PhysicsWorld.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Model.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/BroadphaseCollision/btBroadphaseProxy.h>
  41. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  42. #include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  43. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  44. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  45. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  46. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  47. extern ContactAddedCallback gContactAddedCallback;
  48. namespace Urho3D
  49. {
  50. const char* PHYSICS_CATEGORY = "Physics";
  51. extern const char* SUBSYSTEM_CATEGORY;
  52. static const int MAX_SOLVER_ITERATIONS = 256;
  53. static const int DEFAULT_FPS = 60;
  54. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  55. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  56. {
  57. return lhs.distance_ < rhs.distance_;
  58. }
  59. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  60. {
  61. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  62. }
  63. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  64. {
  65. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  66. }
  67. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  68. {
  69. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  70. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  71. cp.m_combinedRestitution = colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  72. return true;
  73. }
  74. /// Callback for physics world queries.
  75. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  76. {
  77. /// Construct.
  78. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) : result_(result),
  79. collisionMask_(collisionMask)
  80. {
  81. }
  82. /// Add a contact result.
  83. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObjectWrapper *colObj0Wrap, int, int, const btCollisionObjectWrapper *colObj1Wrap, int, int)
  84. {
  85. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  86. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  87. result_.Push(body);
  88. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  89. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  90. result_.Push(body);
  91. return 0.0f;
  92. }
  93. /// Found rigid bodies.
  94. PODVector<RigidBody*>& result_;
  95. /// Collision mask for the query.
  96. unsigned collisionMask_;
  97. };
  98. PhysicsWorld::PhysicsWorld(Context* context) :
  99. Component(context),
  100. collisionConfiguration_(0),
  101. collisionDispatcher_(0),
  102. broadphase_(0),
  103. solver_(0),
  104. world_(0),
  105. fps_(DEFAULT_FPS),
  106. timeAcc_(0.0f),
  107. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  108. interpolation_(true),
  109. internalEdge_(true),
  110. applyingTransforms_(false),
  111. debugRenderer_(0),
  112. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  113. {
  114. gContactAddedCallback = CustomMaterialCombinerCallback;
  115. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  116. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  117. broadphase_ = new btDbvtBroadphase();
  118. solver_ = new btSequentialImpulseConstraintSolver();
  119. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  120. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  121. world_->getDispatchInfo().m_useContinuous = true;
  122. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  123. world_->setDebugDrawer(this);
  124. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  125. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  126. }
  127. PhysicsWorld::~PhysicsWorld()
  128. {
  129. if (scene_)
  130. {
  131. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  132. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  133. (*i)->ReleaseConstraint();
  134. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  135. (*i)->ReleaseBody();
  136. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  137. (*i)->ReleaseShape();
  138. }
  139. delete world_;
  140. world_ = 0;
  141. delete solver_;
  142. solver_ = 0;
  143. delete broadphase_;
  144. broadphase_ = 0;
  145. delete collisionDispatcher_;
  146. collisionDispatcher_ = 0;
  147. delete collisionConfiguration_;
  148. collisionConfiguration_ = 0;
  149. }
  150. void PhysicsWorld::RegisterObject(Context* context)
  151. {
  152. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  153. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  154. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  155. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_INT, "Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  156. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  157. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  158. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Internal Edge Utility", internalEdge_, true, AM_DEFAULT);
  159. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  160. }
  161. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  162. {
  163. if (debugRenderer_)
  164. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  165. else
  166. return false;
  167. }
  168. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  169. {
  170. if (debugRenderer_)
  171. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  172. }
  173. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  174. {
  175. if (debug)
  176. {
  177. PROFILE(PhysicsDrawDebug);
  178. debugRenderer_ = debug;
  179. debugDepthTest_ = depthTest;
  180. world_->debugDrawWorld();
  181. debugRenderer_ = 0;
  182. }
  183. }
  184. void PhysicsWorld::reportErrorWarning(const char* warningString)
  185. {
  186. LOGWARNING("Physics: " + String(warningString));
  187. }
  188. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime, const btVector3& color)
  189. {
  190. }
  191. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  192. {
  193. }
  194. void PhysicsWorld::Update(float timeStep)
  195. {
  196. PROFILE(UpdatePhysics);
  197. float internalTimeStep = 1.0f / fps_;
  198. delayedWorldTransforms_.Clear();
  199. if (interpolation_)
  200. {
  201. int maxSubSteps = (int)(timeStep * fps_) + 1;
  202. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  203. }
  204. else
  205. {
  206. timeAcc_ += timeStep;
  207. while (timeAcc_ >= internalTimeStep)
  208. {
  209. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  210. timeAcc_ -= internalTimeStep;
  211. }
  212. }
  213. // Apply delayed (parented) world transforms now
  214. while (!delayedWorldTransforms_.Empty())
  215. {
  216. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  217. i != delayedWorldTransforms_.End(); ++i)
  218. {
  219. const DelayedWorldTransform& transform = i->second_;
  220. // If parent's transform has already been assigned, can proceed
  221. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  222. {
  223. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  224. delayedWorldTransforms_.Erase(i);
  225. }
  226. }
  227. }
  228. }
  229. void PhysicsWorld::UpdateCollisions()
  230. {
  231. world_->performDiscreteCollisionDetection();
  232. }
  233. void PhysicsWorld::SetFps(int fps)
  234. {
  235. fps_ = Clamp(fps, 1, 1000);
  236. MarkNetworkUpdate();
  237. }
  238. void PhysicsWorld::SetGravity(Vector3 gravity)
  239. {
  240. world_->setGravity(ToBtVector3(gravity));
  241. MarkNetworkUpdate();
  242. }
  243. void PhysicsWorld::SetNumIterations(int num)
  244. {
  245. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  246. world_->getSolverInfo().m_numIterations = num;
  247. MarkNetworkUpdate();
  248. }
  249. void PhysicsWorld::SetInterpolation(bool enable)
  250. {
  251. interpolation_ = enable;
  252. }
  253. void PhysicsWorld::SetInternalEdge(bool enable)
  254. {
  255. internalEdge_ = enable;
  256. MarkNetworkUpdate();
  257. }
  258. void PhysicsWorld::SetSplitImpulse(bool enable)
  259. {
  260. world_->getSolverInfo().m_splitImpulse = enable;
  261. MarkNetworkUpdate();
  262. }
  263. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  264. {
  265. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  266. MarkNetworkUpdate();
  267. }
  268. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  269. {
  270. PROFILE(PhysicsRaycast);
  271. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  272. maxDistance * ray.direction_));
  273. rayCallback.m_collisionFilterGroup = (short)0xffff;
  274. rayCallback.m_collisionFilterMask = collisionMask;
  275. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  276. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  277. {
  278. PhysicsRaycastResult newResult;
  279. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  280. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  281. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  282. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  283. result.Push(newResult);
  284. }
  285. Sort(result.Begin(), result.End(), CompareRaycastResults);
  286. }
  287. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  288. {
  289. PROFILE(PhysicsRaycastSingle);
  290. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  291. maxDistance * ray.direction_));
  292. rayCallback.m_collisionFilterGroup = (short)0xffff;
  293. rayCallback.m_collisionFilterMask = collisionMask;
  294. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  295. if (rayCallback.hasHit())
  296. {
  297. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  298. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  299. result.distance_ = (result.position_ - ray.origin_).Length();
  300. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  301. }
  302. else
  303. {
  304. result.position_ = Vector3::ZERO;
  305. result.normal_ = Vector3::ZERO;
  306. result.distance_ = M_INFINITY;
  307. result.body_ = 0;
  308. }
  309. }
  310. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  311. {
  312. PROFILE(PhysicsSphereCast);
  313. btSphereShape shape(radius);
  314. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  315. maxDistance * ray.direction_));
  316. convexCallback.m_collisionFilterGroup = (short)0xffff;
  317. convexCallback.m_collisionFilterMask = collisionMask;
  318. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  319. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  320. if (convexCallback.hasHit())
  321. {
  322. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  323. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  324. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  325. result.distance_ = (result.position_ - ray.origin_).Length();
  326. }
  327. else
  328. {
  329. result.body_ = 0;
  330. result.position_ = Vector3::ZERO;
  331. result.normal_ = Vector3::ZERO;
  332. result.distance_ = M_INFINITY;
  333. }
  334. }
  335. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos, const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  336. {
  337. if (!shape || !shape->GetCollisionShape())
  338. {
  339. LOGERROR("Null collision shape for convex cast");
  340. result.body_ = 0;
  341. result.position_ = Vector3::ZERO;
  342. result.normal_ = Vector3::ZERO;
  343. result.distance_ = M_INFINITY;
  344. return;
  345. }
  346. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  347. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  348. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  349. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  350. short group = 0;
  351. if (proxy)
  352. {
  353. group = proxy->m_collisionFilterGroup;
  354. proxy->m_collisionFilterGroup = 0;
  355. }
  356. ConvexCast(result, shape->GetCollisionShape(), startPos, startRot, endPos, endRot, collisionMask);
  357. // Restore the collision group
  358. if (proxy)
  359. proxy->m_collisionFilterGroup = group;
  360. }
  361. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos, const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  362. {
  363. if (!shape)
  364. {
  365. LOGERROR("Null collision shape for convex cast");
  366. result.body_ = 0;
  367. result.position_ = Vector3::ZERO;
  368. result.normal_ = Vector3::ZERO;
  369. result.distance_ = M_INFINITY;
  370. return;
  371. }
  372. if (!shape->isConvex())
  373. {
  374. LOGERROR("Can not use non-convex collision shape for convex cast");
  375. result.body_ = 0;
  376. result.position_ = Vector3::ZERO;
  377. result.normal_ = Vector3::ZERO;
  378. result.distance_ = M_INFINITY;
  379. return;
  380. }
  381. PROFILE(PhysicsConvexCast);
  382. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  383. convexCallback.m_collisionFilterGroup = (short)0xffff;
  384. convexCallback.m_collisionFilterMask = collisionMask;
  385. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  386. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  387. convexCallback);
  388. if (convexCallback.hasHit())
  389. {
  390. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  391. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  392. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  393. result.distance_ = (result.position_ - startPos).Length();
  394. }
  395. else
  396. {
  397. result.body_ = 0;
  398. result.position_ = Vector3::ZERO;
  399. result.normal_ = Vector3::ZERO;
  400. result.distance_ = M_INFINITY;
  401. }
  402. }
  403. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  404. {
  405. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  406. i != triMeshCache_.End();)
  407. {
  408. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  409. if (current->first_.first_ == model)
  410. triMeshCache_.Erase(current);
  411. }
  412. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  413. i != convexCache_.End();)
  414. {
  415. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  416. if (current->first_.first_ == model)
  417. convexCache_.Erase(current);
  418. }
  419. }
  420. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  421. {
  422. PROFILE(PhysicsSphereQuery);
  423. result.Clear();
  424. btSphereShape sphereShape(sphere.radius_);
  425. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  426. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  427. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  428. tempRigidBody->activate();
  429. world_->addRigidBody(tempRigidBody);
  430. PhysicsQueryCallback callback(result, collisionMask);
  431. world_->contactTest(tempRigidBody, callback);
  432. world_->removeRigidBody(tempRigidBody);
  433. delete tempRigidBody;
  434. }
  435. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  436. {
  437. PROFILE(PhysicsBoxQuery);
  438. result.Clear();
  439. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  440. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  441. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  442. tempRigidBody->activate();
  443. world_->addRigidBody(tempRigidBody);
  444. PhysicsQueryCallback callback(result, collisionMask);
  445. world_->contactTest(tempRigidBody, callback);
  446. world_->removeRigidBody(tempRigidBody);
  447. delete tempRigidBody;
  448. }
  449. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  450. {
  451. PROFILE(GetCollidingBodies);
  452. result.Clear();
  453. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  454. i != currentCollisions_.End(); ++i)
  455. {
  456. if (i->first_.first_ == body)
  457. result.Push(i->first_.second_);
  458. else if (i->first_.second_ == body)
  459. result.Push(i->first_.first_);
  460. }
  461. }
  462. Vector3 PhysicsWorld::GetGravity() const
  463. {
  464. return ToVector3(world_->getGravity());
  465. }
  466. int PhysicsWorld::GetNumIterations() const
  467. {
  468. return world_->getSolverInfo().m_numIterations;
  469. }
  470. bool PhysicsWorld::GetSplitImpulse() const
  471. {
  472. return world_->getSolverInfo().m_splitImpulse != 0;
  473. }
  474. void PhysicsWorld::AddRigidBody(RigidBody* body)
  475. {
  476. rigidBodies_.Push(body);
  477. }
  478. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  479. {
  480. rigidBodies_.Remove(body);
  481. }
  482. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  483. {
  484. collisionShapes_.Push(shape);
  485. }
  486. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  487. {
  488. collisionShapes_.Remove(shape);
  489. }
  490. void PhysicsWorld::AddConstraint(Constraint* constraint)
  491. {
  492. constraints_.Push(constraint);
  493. }
  494. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  495. {
  496. constraints_.Remove(constraint);
  497. }
  498. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  499. {
  500. delayedWorldTransforms_[transform.rigidBody_] = transform;
  501. }
  502. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  503. {
  504. DebugRenderer* debug = GetComponent<DebugRenderer>();
  505. DrawDebugGeometry(debug, depthTest);
  506. }
  507. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  508. {
  509. debugRenderer_ = debug;
  510. }
  511. void PhysicsWorld::SetDebugDepthTest(bool enable)
  512. {
  513. debugDepthTest_ = enable;
  514. }
  515. void PhysicsWorld::CleanupGeometryCache()
  516. {
  517. // Remove cached shapes whose only reference is the cache itself
  518. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  519. i != triMeshCache_.End();)
  520. {
  521. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  522. if (current->second_.Refs() == 1)
  523. triMeshCache_.Erase(current);
  524. }
  525. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  526. i != convexCache_.End();)
  527. {
  528. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  529. if (current->second_.Refs() == 1)
  530. convexCache_.Erase(current);
  531. }
  532. }
  533. void PhysicsWorld::OnNodeSet(Node* node)
  534. {
  535. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  536. if (node)
  537. {
  538. scene_ = GetScene();
  539. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  540. }
  541. }
  542. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  543. {
  544. using namespace SceneSubsystemUpdate;
  545. Update(eventData[P_TIMESTEP].GetFloat());
  546. }
  547. void PhysicsWorld::PreStep(float timeStep)
  548. {
  549. // Send pre-step event
  550. using namespace PhysicsPreStep;
  551. VariantMap& eventData = GetEventDataMap();
  552. eventData[P_WORLD] = this;
  553. eventData[P_TIMESTEP] = timeStep;
  554. SendEvent(E_PHYSICSPRESTEP, eventData);
  555. // Start profiling block for the actual simulation step
  556. #ifdef URHO3D_PROFILING
  557. Profiler* profiler = GetSubsystem<Profiler>();
  558. if (profiler)
  559. profiler->BeginBlock("StepSimulation");
  560. #endif
  561. }
  562. void PhysicsWorld::PostStep(float timeStep)
  563. {
  564. #ifdef URHO3D_PROFILING
  565. Profiler* profiler = GetSubsystem<Profiler>();
  566. if (profiler)
  567. profiler->EndBlock();
  568. #endif
  569. SendCollisionEvents();
  570. // Send post-step event
  571. using namespace PhysicsPreStep;
  572. VariantMap& eventData = GetEventDataMap();
  573. eventData[P_WORLD] = this;
  574. eventData[P_TIMESTEP] = timeStep;
  575. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  576. }
  577. void PhysicsWorld::SendCollisionEvents()
  578. {
  579. PROFILE(SendCollisionEvents);
  580. currentCollisions_.Clear();
  581. physicsCollisionData_.Clear();
  582. nodeCollisionData_.Clear();
  583. int numManifolds = collisionDispatcher_->getNumManifolds();
  584. if (numManifolds)
  585. {
  586. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  587. for (int i = 0; i < numManifolds; ++i)
  588. {
  589. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  590. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  591. if (!contactManifold->getNumContacts())
  592. continue;
  593. const btCollisionObject* objectA = contactManifold->getBody0();
  594. const btCollisionObject* objectB = contactManifold->getBody1();
  595. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  596. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  597. // If it's not a rigidbody, maybe a ghost object
  598. if (!bodyA || !bodyB)
  599. continue;
  600. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  601. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  602. continue;
  603. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  604. continue;
  605. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  606. !bodyA->IsActive() && !bodyB->IsActive())
  607. continue;
  608. WeakPtr<RigidBody> bodyWeakA(bodyA);
  609. WeakPtr<RigidBody> bodyWeakB(bodyB);
  610. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  611. if (bodyA < bodyB)
  612. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  613. else
  614. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  615. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  616. // objects during collision event handling
  617. currentCollisions_[bodyPair] = contactManifold;
  618. }
  619. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  620. i != currentCollisions_.End(); ++i)
  621. {
  622. RigidBody* bodyA = i->first_.first_;
  623. RigidBody* bodyB = i->first_.second_;
  624. if (!bodyA || !bodyB)
  625. continue;
  626. btPersistentManifold* contactManifold = i->second_;
  627. Node* nodeA = bodyA->GetNode();
  628. Node* nodeB = bodyB->GetNode();
  629. WeakPtr<Node> nodeWeakA(nodeA);
  630. WeakPtr<Node> nodeWeakB(nodeB);
  631. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  632. bool newCollision = !previousCollisions_.Contains(i->first_);
  633. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  634. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  635. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  636. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  637. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  638. contacts_.Clear();
  639. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  640. {
  641. btManifoldPoint& point = contactManifold->getContactPoint(j);
  642. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  643. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  644. contacts_.WriteFloat(point.m_distance1);
  645. contacts_.WriteFloat(point.m_appliedImpulse);
  646. }
  647. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  648. // Send separate collision start event if collision is new
  649. if (newCollision)
  650. {
  651. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  652. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  653. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  654. continue;
  655. }
  656. // Then send the ongoing collision event
  657. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  658. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  659. continue;
  660. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  661. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  662. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  663. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  664. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  665. if (newCollision)
  666. {
  667. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  668. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  669. continue;
  670. }
  671. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  672. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  673. continue;
  674. contacts_.Clear();
  675. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  676. {
  677. btManifoldPoint& point = contactManifold->getContactPoint(j);
  678. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  679. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  680. contacts_.WriteFloat(point.m_distance1);
  681. contacts_.WriteFloat(point.m_appliedImpulse);
  682. }
  683. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  684. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  685. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  686. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  687. if (newCollision)
  688. {
  689. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  690. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  691. continue;
  692. }
  693. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  694. }
  695. }
  696. // Send collision end events as applicable
  697. {
  698. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  699. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  700. {
  701. if (!currentCollisions_.Contains(i->first_))
  702. {
  703. RigidBody* bodyA = i->first_.first_;
  704. RigidBody* bodyB = i->first_.second_;
  705. if (!bodyA || !bodyB)
  706. continue;
  707. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  708. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  709. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  710. continue;
  711. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  712. continue;
  713. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  714. !bodyA->IsActive() && !bodyB->IsActive())
  715. continue;
  716. Node* nodeA = bodyA->GetNode();
  717. Node* nodeB = bodyB->GetNode();
  718. WeakPtr<Node> nodeWeakA(nodeA);
  719. WeakPtr<Node> nodeWeakB(nodeB);
  720. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  721. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  722. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  723. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  724. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  725. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  726. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  727. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  728. continue;
  729. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  730. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  731. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  732. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  733. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  734. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  735. continue;
  736. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  737. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  738. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  739. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  740. }
  741. }
  742. }
  743. previousCollisions_ = currentCollisions_;
  744. }
  745. void RegisterPhysicsLibrary(Context* context)
  746. {
  747. CollisionShape::RegisterObject(context);
  748. RigidBody::RegisterObject(context);
  749. Constraint::RegisterObject(context);
  750. PhysicsWorld::RegisterObject(context);
  751. }
  752. }