PhysicsWorld.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Joint.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  42. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  43. #include "DebugNew.h"
  44. static const int DEFAULT_FPS = 60;
  45. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  46. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  47. {
  48. return lhs.distance_ < rhs.distance_;
  49. }
  50. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  51. {
  52. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  53. }
  54. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  55. {
  56. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  57. }
  58. OBJECTTYPESTATIC(PhysicsWorld);
  59. PhysicsWorld::PhysicsWorld(Context* context) :
  60. Component(context),
  61. collisionConfiguration_(0),
  62. collisionDispatcher_(0),
  63. broadphase_(0),
  64. solver_(0),
  65. world_(0),
  66. fps_(DEFAULT_FPS),
  67. timeAcc_(0.0f),
  68. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  69. interpolation_(true),
  70. debugRenderer_(0),
  71. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints)
  72. {
  73. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  74. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  75. broadphase_ = new btDbvtBroadphase();
  76. solver_ = new btSequentialImpulseConstraintSolver();
  77. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  78. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  79. world_->setDebugDrawer(this);
  80. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  81. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  82. }
  83. PhysicsWorld::~PhysicsWorld()
  84. {
  85. if (scene_)
  86. {
  87. // Force all remaining joints, rigid bodies and collision shapes to release themselves
  88. for (PODVector<Joint*>::Iterator i = joints_.Begin(); i != joints_.End(); ++i)
  89. (*i)->Clear();
  90. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  91. (*i)->ReleaseBody();
  92. }
  93. // Remove any cached geometries that still remain
  94. geometryCache_.Clear();
  95. delete world_;
  96. world_ = 0;
  97. delete solver_;
  98. solver_ = 0;
  99. delete broadphase_;
  100. broadphase_ = 0;
  101. delete collisionDispatcher_;
  102. collisionDispatcher_ = 0;
  103. delete collisionConfiguration_;
  104. collisionConfiguration_ = 0;
  105. }
  106. void PhysicsWorld::RegisterObject(Context* context)
  107. {
  108. context->RegisterFactory<PhysicsWorld>();
  109. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  110. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  111. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  112. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  113. }
  114. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  115. {
  116. if (debugRenderer_)
  117. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  118. }
  119. void PhysicsWorld::reportErrorWarning(const char* warningString)
  120. {
  121. LOGWARNING("Physics: " + String(warningString));
  122. }
  123. void PhysicsWorld::Update(float timeStep)
  124. {
  125. PROFILE(UpdatePhysics);
  126. float internalTimeStep = 1.0f / fps_;
  127. if (interpolation_)
  128. {
  129. int maxSubSteps = (int)(timeStep * fps_) + 1;
  130. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  131. }
  132. else
  133. {
  134. timeAcc_ += timeStep;
  135. while (timeAcc_ >= internalTimeStep)
  136. {
  137. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  138. timeAcc_ -= internalTimeStep;
  139. }
  140. }
  141. }
  142. void PhysicsWorld::UpdateCollisions()
  143. {
  144. world_->performDiscreteCollisionDetection();
  145. }
  146. void PhysicsWorld::SetFps(int fps)
  147. {
  148. fps_ = Clamp(fps, 1, 1000);
  149. }
  150. void PhysicsWorld::SetGravity(Vector3 gravity)
  151. {
  152. world_->setGravity(ToBtVector3(gravity));
  153. }
  154. void PhysicsWorld::SetInterpolation(bool enable)
  155. {
  156. interpolation_ = enable;
  157. }
  158. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  159. {
  160. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  161. }
  162. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  163. {
  164. PROFILE(PhysicsRaycast);
  165. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  166. rayCallback.m_collisionFilterGroup = (short)0xffff;
  167. rayCallback.m_collisionFilterMask = collisionMask;
  168. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  169. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  170. {
  171. PhysicsRaycastResult newResult;
  172. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  173. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  174. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  175. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  176. result.Push(newResult);
  177. }
  178. Sort(result.Begin(), result.End(), CompareRaycastResults);
  179. }
  180. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  181. {
  182. PROFILE(PhysicsRaycastSingle);
  183. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  184. rayCallback.m_collisionFilterGroup = (short)0xffff;
  185. rayCallback.m_collisionFilterMask = collisionMask;
  186. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  187. if (rayCallback.hasHit())
  188. {
  189. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  190. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  191. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  192. result.distance_ = (result.position_ - ray.origin_).Length();
  193. }
  194. else
  195. {
  196. result.body_ = 0;
  197. result.position_ = Vector3::ZERO;
  198. result.normal_ = Vector3::ZERO;
  199. result.distance_ = M_INFINITY;
  200. }
  201. }
  202. Vector3 PhysicsWorld::GetGravity() const
  203. {
  204. return ToVector3(world_->getGravity());
  205. }
  206. void PhysicsWorld::AddRigidBody(RigidBody* body)
  207. {
  208. rigidBodies_.Push(body);
  209. }
  210. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  211. {
  212. PODVector<RigidBody*>::Iterator i = rigidBodies_.Find(body);
  213. if (i != rigidBodies_.End())
  214. rigidBodies_.Erase(i);
  215. }
  216. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  217. {
  218. collisionShapes_.Push(shape);
  219. }
  220. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  221. {
  222. PODVector<CollisionShape*>::Iterator i = collisionShapes_.Find(shape);
  223. if (i != collisionShapes_.End())
  224. collisionShapes_.Erase(i);
  225. }
  226. void PhysicsWorld::AddJoint(Joint* joint)
  227. {
  228. joints_.Push(joint);
  229. }
  230. void PhysicsWorld::RemoveJoint(Joint* joint)
  231. {
  232. PODVector<Joint*>::Iterator i = joints_.Find(joint);
  233. if (i != joints_.End())
  234. joints_.Erase(i);
  235. }
  236. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  237. {
  238. delayedWorldTransforms_[transform.rigidBody_] = transform;
  239. }
  240. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  241. {
  242. debugDepthTest_ = depthTest;
  243. debugRenderer_ = GetComponent<DebugRenderer>();
  244. world_->debugDrawWorld();
  245. debugRenderer_ = 0;
  246. }
  247. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  248. {
  249. debugRenderer_ = debug;
  250. }
  251. void PhysicsWorld::SetDebugDepthTest(bool enable)
  252. {
  253. debugDepthTest_ = enable;
  254. }
  255. void PhysicsWorld::CleanupGeometryCache()
  256. {
  257. // Remove cached shapes whose only reference is the cache itself
  258. for (Map<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  259. i != geometryCache_.End();)
  260. {
  261. Map<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  262. if (current->second_.Refs() == 1)
  263. geometryCache_.Erase(current);
  264. }
  265. }
  266. void PhysicsWorld::OnNodeSet(Node* node)
  267. {
  268. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  269. if (node)
  270. {
  271. scene_ = node->GetScene();
  272. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  273. }
  274. }
  275. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  276. {
  277. using namespace SceneSubsystemUpdate;
  278. Update(eventData[P_TIMESTEP].GetFloat());
  279. }
  280. void PhysicsWorld::PreStep(float timeStep)
  281. {
  282. // Send pre-step event
  283. using namespace PhysicsPreStep;
  284. VariantMap eventData;
  285. eventData[P_WORLD] = (void*)this;
  286. eventData[P_TIMESTEP] = timeStep;
  287. SendEvent(E_PHYSICSPRESTEP, eventData);
  288. delayedWorldTransforms_.Clear();
  289. // Start profiling block for the actual simulation step
  290. #ifdef ENABLE_PROFILING
  291. Profiler* profiler = GetSubsystem<Profiler>();
  292. if (profiler)
  293. profiler->BeginBlock("StepSimulation", 1);
  294. #endif
  295. }
  296. void PhysicsWorld::PostStep(float timeStep)
  297. {
  298. #ifdef ENABLE_PROFILING
  299. GetSubsystem<Profiler>()->EndBlock();
  300. #endif
  301. // Apply delayed (parented) world transforms now
  302. while (!delayedWorldTransforms_.Empty())
  303. {
  304. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  305. i != delayedWorldTransforms_.End(); )
  306. {
  307. HashMap<RigidBody*, DelayedWorldTransform>::Iterator current = i++;
  308. const DelayedWorldTransform& transform = current->second_;
  309. // If parent's transform has already been assigned, can proceed
  310. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  311. {
  312. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  313. delayedWorldTransforms_.Erase(current);
  314. }
  315. }
  316. }
  317. SendCollisionEvents();
  318. // Send post-step event
  319. using namespace PhysicsPreStep;
  320. VariantMap eventData;
  321. eventData[P_WORLD] = (void*)this;
  322. eventData[P_TIMESTEP] = timeStep;
  323. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  324. }
  325. void PhysicsWorld::SendCollisionEvents()
  326. {
  327. PROFILE(SendCollisionEvents);
  328. currentCollisions_.Clear();
  329. int numManifolds = collisionDispatcher_->getNumManifolds();
  330. if (numManifolds)
  331. {
  332. VariantMap physicsCollisionData;
  333. VariantMap nodeCollisionData;
  334. VectorBuffer contacts;
  335. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  336. for (int i = 0; i < numManifolds; ++i)
  337. {
  338. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  339. int numContacts = contactManifold->getNumContacts();
  340. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  341. if (!numContacts)
  342. continue;
  343. btCollisionObject* objectA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  344. btCollisionObject* objectB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  345. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  346. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  347. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  348. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  349. continue;
  350. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  351. continue;
  352. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  353. !bodyA->IsActive() && !bodyB->IsActive())
  354. continue;
  355. Node* nodeA = bodyA->GetNode();
  356. Node* nodeB = bodyB->GetNode();
  357. WeakPtr<Node> nodeWeakA(nodeA);
  358. WeakPtr<Node> nodeWeakB(nodeB);
  359. Pair<RigidBody*, RigidBody*> bodyPair;
  360. if (bodyA < bodyB)
  361. bodyPair = MakePair(bodyA, bodyB);
  362. else
  363. bodyPair = MakePair(bodyB, bodyA);
  364. currentCollisions_.Insert(bodyPair);
  365. bool newCollision = !previousCollisions_.Contains(bodyPair);
  366. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  367. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  368. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  369. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  370. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = !previousCollisions_.Contains(bodyPair);
  371. contacts.Clear();
  372. for (int j = 0; j < numContacts; ++j)
  373. {
  374. btManifoldPoint& point = contactManifold->getContactPoint(j);
  375. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  376. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  377. contacts.WriteFloat(point.m_distance1);
  378. contacts.WriteFloat(point.m_appliedImpulse);
  379. }
  380. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  381. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  382. // Skip if either of the nodes has been removed as a response to the event
  383. if (!nodeWeakA || !nodeWeakB)
  384. continue;
  385. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  386. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  387. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  388. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = newCollision;
  389. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  390. SendEvent(nodeA, E_NODECOLLISION, nodeCollisionData);
  391. // Skip if either of the nodes has been removed as a response to the event
  392. if (!nodeWeakA || !nodeWeakB)
  393. continue;
  394. contacts.Clear();
  395. for (int j = 0; j < numContacts; ++j)
  396. {
  397. btManifoldPoint& point = contactManifold->getContactPoint(j);
  398. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  399. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  400. contacts.WriteFloat(point.m_distance1);
  401. contacts.WriteFloat(point.m_appliedImpulse);
  402. }
  403. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  404. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  405. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  406. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  407. SendEvent(nodeB, E_NODECOLLISION, nodeCollisionData);
  408. }
  409. }
  410. previousCollisions_ = currentCollisions_;
  411. }
  412. void RegisterPhysicsLibrary(Context* context)
  413. {
  414. Joint::RegisterObject(context);
  415. RigidBody::RegisterObject(context);
  416. CollisionShape::RegisterObject(context);
  417. PhysicsWorld::RegisterObject(context);
  418. }