysicsLibrary(Context* context)
  673. {
  674. CollisionShape::RegisterObject(context);
  675. RigidBody::RegisterObject(context);
  676. Constraint::RegisterObject(context);
  677. PhysicsWorld::RegisterObject(context);
  678. }
  679. }