View.cpp 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "OctreeQuery.h"
  34. #include "Renderer.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderProgram.h"
  38. #include "Technique.h"
  39. #include "Texture2D.h"
  40. #include "TextureCube.h"
  41. #include "Time.h"
  42. #include "VertexBuffer.h"
  43. #include "View.h"
  44. #include "Zone.h"
  45. #include "DebugNew.h"
  46. static const String aaVariation[] = {
  47. "",
  48. "Ortho"
  49. };
  50. static const Vector3 directions[] =
  51. {
  52. Vector3::RIGHT,
  53. Vector3::LEFT,
  54. Vector3::UP,
  55. Vector3::DOWN,
  56. Vector3::FORWARD,
  57. Vector3::BACK,
  58. };
  59. OBJECTTYPESTATIC(View);
  60. View::View(Context* context) :
  61. Object(context),
  62. graphics_(GetSubsystem<Graphics>()),
  63. renderer_(GetSubsystem<Renderer>()),
  64. octree_(0),
  65. camera_(0),
  66. zone_(0),
  67. renderTarget_(0),
  68. depthStencil_(0),
  69. jitterCounter_(0),
  70. hasSM3_(graphics_->GetSM3Support())
  71. {
  72. frame_.camera_ = 0;
  73. }
  74. View::~View()
  75. {
  76. }
  77. bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
  78. {
  79. if ((!viewport.scene_) || (!viewport.camera_))
  80. return false;
  81. // If scene is loading asynchronously, it is incomplete and should not be rendered
  82. if (viewport.scene_->IsAsyncLoading())
  83. return false;
  84. Octree* octree = viewport.scene_->GetComponent<Octree>();
  85. if (!octree)
  86. return false;
  87. mode_ = graphics_->GetRenderMode();
  88. // In deferred mode, check for the render texture being too large
  89. if ((mode_ != RENDER_FORWARD) && (renderTarget))
  90. {
  91. if ((renderTarget->GetWidth() > graphics_->GetWidth()) || (renderTarget->GetHeight() > graphics_->GetHeight()))
  92. {
  93. // Display message only once per rendertarget, do not spam each frame
  94. if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
  95. {
  96. gBufferErrorDisplayed_.Insert(renderTarget);
  97. LOGERROR("Render texture is larger than the G-buffer, can not render");
  98. }
  99. return false;
  100. }
  101. }
  102. octree_ = octree;
  103. camera_ = viewport.camera_;
  104. renderTarget_ = renderTarget;
  105. // If not rendering to the back buffer, get the depth buffer linked to the color render target
  106. if (renderTarget)
  107. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  108. else
  109. depthStencil_ = 0;
  110. zone_ = renderer_->GetDefaultZone();
  111. // Validate the rect and calculate size. If zero rect, use whole render target size
  112. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  113. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  114. if (viewport.rect_ != IntRect::ZERO)
  115. {
  116. screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
  117. screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
  118. screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
  119. screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
  120. }
  121. else
  122. screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
  123. width_ = screenRect_.right_ - screenRect_.left_;
  124. height_ = screenRect_.bottom_ - screenRect_.top_;
  125. // Set possible quality overrides from the camera
  126. drawShadows_ = renderer_->GetDrawShadows();
  127. materialQuality_ = renderer_->GetMaterialQuality();
  128. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  129. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  130. if (viewOverrideFlags & VOF_LOW_MATERIAL_QUALITY)
  131. materialQuality_ = QUALITY_LOW;
  132. if (viewOverrideFlags & VOF_DISABLE_SHADOWS)
  133. drawShadows_ = false;
  134. if (viewOverrideFlags & VOF_DISABLE_OCCLUSION)
  135. maxOccluderTriangles_ = 0;
  136. return true;
  137. }
  138. void View::Update(const FrameInfo& frame)
  139. {
  140. if ((!camera_) || (!octree_))
  141. return;
  142. frame_.camera_ = camera_;
  143. frame_.timeStep_ = frame.timeStep_;
  144. frame_.frameNumber_ = frame.frameNumber_;
  145. frame_.viewSize_ = IntVector2(width_, height_);
  146. // Clear old light scissor cache, geometry, light, occluder & batch lists
  147. lightScissorCache_.Clear();
  148. geometries_.Clear();
  149. geometryDepthBounds_.Clear();
  150. lights_.Clear();
  151. occluders_.Clear();
  152. shadowOccluders_.Clear();
  153. gBufferQueue_.Clear();
  154. baseQueue_.Clear();
  155. extraQueue_.Clear();
  156. transparentQueue_.Clear();
  157. noShadowLightQueue_.Clear();
  158. lightQueues_.Clear();
  159. // Set automatic aspect ratio if required
  160. if (camera_->GetAutoAspectRatio())
  161. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  162. // Reset projection jitter if was used last frame
  163. camera_->SetProjectionOffset(Vector2::ZERO);
  164. // Reset shadow map use count; they can be reused between views as each is rendered completely at a time
  165. renderer_->ResetShadowMapUseCount();
  166. GetDrawables();
  167. GetBatches();
  168. }
  169. void View::Render()
  170. {
  171. if ((!octree_) || (!camera_))
  172. return;
  173. // If stream offset is supported, write all instance transforms to a single large buffer
  174. // Else we must lock the instance buffer for each batch group
  175. if ((renderer_->GetDynamicInstancing()) && (graphics_->GetStreamOffsetSupport()))
  176. PrepareInstancingBuffer();
  177. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  178. // again to ensure correct projection will be used
  179. if (camera_->GetAutoAspectRatio())
  180. camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_));
  181. // Set the "view texture" to ensure the rendertarget will not be bound as a texture during rendering
  182. if (renderTarget_)
  183. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  184. else
  185. graphics_->SetViewTexture(0);
  186. graphics_->SetFillMode(FILL_SOLID);
  187. // Set per-view shader parameters
  188. SetShaderParameters();
  189. // If not reusing shadowmaps, render all of them first
  190. if (!renderer_->reuseShadowMaps_)
  191. {
  192. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  193. {
  194. LightBatchQueue& queue = lightQueues_[i];
  195. if (queue.light_->GetShadowMap())
  196. RenderShadowMap(queue);
  197. }
  198. }
  199. if (mode_ == RENDER_FORWARD)
  200. RenderBatcheforward();
  201. else
  202. RenderBatchesDeferred();
  203. graphics_->SetViewTexture(0);
  204. // If this is a main view, draw the associated debug geometry now
  205. if (!renderTarget_)
  206. {
  207. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  208. if (scene)
  209. {
  210. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  211. if (debug)
  212. {
  213. debug->SetView(camera_);
  214. debug->Render();
  215. }
  216. }
  217. }
  218. // "Forget" the camera, octree and zone after rendering
  219. camera_ = 0;
  220. octree_ = 0;
  221. zone_ = 0;
  222. frame_.camera_ = 0;
  223. }
  224. void View::GetDrawables()
  225. {
  226. PROFILE(GetDrawables);
  227. Vector3 cameraPos = camera_->GetWorldPosition();
  228. // Get zones & find the zone camera is in
  229. PODVector<Zone*> zones;
  230. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>& >(zones), cameraPos, DRAWABLE_ZONE);
  231. octree_->GetDrawables(query);
  232. int highestZonePriority = M_MIN_INT;
  233. for (unsigned i = 0; i < zones.Size(); ++i)
  234. {
  235. Zone* zone = zones[i];
  236. if ((zone->IsInside(cameraPos)) && (zone->GetPriority() > highestZonePriority))
  237. {
  238. zone_ = zone;
  239. highestZonePriority = zone->GetPriority();
  240. }
  241. }
  242. // If occlusion in use, get & render the occluders, then build the depth buffer hierarchy
  243. bool useOcclusion = false;
  244. OcclusionBuffer* buffer = 0;
  245. if (maxOccluderTriangles_ > 0)
  246. {
  247. FrustumOctreeQuery query(occluders_, camera_->GetFrustum(), DRAWABLE_GEOMETRY, true, false);
  248. octree_->GetDrawables(query);
  249. UpdateOccluders(occluders_, camera_);
  250. if (occluders_.Size())
  251. {
  252. buffer = renderer_->GetOrCreateOcclusionBuffer(camera_, maxOccluderTriangles_);
  253. DrawOccluders(buffer, occluders_);
  254. buffer->BuildDepthHierarchy();
  255. useOcclusion = true;
  256. }
  257. }
  258. if (!useOcclusion)
  259. {
  260. // Get geometries & lights without occlusion
  261. FrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  262. octree_->GetDrawables(query);
  263. }
  264. else
  265. {
  266. // Get geometries & lights using occlusion
  267. OccludedFrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), buffer, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  268. octree_->GetDrawables(query);
  269. }
  270. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  271. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  272. sceneBox_.defined_ = false;
  273. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  274. sceneViewBox_.defined_ = false;
  275. Matrix3x4 view(camera_->InverseWorldTransform());
  276. unsigned cameraViewMask = camera_->GetViewMask();
  277. for (unsigned i = 0; i < tempDrawables_.Size(); ++i)
  278. {
  279. Drawable* drawable = tempDrawables_[i];
  280. // Check view mask
  281. if (!(cameraViewMask & drawable->GetViewMask()))
  282. continue;
  283. drawable->UpdateDistance(frame_);
  284. // If draw distance non-zero, check it
  285. float maxDistance = drawable->GetDrawDistance();
  286. if ((maxDistance > 0.0f) && (drawable->GetDistance() > maxDistance))
  287. continue;
  288. unsigned flags = drawable->GetDrawableFlags();
  289. if (flags & DRAWABLE_GEOMETRY)
  290. {
  291. drawable->ClearBasePass();
  292. drawable->MarkInView(frame_);
  293. drawable->UpdateGeometry(frame_);
  294. // Expand the scene bounding boxes
  295. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  296. BoundingBox geoview_Box = geomBox.Transformed(view);
  297. sceneBox_.Merge(geomBox);
  298. sceneViewBox_.Merge(geoview_Box);
  299. // Store depth info to speed up split directional light queries
  300. GeometryDepthBounds bounds;
  301. bounds.min_ = geoview_Box.min_.z_;
  302. bounds.max_ = geoview_Box.max_.z_;
  303. geometryDepthBounds_.Push(bounds);
  304. geometries_.Push(drawable);
  305. }
  306. else if (flags & DRAWABLE_LIGHT)
  307. {
  308. Light* light = static_cast<Light*>(drawable);
  309. // Skip if light is culled by the zone
  310. if (!(light->GetViewMask() & zone_->GetViewMask()))
  311. continue;
  312. light->MarkInView(frame_);
  313. lights_.Push(light);
  314. }
  315. }
  316. // Sort the lights to brightest/closest first
  317. for (unsigned i = 0; i < lights_.Size(); ++i)
  318. lights_[i]->SetIntensitySortValue(cameraPos);
  319. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  320. }
  321. void View::GetBatches()
  322. {
  323. Set<LitTransparencyCheck> litTransparencies;
  324. Set<Drawable*> maxLightsDrawables;
  325. Map<Light*, unsigned> lightQueueIndex;
  326. PassType gBufferPass = PASS_DEFERRED;
  327. PassType additionalPass = PASS_EXTRA;
  328. if (mode_ == RENDER_PREPASS)
  329. {
  330. gBufferPass = PASS_PREPASS;
  331. additionalPass = PASS_MATERIAL;
  332. }
  333. // Go through lights
  334. {
  335. PROFILE_MULTIPLE(GetLightBatches, lights_.Size());
  336. unsigned lightQueueCount = 0;
  337. for (unsigned i = 0; i < lights_.Size(); ++i)
  338. {
  339. Light* light = lights_[i];
  340. unsigned splits = ProcessLight(light);
  341. if (!splits)
  342. continue;
  343. // Prepare lit object + shadow caster queues for each split
  344. if (lightQueues_.Size() < lightQueueCount + splits)
  345. lightQueues_.Resize(lightQueueCount + splits);
  346. unsigned prevLightQueueCount = lightQueueCount;
  347. for (unsigned j = 0; j < splits; ++j)
  348. {
  349. Light* SplitLight = splitLights_[j];
  350. LightBatchQueue& lightQueue = lightQueues_[lightQueueCount];
  351. lightQueue.light_ = SplitLight;
  352. lightQueue.shadowBatches_.Clear();
  353. lightQueue.litBatches_.Clear();
  354. lightQueue.volumeBatches_.Clear();
  355. lightQueue.lastSplit_ = false;
  356. // Loop through shadow casters
  357. Camera* shadowCamera = SplitLight->GetShadowCamera();
  358. for (unsigned k = 0; k < shadowCasters_[j].Size(); ++k)
  359. {
  360. Drawable* drawable = shadowCasters_[j][k];
  361. unsigned numBatches = drawable->GetNumBatches();
  362. for (unsigned l = 0; l < numBatches; ++l)
  363. {
  364. Batch shadowBatch;
  365. drawable->GetBatch(frame_, l, shadowBatch);
  366. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  367. if ((!shadowBatch.geometry_) || (!tech))
  368. continue;
  369. Pass* pass = tech->GetPass(PASS_SHADOW);
  370. // Skip if material has no shadow pass
  371. if (!pass)
  372. continue;
  373. // Fill the rest of the batch
  374. shadowBatch.camera_ = shadowCamera;
  375. shadowBatch.distance_ = shadowCamera->GetDistance(drawable->GetWorldPosition());
  376. shadowBatch.light_ = SplitLight;
  377. shadowBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  378. renderer_->SetBatchShaders(shadowBatch, tech, pass);
  379. lightQueue.shadowBatches_.AddBatch(shadowBatch);
  380. }
  381. }
  382. // Loop through lit geometries
  383. if (litGeometries_[j].Size())
  384. {
  385. bool storeLightQueue = true;
  386. for (unsigned k = 0; k < litGeometries_[j].Size(); ++k)
  387. {
  388. Drawable* drawable = litGeometries_[j][k];
  389. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  390. if (!drawable->GetMaxLights())
  391. GetLitBatches(drawable, light, SplitLight, &lightQueue, litTransparencies, gBufferPass);
  392. else
  393. {
  394. drawable->AddLight(SplitLight);
  395. maxLightsDrawables.Insert(drawable);
  396. }
  397. }
  398. // Store the light queue, and light volume batch in deferred mode
  399. if (mode_ != RENDER_FORWARD)
  400. {
  401. Batch volumeBatch;
  402. volumeBatch.geometry_ = renderer_->GetLightGeometry(SplitLight);
  403. volumeBatch.worldTransform_ = &SplitLight->GetVolumeTransform(*camera_);
  404. volumeBatch.overrideView_ = SplitLight->GetLightType() == LIGHT_DIRECTIONAL;
  405. volumeBatch.camera_ = camera_;
  406. volumeBatch.light_ = SplitLight;
  407. volumeBatch.distance_ = SplitLight->GetDistance();
  408. renderer_->SetLightVolumeShaders(volumeBatch);
  409. // If light is a split point light, it must be treated as shadowed in any case for correct stencil clearing
  410. if ((SplitLight->GetShadowMap()) || (SplitLight->GetLightType() == LIGHT_SPLITPOINT))
  411. lightQueue.volumeBatches_.Push(volumeBatch);
  412. else
  413. {
  414. storeLightQueue = false;
  415. noShadowLightQueue_.AddBatch(volumeBatch, true);
  416. }
  417. }
  418. if (storeLightQueue)
  419. {
  420. lightQueueIndex[SplitLight] = lightQueueCount;
  421. ++lightQueueCount;
  422. }
  423. }
  424. }
  425. // Mark the last split
  426. if (lightQueueCount != prevLightQueueCount)
  427. lightQueues_[lightQueueCount - 1].lastSplit_ = true;
  428. }
  429. // Resize the light queue vector now that final size is known
  430. lightQueues_.Resize(lightQueueCount);
  431. }
  432. // Process drawables with limited light count
  433. if (maxLightsDrawables.Size())
  434. {
  435. PROFILE(GetMaxLightsBatches);
  436. for (Set<Drawable*>::Iterator i = maxLightsDrawables.Begin(); i != maxLightsDrawables.End(); ++i)
  437. {
  438. Drawable* drawable = *i;
  439. drawable->LimitLights();
  440. const PODVector<Light*>& lights = drawable->GetLights();
  441. for (unsigned i = 0; i < lights.Size(); ++i)
  442. {
  443. Light* SplitLight = lights[i];
  444. Light* light = SplitLight->GetOriginalLight();
  445. if (!light)
  446. light = SplitLight;
  447. // Find the correct light queue again
  448. LightBatchQueue* queue = 0;
  449. Map<Light*, unsigned>::Iterator j = lightQueueIndex.Find(SplitLight);
  450. if (j != lightQueueIndex.End())
  451. queue = &lightQueues_[j->second_];
  452. GetLitBatches(drawable, light, SplitLight, queue, litTransparencies, gBufferPass);
  453. }
  454. }
  455. }
  456. // Go through geometries for base pass batches
  457. {
  458. PROFILE(GetBaseBatches);
  459. for (unsigned i = 0; i < geometries_.Size(); ++i)
  460. {
  461. Drawable* drawable = geometries_[i];
  462. unsigned numBatches = drawable->GetNumBatches();
  463. for (unsigned j = 0; j < numBatches; ++j)
  464. {
  465. Batch baseBatch;
  466. drawable->GetBatch(frame_, j, baseBatch);
  467. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  468. if ((!baseBatch.geometry_) || (!tech))
  469. continue;
  470. // Check here if the material technique refers to a render target texture with camera(s) attached
  471. // Only check this for the main view (null rendertarget)
  472. if ((!renderTarget_) && (baseBatch.material_) && (baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_))
  473. CheckMaterialForAuxView(baseBatch.material_);
  474. // If object already has a lit base pass, can skip the unlit base pass
  475. if (drawable->HasBasePass(j))
  476. continue;
  477. // Fill the rest of the batch
  478. baseBatch.camera_ = camera_;
  479. baseBatch.distance_ = drawable->GetDistance();
  480. Pass* pass = 0;
  481. // In deferred mode, check for a G-buffer batch first
  482. if (mode_ != RENDER_FORWARD)
  483. {
  484. pass = tech->GetPass(gBufferPass);
  485. if (pass)
  486. {
  487. renderer_->SetBatchShaders(baseBatch, tech, pass);
  488. baseBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  489. gBufferQueue_.AddBatch(baseBatch);
  490. // Check also for an additional pass. In light prepass mode this actually renders the visible geometry
  491. pass = tech->GetPass(additionalPass);
  492. if (pass)
  493. {
  494. renderer_->SetBatchShaders(baseBatch, tech, pass);
  495. baseQueue_.AddBatch(baseBatch);
  496. }
  497. continue;
  498. }
  499. }
  500. // Then check for forward rendering base pass
  501. pass = tech->GetPass(PASS_BASE);
  502. if (pass)
  503. {
  504. renderer_->SetBatchShaders(baseBatch, tech, pass);
  505. if (pass->GetBlendMode() == BLEND_REPLACE)
  506. {
  507. baseBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  508. baseQueue_.AddBatch(baseBatch);
  509. }
  510. else
  511. {
  512. baseBatch.hasPriority_ = true;
  513. transparentQueue_.AddBatch(baseBatch, true);
  514. }
  515. continue;
  516. }
  517. else
  518. {
  519. // If no base pass, finally check for extra / custom pass
  520. pass = tech->GetPass(PASS_EXTRA);
  521. if (pass)
  522. {
  523. baseBatch.hasPriority_ = false;
  524. renderer_->SetBatchShaders(baseBatch, tech, pass);
  525. extraQueue_.AddBatch(baseBatch);
  526. }
  527. }
  528. }
  529. }
  530. }
  531. // All batches have been collected. Sort them now
  532. SortBatches();
  533. }
  534. void View::GetLitBatches(Drawable* drawable, Light* light, Light* SplitLight, LightBatchQueue* lightQueue,
  535. Set<LitTransparencyCheck>& litTransparencies, PassType gBufferPass)
  536. {
  537. bool splitPointLight = SplitLight->GetLightType() == LIGHT_SPLITPOINT;
  538. // Whether to allow shadows for transparencies, or for forward lit objects in deferred mode
  539. bool allowShadows = (!renderer_->reuseShadowMaps_) && (!splitPointLight);
  540. unsigned numBatches = drawable->GetNumBatches();
  541. for (unsigned i = 0; i < numBatches; ++i)
  542. {
  543. Batch litBatch;
  544. drawable->GetBatch(frame_, i, litBatch);
  545. Technique* tech = GetTechnique(drawable, litBatch.material_);
  546. if ((!litBatch.geometry_) || (!tech))
  547. continue;
  548. // If material uses opaque G-buffer rendering, skip
  549. if ((mode_ != RENDER_FORWARD) && (tech->HasPass(gBufferPass)))
  550. continue;
  551. Pass* pass = 0;
  552. bool priority = false;
  553. // For directional light, check for lit base pass
  554. if (SplitLight->GetLightType() == LIGHT_DIRECTIONAL)
  555. {
  556. if (!drawable->HasBasePass(i))
  557. {
  558. pass = tech->GetPass(PASS_LITBASE);
  559. if (pass)
  560. {
  561. priority = true;
  562. drawable->SetBasePass(i);
  563. }
  564. }
  565. }
  566. // If no first light pass, get ordinary light pass
  567. if (!pass)
  568. pass = tech->GetPass(PASS_LIGHT);
  569. // Skip if material does not receive light at all
  570. if (!pass)
  571. continue;
  572. // Fill the rest of the batch
  573. litBatch.camera_ = camera_;
  574. litBatch.distance_ = drawable->GetDistance();
  575. litBatch.light_ = SplitLight;
  576. litBatch.hasPriority_ = priority;
  577. // Check from the ambient pass whether the object is opaque
  578. Pass* ambientPass = tech->GetPass(PASS_BASE);
  579. if ((!ambientPass) || (ambientPass->GetBlendMode() == BLEND_REPLACE))
  580. {
  581. if (mode_ == RENDER_FORWARD)
  582. {
  583. if (lightQueue)
  584. {
  585. renderer_->SetBatchShaders(litBatch, tech, pass);
  586. lightQueue->litBatches_.AddBatch(litBatch);
  587. }
  588. }
  589. else
  590. {
  591. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  592. baseQueue_.AddBatch(litBatch);
  593. }
  594. }
  595. else
  596. {
  597. if (splitPointLight)
  598. {
  599. // Check if already lit
  600. LitTransparencyCheck check(light, drawable, i);
  601. if (litTransparencies.Find(check) != litTransparencies.End())
  602. continue;
  603. // Use the original light instead of the split one, to choose correct scissor
  604. litBatch.light_ = light;
  605. litTransparencies.Insert(check);
  606. }
  607. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  608. transparentQueue_.AddBatch(litBatch, true);
  609. }
  610. }
  611. }
  612. void View::RenderBatcheforward()
  613. {
  614. {
  615. // Render opaque objects' base passes
  616. PROFILE(RenderBasePass);
  617. graphics_->ClearLastParameterSources();
  618. graphics_->SetColorWrite(true);
  619. graphics_->SetStencilTest(false);
  620. graphics_->SetRenderTarget(0, renderTarget_);
  621. graphics_->SetDepthStencil(depthStencil_);
  622. graphics_->SetViewport(screenRect_);
  623. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, zone_->GetFogColor());
  624. RenderBatchQueue(baseQueue_);
  625. }
  626. {
  627. // Render shadow maps + opaque objects' shadowed additive lighting
  628. PROFILE(RenderLights);
  629. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  630. {
  631. LightBatchQueue& queue = lightQueues_[i];
  632. // If reusing shadowmaps, render each of them before the lit batches
  633. if ((renderer_->reuseShadowMaps_) && (queue.light_->GetShadowMap()))
  634. RenderShadowMap(queue);
  635. graphics_->ClearLastParameterSources();
  636. graphics_->SetRenderTarget(0, renderTarget_);
  637. graphics_->SetDepthStencil(depthStencil_);
  638. graphics_->SetViewport(screenRect_);
  639. RenderForwardLightBatchQueue(queue.litBatches_, queue.light_);
  640. // Clear the stencil buffer after the last split
  641. if (queue.lastSplit_)
  642. {
  643. LightType type = queue.light_->GetLightType();
  644. if ((type == LIGHT_SPLITPOINT) || (type == LIGHT_DIRECTIONAL))
  645. DrawSplitLightToStencil(*camera_, queue.light_, true);
  646. }
  647. }
  648. }
  649. {
  650. // Render extra / custom passes
  651. PROFILE(RenderExtraPass);
  652. graphics_->ClearLastParameterSources();
  653. graphics_->SetRenderTarget(0, renderTarget_);
  654. graphics_->SetDepthStencil(depthStencil_);
  655. graphics_->SetViewport(screenRect_);
  656. RenderBatchQueue(extraQueue_);
  657. }
  658. {
  659. // Render transparent objects last (both base passes & additive lighting)
  660. PROFILE(RenderTransparent);
  661. RenderBatchQueue(transparentQueue_, true);
  662. }
  663. }
  664. void View::RenderBatchesDeferred()
  665. {
  666. bool deferred = mode_ != RENDER_PREPASS;
  667. Texture2D* diffBuffer = graphics_->GetDiffBuffer();
  668. Texture2D* normalBuffer = graphics_->GetNormalBuffer();
  669. Texture2D* depthBuffer = graphics_->GetDepthBuffer();
  670. // Check for temporal antialiasing in deferred mode. Only use it on the main view (null rendertarget)
  671. bool temporalAA = (!renderTarget_) && (graphics_->GetMultiSample() > 0);
  672. if (temporalAA)
  673. {
  674. ++jitterCounter_;
  675. if (jitterCounter_ > 3)
  676. jitterCounter_ = 2;
  677. Vector2 jitter(-0.25f, -0.25f);
  678. if (jitterCounter_ & 1)
  679. jitter = -jitter;
  680. jitter.x_ /= width_;
  681. jitter.y_ /= height_;
  682. camera_->SetProjectionOffset(jitter);
  683. }
  684. RenderSurface* renderBuffer = temporalAA ? graphics_->GetScreenBuffer(jitterCounter_ & 1)->GetRenderSurface() : renderTarget_;
  685. // Set shader parameters needed only in deferred rendering
  686. Vector3 nearVector, farVector;
  687. camera_->GetFrustumSize(nearVector, farVector);
  688. Vector4 viewportParams(farVector.x_, farVector.y_, farVector.z_, 0.0f);
  689. float gBufferWidth = (float)diffBuffer->GetWidth();
  690. float gBufferHeight = (float)diffBuffer->GetHeight();
  691. float widthRange = 0.5f * width_ / gBufferWidth;
  692. float heightRange = 0.5f * height_ / gBufferHeight;
  693. Vector4 bufferUVOffset((0.5f + (float)screenRect_.left_) / gBufferWidth + widthRange,
  694. (0.5f + (float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  695. Vector4 viewportSize((float)screenRect_.left_ / gBufferWidth, (float)screenRect_.top_ / gBufferHeight,
  696. (float)screenRect_.right_ / gBufferWidth, (float)screenRect_.bottom_ / gBufferHeight);
  697. graphics_->SetVertexShaderParameter(VSP_FRUSTUMSIZE, viewportParams);
  698. graphics_->SetVertexShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  699. graphics_->SetPixelShaderParameter(PSP_GBUFFEROFFSETS, bufferUVOffset);
  700. graphics_->SetPixelShaderParameter(PSP_GBUFFERVIEWPORT, viewportSize);
  701. {
  702. // Render G-buffer
  703. PROFILE(RenderGBuffer);
  704. graphics_->ClearLastParameterSources();
  705. // Use always the default depth stencil, so that it matches the G-buffer size, and is in the expected format
  706. // Enable depth rendertarget only if hardware depth not supported
  707. graphics_->SetColorWrite(true);
  708. graphics_->SetScissorTest(false);
  709. graphics_->SetStencilTest(false);
  710. graphics_->ResetDepthStencil();
  711. if (deferred)
  712. {
  713. graphics_->SetRenderTarget(0, diffBuffer);
  714. graphics_->SetRenderTarget(1, normalBuffer);
  715. graphics_->SetRenderTarget(2, depthBuffer);
  716. }
  717. else
  718. {
  719. graphics_->SetRenderTarget(0, normalBuffer);
  720. graphics_->SetRenderTarget(1, depthBuffer);
  721. }
  722. graphics_->SetViewport(screenRect_);
  723. // Clear only depth and stencil at first, render the G-buffer batches
  724. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  725. RenderBatchQueue(gBufferQueue_);
  726. // Then fill the untouched parts of the G-buffer with defaults: black diffuse + specular (deferred only), far depth
  727. graphics_->SetAlphaTest(false);
  728. graphics_->SetBlendMode(BLEND_REPLACE);
  729. graphics_->SetDepthTest(CMP_LESSEQUAL);
  730. graphics_->SetDepthWrite(false);
  731. if (deferred)
  732. {
  733. graphics_->ResetRenderTarget(2);
  734. graphics_->SetRenderTarget(1, depthBuffer);
  735. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("Deferred/GBufferFill"),
  736. renderer_->GetPixelShader("Deferred/GBufferFill"), false);
  737. }
  738. else
  739. {
  740. graphics_->ResetRenderTarget(1);
  741. graphics_->SetRenderTarget(0, depthBuffer);
  742. graphics_->SetViewport(screenRect_);
  743. // The stencil shader writes color 1.0, which equals far depth
  744. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("Stencil"),
  745. renderer_->GetPixelShader("Stencil"), false);
  746. }
  747. }
  748. if (deferred)
  749. {
  750. // Render ambient color & fog
  751. graphics_->ClearLastParameterSources();
  752. graphics_->SetDepthTest(CMP_ALWAYS);
  753. graphics_->SetRenderTarget(0, renderBuffer);
  754. graphics_->ResetRenderTarget(1);
  755. graphics_->ResetRenderTarget(2);
  756. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  757. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  758. graphics_->SetViewport(screenRect_);
  759. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("Deferred/Ambient"),
  760. renderer_->GetPixelShader("Deferred/Ambient"), false);
  761. }
  762. else
  763. {
  764. // Light prepass: reset the light accumulation buffer with black color
  765. graphics_->SetRenderTarget(0, diffBuffer);
  766. graphics_->ResetRenderTarget(1);
  767. graphics_->SetViewport(screenRect_);
  768. graphics_->Clear(CLEAR_COLOR);
  769. }
  770. {
  771. // Render lights
  772. PROFILE(RenderLights);
  773. // Shadowed lights
  774. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  775. {
  776. LightBatchQueue& queue = lightQueues_[i];
  777. // If reusing shadowmaps, render each of them before the lit batches
  778. if ((renderer_->reuseShadowMaps_) && (queue.light_->GetShadowMap()))
  779. RenderShadowMap(queue);
  780. // Light volume batches are not sorted as there should be only one of them
  781. if (queue.volumeBatches_.Size())
  782. {
  783. graphics_->ClearLastParameterSources();
  784. if (deferred)
  785. {
  786. graphics_->SetRenderTarget(0, renderBuffer);
  787. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  788. }
  789. else
  790. graphics_->SetRenderTarget(0, diffBuffer);
  791. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  792. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  793. graphics_->ResetDepthStencil();
  794. graphics_->SetViewport(screenRect_);
  795. for (unsigned j = 0; j < queue.volumeBatches_.Size(); ++j)
  796. {
  797. renderer_->SetupLightBatch(queue.volumeBatches_[j]);
  798. queue.volumeBatches_[j].Draw(graphics_);
  799. }
  800. // If was the last split of a split point light, clear the stencil by rendering the point light again
  801. if ((queue.lastSplit_) && (queue.light_->GetLightType() == LIGHT_SPLITPOINT))
  802. DrawSplitLightToStencil(*camera_, queue.light_, true);
  803. }
  804. }
  805. // Non-shadowed lights
  806. if (noShadowLightQueue_.sortedBatches_.Size())
  807. {
  808. graphics_->ClearLastParameterSources();
  809. if (deferred)
  810. {
  811. graphics_->SetRenderTarget(0, renderBuffer);
  812. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  813. }
  814. else
  815. graphics_->SetRenderTarget(0, diffBuffer);
  816. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  817. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  818. graphics_->ResetDepthStencil();
  819. graphics_->SetViewport(screenRect_);
  820. for (unsigned i = 0; i < noShadowLightQueue_.sortedBatches_.Size(); ++i)
  821. {
  822. renderer_->SetupLightBatch(*noShadowLightQueue_.sortedBatches_[i]);
  823. noShadowLightQueue_.sortedBatches_[i]->Draw(graphics_);
  824. }
  825. }
  826. }
  827. {
  828. // Render base passes
  829. PROFILE(RenderBasePass);
  830. graphics_->ClearLastParameterSources();
  831. graphics_->SetStencilTest(false);
  832. graphics_->SetRenderTarget(0, renderBuffer);
  833. graphics_->SetTexture(TU_DIFFBUFFER, 0);
  834. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  835. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  836. graphics_->SetViewport(screenRect_);
  837. if (!deferred)
  838. graphics_->Clear(CLEAR_COLOR, zone_->GetFogColor());
  839. // Remember to bind the light buffer in prepass mode
  840. RenderBatchQueue(baseQueue_, true, !deferred);
  841. }
  842. {
  843. // Render extra / custom passes
  844. PROFILE(RenderExtraPass);
  845. RenderBatchQueue(extraQueue_);
  846. }
  847. {
  848. // Render transparent objects last (both ambient & additive lighting)
  849. PROFILE(RenderTransparent);
  850. RenderBatchQueue(transparentQueue_, true);
  851. }
  852. // Render temporal antialiasing now if enabled
  853. if (temporalAA)
  854. {
  855. PROFILE(RenderTemporalAA);
  856. // Disable averaging if it is the first frame rendered in this view
  857. float thisFrameWeight = jitterCounter_ < 2 ? 1.0f : 0.5f;
  858. Vector4 depthMode = Vector4::ZERO;
  859. if (camera_->IsOrthographic())
  860. depthMode.z_ = 1.0f;
  861. else
  862. depthMode.w_ = 1.0f / camera_->GetFarClip();
  863. graphics_->SetAlphaTest(false);
  864. graphics_->SetBlendMode(BLEND_REPLACE);
  865. graphics_->SetDepthTest(CMP_ALWAYS);
  866. graphics_->SetDepthWrite(false);
  867. graphics_->SetScissorTest(false);
  868. graphics_->SetStencilTest(false);
  869. graphics_->SetRenderTarget(0, renderTarget_);
  870. graphics_->SetViewport(screenRect_);
  871. graphics_->SetTexture(TU_DIFFBUFFER, graphics_->GetScreenBuffer(jitterCounter_ & 1));
  872. graphics_->SetTexture(TU_NORMALBUFFER, graphics_->GetScreenBuffer((jitterCounter_ + 1) & 1));
  873. graphics_->SetTexture(TU_DEPTHBUFFER, graphics_->GetDepthBuffer());
  874. graphics_->SetVertexShaderParameter(VSP_CAMERAROT, camera_->GetWorldTransform().RotationMatrix());
  875. graphics_->SetVertexShaderParameter(VSP_DEPTHMODE, depthMode);
  876. graphics_->SetPixelShaderParameter(PSP_CAMERAPOS, camera_->GetWorldPosition());
  877. graphics_->SetPixelShaderParameter(PSP_ANTIALIASWEIGHTS, Vector4(thisFrameWeight, 1.0f - thisFrameWeight, 0.0f, 0.0f));
  878. graphics_->SetPixelShaderParameter(PSP_SAMPLEOFFSETS, Vector4(1.0f / gBufferWidth, 1.0f / gBufferHeight, 0.0f, 0.0f));
  879. graphics_->SetPixelShaderParameter(PSP_VIEWPROJ, camera_->GetProjection(false) * lastCameraView_);
  880. unsigned index = camera_->IsOrthographic() ? 1 : 0;
  881. String shaderName = "TemporalAA_" + aaVariation[index];
  882. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader(shaderName),
  883. renderer_->GetPixelShader(shaderName), false);
  884. // Store view transform for next frame
  885. lastCameraView_ = camera_->InverseWorldTransform();
  886. }
  887. }
  888. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  889. {
  890. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  891. float halfViewSize = camera->GetHalfViewSize();
  892. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  893. Vector3 cameraPos = camera->GetWorldPosition();
  894. unsigned cameraViewMask = camera->GetViewMask();
  895. for (unsigned i = 0; i < occluders.Size(); ++i)
  896. {
  897. Drawable* occluder = occluders[i];
  898. occluder->UpdateDistance(frame_);
  899. bool erase = false;
  900. // Check view mask
  901. if (!(cameraViewMask & occluder->GetViewMask()))
  902. erase = true;
  903. // Check occluder's draw distance (in main camera view)
  904. float maxDistance = occluder->GetDrawDistance();
  905. if ((maxDistance > 0.0f) && (occluder->GetDistance() > maxDistance))
  906. erase = true;
  907. // Check that occluder is big enough on the screen
  908. const BoundingBox& box = occluder->GetWorldBoundingBox();
  909. float diagonal = (box.max_ - box.min_).LengthFast();
  910. float compare;
  911. if (!camera->IsOrthographic())
  912. compare = diagonal * halfViewSize / occluder->GetDistance();
  913. else
  914. compare = diagonal * invOrthoSize;
  915. if (compare < occluderSizeThreshold_)
  916. erase = true;
  917. if (!erase)
  918. {
  919. unsigned totalTriangles = 0;
  920. unsigned batches = occluder->GetNumBatches();
  921. Batch tempBatch;
  922. for (unsigned j = 0; j < batches; ++j)
  923. {
  924. occluder->GetBatch(frame_, j, tempBatch);
  925. if (tempBatch.geometry_)
  926. totalTriangles += tempBatch.geometry_->GetIndexCount() / 3;
  927. }
  928. // Store amount of triangles divided by screen size as a sorting key
  929. // (best occluders are big and have few triangles)
  930. occluder->SetSortValue((float)totalTriangles / compare);
  931. }
  932. else
  933. {
  934. occluders.Erase(occluders.Begin() + i);
  935. --i;
  936. }
  937. }
  938. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  939. if (occluders.Size())
  940. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  941. }
  942. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  943. {
  944. for (unsigned i = 0; i < occluders.Size(); ++i)
  945. {
  946. Drawable* occluder = occluders[i];
  947. if (i > 0)
  948. {
  949. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  950. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  951. continue;
  952. }
  953. occluder->UpdateGeometry(frame_);
  954. // Check for running out of triangles
  955. if (!occluder->DrawOcclusion(buffer))
  956. return;
  957. }
  958. }
  959. unsigned View::ProcessLight(Light* light)
  960. {
  961. unsigned numLitGeometries = 0;
  962. unsigned numShadowCasters = 0;
  963. unsigned numSplits;
  964. // Check if light should be shadowed
  965. bool isShadowed = (drawShadows_) && (light->GetCastShadows());
  966. // If shadow distance non-zero, check it
  967. if ((isShadowed) && (light->GetShadowDistance() > 0.0f) && (light->GetDistance() > light->GetShadowDistance()))
  968. isShadowed = false;
  969. // If light has no ramp textures defined, set defaults
  970. if ((light->GetLightType() != LIGHT_DIRECTIONAL) && (!light->GetRampTexture()))
  971. light->SetRampTexture(renderer_->GetDefaultLightRamp());
  972. if ((light->GetLightType() == LIGHT_SPOT) && (!light->GetShapeTexture()))
  973. light->SetShapeTexture(renderer_->GetDefaultLightSpot());
  974. // Split the light if necessary
  975. if (isShadowed)
  976. numSplits = SplitLight(light);
  977. else
  978. {
  979. // No splitting, use the original light
  980. splitLights_[0] = light;
  981. numSplits = 1;
  982. }
  983. // For a shadowed directional light, get occluders once using the whole (non-split) light frustum
  984. bool useOcclusion = false;
  985. OcclusionBuffer* buffer = 0;
  986. if ((maxOccluderTriangles_ > 0) && (isShadowed) && (light->GetLightType() == LIGHT_DIRECTIONAL))
  987. {
  988. // This shadow camera is never used for actually querying shadow casters, just occluders
  989. Camera* shadowCamera = renderer_->CreateShadowCamera();
  990. light->SetShadowCamera(shadowCamera);
  991. SetupShadowCamera(light, true);
  992. // Get occluders, which must be shadow-casting themselves
  993. FrustumOctreeQuery query(shadowOccluders_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY, true, true);
  994. octree_->GetDrawables(query);
  995. UpdateOccluders(shadowOccluders_, shadowCamera);
  996. if (shadowOccluders_.Size())
  997. {
  998. // Shadow viewport is rectangular and consumes more CPU fillrate, so halve size
  999. buffer = renderer_->GetOrCreateOcclusionBuffer(shadowCamera, maxOccluderTriangles_, true);
  1000. DrawOccluders(buffer, shadowOccluders_);
  1001. buffer->BuildDepthHierarchy();
  1002. useOcclusion = true;
  1003. }
  1004. }
  1005. // Process each split for shadow camera update, lit geometries, and shadow casters
  1006. for (unsigned i = 0; i < numSplits; ++i)
  1007. {
  1008. litGeometries_[i].Clear();
  1009. shadowCasters_[i].Clear();
  1010. }
  1011. for (unsigned i = 0; i < numSplits; ++i)
  1012. {
  1013. Light* split = splitLights_[i];
  1014. LightType type = split->GetLightType();
  1015. bool isSplitShadowed = (isShadowed) && (split->GetCastShadows());
  1016. Camera* shadowCamera = 0;
  1017. // If shadow casting, choose the shadow map & update shadow camera
  1018. if (isSplitShadowed)
  1019. {
  1020. shadowCamera = renderer_->CreateShadowCamera();
  1021. split->SetShadowMap(renderer_->GetShadowMap(splitLights_[i]->GetShadowResolution()));
  1022. // Check if managed to get a shadow map. Otherwise must convert to non-shadowed
  1023. if (split->GetShadowMap())
  1024. {
  1025. split->SetShadowCamera(shadowCamera);
  1026. SetupShadowCamera(split);
  1027. }
  1028. else
  1029. {
  1030. isSplitShadowed = false;
  1031. split->SetShadowCamera(0);
  1032. }
  1033. }
  1034. else
  1035. {
  1036. split->SetShadowCamera(0);
  1037. split->SetShadowMap(0);
  1038. }
  1039. BoundingBox geometryBox;
  1040. BoundingBox shadowCasterBox;
  1041. switch (type)
  1042. {
  1043. case LIGHT_DIRECTIONAL:
  1044. // Loop through visible geometries and check if they belong to this split
  1045. {
  1046. float nearSplit = split->GetNearSplit() - split->GetNearFadeRange();
  1047. float farSplit = split->GetFarSplit();
  1048. // If split extends to the whole visible frustum, no depth check necessary
  1049. bool optimize = (nearSplit <= camera_->GetNearClip()) && (farSplit >= camera_->GetFarClip());
  1050. // If whole visible scene is outside the split, can reject trivially
  1051. if ((sceneViewBox_.min_.z_ > farSplit) || (sceneViewBox_.max_.z_ < nearSplit))
  1052. {
  1053. split->SetShadowMap(0);
  1054. continue;
  1055. }
  1056. bool generateBoxes = (isSplitShadowed) && (split->GetShadowFocus().focus_);
  1057. Matrix3x4 lightView;
  1058. if (shadowCamera)
  1059. lightView = shadowCamera->InverseWorldTransform();
  1060. if (!optimize)
  1061. {
  1062. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1063. {
  1064. Drawable* drawable = geometries_[j];
  1065. const GeometryDepthBounds& bounds = geometryDepthBounds_[j];
  1066. // Check bounds and light mask
  1067. if ((bounds.min_ <= farSplit) && (bounds.max_ >= nearSplit) && (drawable->GetLightMask() &
  1068. split->GetLightMask()))
  1069. {
  1070. litGeometries_[i].Push(drawable);
  1071. if (generateBoxes)
  1072. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1073. }
  1074. }
  1075. }
  1076. else
  1077. {
  1078. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1079. {
  1080. Drawable* drawable = geometries_[j];
  1081. // Need to check light mask only
  1082. if (drawable->GetLightMask() & split->GetLightMask())
  1083. {
  1084. litGeometries_[i].Push(drawable);
  1085. if (generateBoxes)
  1086. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1087. }
  1088. }
  1089. }
  1090. }
  1091. // Then get shadow casters by shadow camera frustum query. Use occlusion because of potentially many geometries
  1092. if ((isSplitShadowed) && (litGeometries_[i].Size()))
  1093. {
  1094. Camera* shadowCamera = split->GetShadowCamera();
  1095. if (!useOcclusion)
  1096. {
  1097. // Get potential shadow casters without occlusion
  1098. FrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY);
  1099. octree_->GetDrawables(query);
  1100. }
  1101. else
  1102. {
  1103. // Get potential shadow casters with occlusion
  1104. OccludedFrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), buffer,
  1105. DRAWABLE_GEOMETRY);
  1106. octree_->GetDrawables(query);
  1107. }
  1108. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, false, isSplitShadowed);
  1109. }
  1110. break;
  1111. case LIGHT_POINT:
  1112. {
  1113. SphereOctreeQuery query(tempDrawables_, Sphere(split->GetWorldPosition(), split->GetRange()), DRAWABLE_GEOMETRY);
  1114. octree_->GetDrawables(query);
  1115. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, false);
  1116. }
  1117. break;
  1118. case LIGHT_SPOT:
  1119. case LIGHT_SPLITPOINT:
  1120. {
  1121. FrustumOctreeQuery query(tempDrawables_, splitLights_[i]->GetFrustum(), DRAWABLE_GEOMETRY);
  1122. octree_->GetDrawables(query);
  1123. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, isSplitShadowed);
  1124. }
  1125. break;
  1126. }
  1127. // Optimization: if a particular split has no shadow casters, render as unshadowed
  1128. if (!shadowCasters_[i].Size())
  1129. split->SetShadowMap(0);
  1130. // Focus shadow camera as applicable
  1131. if (split->GetShadowMap())
  1132. {
  1133. if (split->GetShadowFocus().focus_)
  1134. FocusShadowCamera(split, geometryBox, shadowCasterBox);
  1135. // Set a zoom factor to ensure that we do not render to the shadow map border
  1136. // (clamp addressing is necessary because border mode /w hardware shadow maps is not supported by all GPUs)
  1137. Camera* shadowCamera = split->GetShadowCamera();
  1138. Texture2D* shadowMap = split->GetShadowMap();
  1139. if (shadowCamera->GetZoom() >= 1.0f)
  1140. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth()));
  1141. }
  1142. // Update count of total lit geometries & shadow casters
  1143. numLitGeometries += litGeometries_[i].Size();
  1144. numShadowCasters += shadowCasters_[i].Size();
  1145. }
  1146. // If no lit geometries at all, no need to process further
  1147. if (!numLitGeometries)
  1148. numSplits = 0;
  1149. // If no shadow casters at all, concatenate lit geometries into one & return the original light
  1150. else if (!numShadowCasters)
  1151. {
  1152. if (numSplits > 1)
  1153. {
  1154. // Make sure there are no duplicates
  1155. Set<Drawable*> allLitGeometries;
  1156. for (unsigned i = 0; i < numSplits; ++i)
  1157. {
  1158. for (Vector<Drawable*>::Iterator j = litGeometries_[i].Begin(); j != litGeometries_[i].End(); ++j)
  1159. allLitGeometries.Insert(*j);
  1160. }
  1161. litGeometries_[0].Resize(allLitGeometries.Size());
  1162. unsigned index = 0;
  1163. for (Set<Drawable*>::Iterator i = allLitGeometries.Begin(); i != allLitGeometries.End(); ++i)
  1164. litGeometries_[0][index++] = *i;
  1165. }
  1166. splitLights_[0] = light;
  1167. splitLights_[0]->SetShadowMap(0);
  1168. numSplits = 1;
  1169. }
  1170. return numSplits;
  1171. }
  1172. void View::ProcessLightQuery(unsigned splitIndex, const PODVector<Drawable*>& result, BoundingBox& geometryBox,
  1173. BoundingBox& shadowCasterBox, bool getLitGeometries, bool GetShadowCasters)
  1174. {
  1175. Light* light = splitLights_[splitIndex];
  1176. Matrix3x4 lightView;
  1177. Matrix4 lightProj;
  1178. Frustum lightViewFrustum;
  1179. BoundingBox lightViewFrustumBox;
  1180. bool mergeBoxes = (light->GetLightType() != LIGHT_SPLITPOINT) && (light->GetShadowMap()) && (light->GetShadowFocus().focus_);
  1181. bool projectBoxes = false;
  1182. Camera* shadowCamera = light->GetShadowCamera();
  1183. if (shadowCamera)
  1184. {
  1185. bool projectBoxes = !shadowCamera->IsOrthographic();
  1186. lightView = shadowCamera->InverseWorldTransform();
  1187. lightProj = shadowCamera->GetProjection();
  1188. // Transform scene frustum into shadow camera's view space for shadow caster visibility check
  1189. // For point & spot lights, we can use the whole scene frustum. For directional lights, use the
  1190. // intersection of the scene frustum and the split frustum, so that shadow casters do not get
  1191. // rendered into unnecessary splits
  1192. if (light->GetLightType() != LIGHT_DIRECTIONAL)
  1193. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1194. else
  1195. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, light->GetNearSplit() - light->GetNearFadeRange()),
  1196. Min(sceneViewBox_.max_.z_, light->GetFarSplit())).Transformed(lightView);
  1197. lightViewFrustumBox.Define(lightViewFrustum);
  1198. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1199. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1200. GetShadowCasters = false;
  1201. }
  1202. else
  1203. GetShadowCasters = false;
  1204. BoundingBox lightViewBox;
  1205. BoundingBox lightProjBox;
  1206. for (unsigned i = 0; i < result.Size(); ++i)
  1207. {
  1208. Drawable* drawable = static_cast<Drawable*>(result[i]);
  1209. drawable->UpdateDistance(frame_);
  1210. bool boxGenerated = false;
  1211. // If draw distance non-zero, check it
  1212. float maxDistance = drawable->GetDrawDistance();
  1213. if ((maxDistance > 0.0f) && (drawable->GetDistance() > maxDistance))
  1214. continue;
  1215. // Check light mask
  1216. if (!(drawable->GetLightMask() & light->GetLightMask()))
  1217. continue;
  1218. // Get lit geometry only if inside main camera frustum this frame
  1219. if ((getLitGeometries) && (drawable->IsInView(frame_)))
  1220. {
  1221. if (mergeBoxes)
  1222. {
  1223. // Transform bounding box into light view space, and to projection space if needed
  1224. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1225. if (!projectBoxes)
  1226. geometryBox.Merge(lightViewBox);
  1227. else
  1228. {
  1229. lightProjBox = lightViewBox.Projected(lightProj);
  1230. geometryBox.Merge(lightProjBox);
  1231. }
  1232. boxGenerated = true;
  1233. }
  1234. litGeometries_[splitIndex].Push(drawable);
  1235. }
  1236. // Shadow caster need not be inside main camera frustum: in that case try to detect whether
  1237. // the shadow projection intersects the view
  1238. if ((GetShadowCasters) && (drawable->GetCastShadows()))
  1239. {
  1240. // If shadow distance non-zero, check it
  1241. float maxShadowDistance = drawable->GetShadowDistance();
  1242. if ((maxShadowDistance > 0.0f) && (drawable->GetDistance() > maxShadowDistance))
  1243. continue;
  1244. if (!boxGenerated)
  1245. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1246. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1247. {
  1248. if (mergeBoxes)
  1249. {
  1250. if (!projectBoxes)
  1251. shadowCasterBox.Merge(lightViewBox);
  1252. else
  1253. {
  1254. if (!boxGenerated)
  1255. lightProjBox = lightViewBox.Projected(lightProj);
  1256. shadowCasterBox.Merge(lightProjBox);
  1257. }
  1258. }
  1259. // Update geometry now if not updated yet
  1260. if (!drawable->IsInView(frame_))
  1261. {
  1262. drawable->MarkInShadowView(frame_);
  1263. drawable->UpdateGeometry(frame_);
  1264. }
  1265. shadowCasters_[splitIndex].Push(drawable);
  1266. }
  1267. }
  1268. }
  1269. }
  1270. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1271. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1272. {
  1273. // If shadow caster is also an occluder, must let it be visible, because it has potentially already culled
  1274. // away other shadow casters (could also check the actual shadow occluder vector, but that would be slower)
  1275. if (drawable->IsOccluder())
  1276. return true;
  1277. if (shadowCamera->IsOrthographic())
  1278. {
  1279. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1280. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1281. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1282. }
  1283. else
  1284. {
  1285. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1286. if (drawable->IsInView(frame_))
  1287. return true;
  1288. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1289. Vector3 center = lightViewBox.Center();
  1290. Ray extrusionRay(center, center.Normalized());
  1291. float extrusionDistance = shadowCamera->GetFarClip();
  1292. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  1293. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1294. float sizeFactor = extrusionDistance / originalDistance;
  1295. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1296. // than necessary, so the test will be conservative
  1297. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1298. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1299. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1300. lightViewBox.Merge(extrudedBox);
  1301. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1302. }
  1303. }
  1304. void View::SetupShadowCamera(Light* light, bool shadowOcclusion)
  1305. {
  1306. Camera* shadowCamera = light->GetShadowCamera();
  1307. Node* cameraNode = shadowCamera->GetNode();
  1308. const FocusParameters& parameters = light->GetShadowFocus();
  1309. // Reset zoom
  1310. shadowCamera->SetZoom(1.0f);
  1311. switch(light->GetLightType())
  1312. {
  1313. case LIGHT_DIRECTIONAL:
  1314. {
  1315. float extrusionDistance = camera_->GetFarClip();
  1316. // Calculate initial position & rotation
  1317. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1318. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1319. Quaternion rot(Vector3::FORWARD, lightWorldDirection);
  1320. cameraNode->SetTransform(pos, rot);
  1321. // Calculate main camera shadowed frustum in light's view space
  1322. float sceneMaxZ = camera_->GetFarClip();
  1323. // When shadow focusing is enabled, use the scene far Z to limit maximum frustum size
  1324. if ((shadowOcclusion) || (parameters.focus_))
  1325. sceneMaxZ = Min(sceneViewBox_.max_.z_, sceneMaxZ);
  1326. Matrix3x4 lightView(shadowCamera->InverseWorldTransform());
  1327. Frustum lightViewSplitFrustum = camera_->GetSplitFrustum(light->GetNearSplit() - light->GetNearFadeRange(),
  1328. Min(light->GetFarSplit(), sceneMaxZ)).Transformed(lightView);
  1329. // Fit the frustum inside a bounding box. If uniform size, use a sphere instead
  1330. BoundingBox shadowBox;
  1331. if ((!shadowOcclusion) && (parameters.nonUniform_))
  1332. shadowBox.Define(lightViewSplitFrustum);
  1333. else
  1334. {
  1335. Sphere shadowSphere;
  1336. shadowSphere.Define(lightViewSplitFrustum);
  1337. shadowBox.Define(shadowSphere);
  1338. }
  1339. shadowCamera->SetOrthographic(true);
  1340. shadowCamera->SetNearClip(0.0f);
  1341. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1342. // Center shadow camera on the bounding box, snap to whole texels
  1343. QuantizeDirShadowCamera(light, shadowBox);
  1344. }
  1345. break;
  1346. case LIGHT_SPOT:
  1347. case LIGHT_SPLITPOINT:
  1348. {
  1349. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1350. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1351. shadowCamera->SetFarClip(light->GetRange());
  1352. shadowCamera->SetOrthographic(false);
  1353. shadowCamera->SetFov(light->GetFov());
  1354. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1355. // For spot lights, zoom out shadowmap if far away (reduces fillrate)
  1356. if ((light->GetLightType() == LIGHT_SPOT) && (parameters.zoomOut_))
  1357. {
  1358. // Make sure the out-zooming does not start while we are inside the spot
  1359. float distance = Max((camera_->InverseWorldTransform() * light->GetWorldPosition()).z_ - light->GetRange(), 1.0f);
  1360. float lightPixels = (((float)height_ * light->GetRange() * camera_->GetZoom() * 0.5f) / distance);
  1361. // Clamp pixel amount to a sufficient minimum to avoid self-shadowing artifacts due to loss of precision
  1362. if (lightPixels < SHADOW_MIN_PIXELS)
  1363. lightPixels = SHADOW_MIN_PIXELS;
  1364. float zoolevel_ = Min(lightPixels / (float)light->GetShadowMap()->GetHeight(), 1.0f);
  1365. shadowCamera->SetZoom(zoolevel_);
  1366. }
  1367. }
  1368. break;
  1369. }
  1370. }
  1371. void View::FocusShadowCamera(Light* light, const BoundingBox& geometryBox, const BoundingBox& shadowCasterBox)
  1372. {
  1373. // If either no geometries or no shadow casters, do nothing
  1374. if ((!geometryBox.defined_) || (!shadowCasterBox.defined_))
  1375. return;
  1376. Camera* shadowCamera = light->GetShadowCamera();
  1377. const FocusParameters& parameters = light->GetShadowFocus();
  1378. switch (light->GetLightType())
  1379. {
  1380. case LIGHT_DIRECTIONAL:
  1381. {
  1382. BoundingBox combinedBox;
  1383. combinedBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1384. combinedBox.max_.x_ = shadowCamera->GetAspectRatio() * combinedBox.max_.y_;
  1385. combinedBox.min_.y_ = -combinedBox.max_.y_;
  1386. combinedBox.min_.x_ = -combinedBox.max_.x_;
  1387. combinedBox.Intersect(geometryBox);
  1388. combinedBox.Intersect(shadowCasterBox);
  1389. QuantizeDirShadowCamera(light, combinedBox);
  1390. }
  1391. break;
  1392. case LIGHT_SPOT:
  1393. // Can not move, but can zoom the shadow camera. Check for out-zooming (distant shadow map), do nothing in that case
  1394. if (shadowCamera->GetZoom() >= 1.0f)
  1395. {
  1396. BoundingBox combinedBox(-1.0f, 1.0f);
  1397. combinedBox.Intersect(geometryBox);
  1398. combinedBox.Intersect(shadowCasterBox);
  1399. float viewSizeX = Max(fabsf(combinedBox.min_.x_), fabsf(combinedBox.max_.x_));
  1400. float viewSizeY = Max(fabsf(combinedBox.min_.y_), fabsf(combinedBox.max_.y_));
  1401. float viewSize = Max(viewSizeX, viewSizeY);
  1402. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1403. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1404. float quantize = parameters.quantize_ * invOrthoSize;
  1405. float minView = parameters.minView_ * invOrthoSize;
  1406. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1407. if (viewSize < 1.0f)
  1408. shadowCamera->SetZoom(1.0f / viewSize);
  1409. }
  1410. break;
  1411. }
  1412. }
  1413. void View::QuantizeDirShadowCamera(Light* light, const BoundingBox& viewBox)
  1414. {
  1415. Camera* shadowCamera = light->GetShadowCamera();
  1416. Node* cameraNode = shadowCamera->GetNode();
  1417. const FocusParameters& parameters = light->GetShadowFocus();
  1418. float minX = viewBox.min_.x_;
  1419. float minY = viewBox.min_.y_;
  1420. float maxX = viewBox.max_.x_;
  1421. float maxY = viewBox.max_.y_;
  1422. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1423. Vector2 viewSize(maxX - minX, maxY - minY);
  1424. // Quantize size to reduce swimming
  1425. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1426. if (parameters.nonUniform_)
  1427. {
  1428. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1429. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1430. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1431. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1432. }
  1433. else if (parameters.focus_)
  1434. {
  1435. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1436. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1437. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1438. viewSize.y_ = viewSize.x_;
  1439. }
  1440. shadowCamera->SetOrthoSize(viewSize);
  1441. // Center shadow camera to the view space bounding box
  1442. Vector3 pos = shadowCamera->GetWorldPosition();
  1443. Quaternion rot = shadowCamera->GetWorldRotation();
  1444. Vector3 adjust(center.x_, center.y_, 0.0f);
  1445. cameraNode->Translate(rot * adjust);
  1446. // If there is a shadow map, snap to its whole texels
  1447. Texture2D* shadowMap = light->GetShadowMap();
  1448. if (shadowMap)
  1449. {
  1450. Vector3 viewPos(rot.Inverse() * shadowCamera->GetWorldPosition());
  1451. // Take into account that shadow map border will not be used
  1452. float invActualSize = 1.0f / (float)(shadowMap->GetWidth() - 2);
  1453. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1454. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1455. cameraNode->Translate(rot * snap);
  1456. }
  1457. }
  1458. void View::OptimizeLightByScissor(Light* light)
  1459. {
  1460. if (light)
  1461. graphics_->SetScissorTest(true, GetLightScissor(light));
  1462. else
  1463. graphics_->SetScissorTest(false);
  1464. }
  1465. const Rect& View::GetLightScissor(Light* light)
  1466. {
  1467. Map<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1468. if (i != lightScissorCache_.End())
  1469. return i->second_;
  1470. Matrix3x4 view(camera_->InverseWorldTransform());
  1471. Matrix4 projection(camera_->GetProjection());
  1472. switch (light->GetLightType())
  1473. {
  1474. case LIGHT_POINT:
  1475. {
  1476. BoundingBox viewBox = light->GetWorldBoundingBox().Transformed(view);
  1477. return lightScissorCache_[light] = viewBox.Projected(projection);
  1478. }
  1479. case LIGHT_SPOT:
  1480. case LIGHT_SPLITPOINT:
  1481. {
  1482. Frustum viewFrustum = light->GetFrustum().Transformed(view);
  1483. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1484. }
  1485. default:
  1486. return lightScissorCache_[light] = Rect::FULL;
  1487. }
  1488. }
  1489. unsigned View::SplitLight(Light* light)
  1490. {
  1491. LightType type = light->GetLightType();
  1492. if (type == LIGHT_DIRECTIONAL)
  1493. {
  1494. const CascadeParameters& cascade = light->GetShadowCascade();
  1495. unsigned splits = cascade.splits_;
  1496. if (splits > MAX_LIGHT_SPLITS - 1)
  1497. splits = MAX_LIGHT_SPLITS;
  1498. // Orthographic view actually has near clip 0, but clamp it to a theoretical minimum
  1499. float farClip = Min(cascade.shadowRange_, camera_->GetFarClip()); // Shadow range end
  1500. float nearClip = Max(camera_->GetNearClip(), M_MIN_NEARCLIP); // Shadow range start
  1501. bool CreateExtraSplit = farClip < camera_->GetFarClip();
  1502. // Practical split scheme (Zhang et al.)
  1503. unsigned i;
  1504. for (i = 0; i < splits; ++i)
  1505. {
  1506. // Set a minimum for the fade range to avoid boundary artifacts (missing lighting)
  1507. float splitFadeRange = Max(cascade.splitFadeRange_, 0.001f);
  1508. float iPerM = (float)i / (float)splits;
  1509. float log = nearClip * powf(farClip / nearClip, iPerM);
  1510. float uniform = nearClip + (farClip - nearClip) * iPerM;
  1511. float nearSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1512. float nearFadeRange = nearSplit * splitFadeRange;
  1513. iPerM = (float)(i + 1) / (float)splits;
  1514. log = nearClip * powf(farClip / nearClip, iPerM);
  1515. uniform = nearClip + (farClip - nearClip) * iPerM;
  1516. float farSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1517. float farFadeRange = farSplit * splitFadeRange;
  1518. // If split is completely beyond camera far clip, we are done
  1519. if ((nearSplit - nearFadeRange) > camera_->GetFarClip())
  1520. break;
  1521. Light* SplitLight = renderer_->CreateSplitLight(light);
  1522. splitLights_[i] = SplitLight;
  1523. // Though the near clip was previously clamped, use the real near clip value for the first split,
  1524. // so that there are no unlit portions
  1525. if (i)
  1526. SplitLight->SetNearSplit(nearSplit);
  1527. else
  1528. SplitLight->SetNearSplit(camera_->GetNearClip());
  1529. SplitLight->SetNearFadeRange(nearFadeRange);
  1530. SplitLight->SetFarSplit(farSplit);
  1531. // The final split will not fade
  1532. if ((CreateExtraSplit) || (i < splits - 1))
  1533. SplitLight->SetFarFadeRange(farFadeRange);
  1534. // Create an extra unshadowed split if necessary
  1535. if ((CreateExtraSplit) && (i == splits - 1))
  1536. {
  1537. Light* SplitLight = renderer_->CreateSplitLight(light);
  1538. splitLights_[i + 1] = SplitLight;
  1539. SplitLight->SetNearSplit(farSplit);
  1540. SplitLight->SetNearFadeRange(farFadeRange);
  1541. SplitLight->SetCastShadows(false);
  1542. }
  1543. }
  1544. if (CreateExtraSplit)
  1545. return i + 1;
  1546. else
  1547. return i;
  1548. }
  1549. if (type == LIGHT_POINT)
  1550. {
  1551. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1552. {
  1553. Light* SplitLight = renderer_->CreateSplitLight(light);
  1554. Node* lightNode = SplitLight->GetNode();
  1555. splitLights_[i] = SplitLight;
  1556. SplitLight->SetLightType(LIGHT_SPLITPOINT);
  1557. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1558. lightNode->SetDirection(directions[i]);
  1559. SplitLight->SetFov(90.0f);
  1560. SplitLight->SetAspectRatio(1.0f);
  1561. }
  1562. return MAX_CUBEMAP_FACES;
  1563. }
  1564. // A spot light does not actually need splitting. However, we may be rendering several views,
  1565. // and in some the light might be unshadowed, so better create an unique copy
  1566. Light* SplitLight = renderer_->CreateSplitLight(light);
  1567. splitLights_[0] = SplitLight;
  1568. return 1;
  1569. }
  1570. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1571. {
  1572. if (!material)
  1573. material = renderer_->GetDefaultMaterial();
  1574. if (!material)
  1575. return 0;
  1576. float lodDistance = drawable->GetLodDistance();
  1577. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1578. if (techniques.Empty())
  1579. return 0;
  1580. // Check for suitable technique. Techniques should be ordered like this:
  1581. // Most distant & highest quality
  1582. // Most distant & lowest quality
  1583. // Second most distant & highest quality
  1584. // ...
  1585. for (unsigned i = 0; i < techniques.Size(); ++i)
  1586. {
  1587. const TechniqueEntry& entry = techniques[i];
  1588. Technique* technique = entry.technique_;
  1589. if ((!technique) || ((!hasSM3_) && (technique->IsSM3())) || (materialQuality_ < entry.qualityLevel_))
  1590. continue;
  1591. if (lodDistance >= entry.lodDistance_)
  1592. return technique;
  1593. }
  1594. // If no suitable technique found, fallback to the last
  1595. return techniques.Back().technique_;
  1596. }
  1597. void View::CheckMaterialForAuxView(Material* material)
  1598. {
  1599. const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
  1600. for (unsigned i = 0; i < textures.Size(); ++i)
  1601. {
  1602. // Have to check cube & 2D textures separately
  1603. Texture* texture = textures[i];
  1604. if (texture)
  1605. {
  1606. if (texture->GetType() == Texture2D::GetTypeStatic())
  1607. {
  1608. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1609. RenderSurface* target = tex2D->GetRenderSurface();
  1610. if (target)
  1611. {
  1612. const Viewport& viewport = target->GetViewport();
  1613. if ((viewport.scene_) && (viewport.camera_))
  1614. renderer_->AddView(target, viewport);
  1615. }
  1616. }
  1617. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1618. {
  1619. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1620. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1621. {
  1622. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1623. if (target)
  1624. {
  1625. const Viewport& viewport = target->GetViewport();
  1626. if ((viewport.scene_) && (viewport.camera_))
  1627. renderer_->AddView(target, viewport);
  1628. }
  1629. }
  1630. }
  1631. }
  1632. }
  1633. // Set frame number so that we can early-out next time we come across this material on the same frame
  1634. material->MarkForAuxView(frame_.frameNumber_);
  1635. }
  1636. void View::SortBatches()
  1637. {
  1638. PROFILE(SortBatches);
  1639. if (mode_ != RENDER_FORWARD)
  1640. {
  1641. gBufferQueue_.SortFrontToBack();
  1642. noShadowLightQueue_.SortFrontToBack();
  1643. }
  1644. baseQueue_.SortFrontToBack();
  1645. extraQueue_.SortFrontToBack();
  1646. transparentQueue_.SortBackToFront();
  1647. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1648. {
  1649. lightQueues_[i].shadowBatches_.SortFrontToBack();
  1650. lightQueues_[i].litBatches_.SortFrontToBack();
  1651. }
  1652. }
  1653. void View::PrepareInstancingBuffer()
  1654. {
  1655. PROFILE(PrepareInstancingBuffer);
  1656. unsigned totalInstances = 0;
  1657. if (mode_ != RENDER_FORWARD)
  1658. totalInstances += gBufferQueue_.GetNumInstances();
  1659. totalInstances += baseQueue_.GetNumInstances();
  1660. totalInstances += extraQueue_.GetNumInstances();
  1661. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1662. {
  1663. totalInstances += lightQueues_[i].shadowBatches_.GetNumInstances();
  1664. totalInstances += lightQueues_[i].litBatches_.GetNumInstances();
  1665. }
  1666. // If fail to set buffer size, fall back to per-group locking
  1667. if ((totalInstances) && (renderer_->ResizeInstancingBuffer(totalInstances)))
  1668. {
  1669. unsigned freeIndex = 0;
  1670. void* lockedData = renderer_->instancingBuffer_->Lock(0, totalInstances, LOCK_DISCARD);
  1671. if (lockedData)
  1672. {
  1673. if (mode_ != RENDER_FORWARD)
  1674. gBufferQueue_.SetTransforms(lockedData, freeIndex);
  1675. baseQueue_.SetTransforms(lockedData, freeIndex);
  1676. extraQueue_.SetTransforms(lockedData, freeIndex);
  1677. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1678. {
  1679. lightQueues_[i].shadowBatches_.SetTransforms(lockedData, freeIndex);
  1680. lightQueues_[i].litBatches_.SetTransforms(lockedData, freeIndex);
  1681. }
  1682. renderer_->instancingBuffer_->Unlock();
  1683. }
  1684. }
  1685. }
  1686. void View::SetShaderParameters()
  1687. {
  1688. Time* time = GetSubsystem<Time>();
  1689. float fogStart = zone_->GetFogStart();
  1690. float fogEnd = zone_->GetFogEnd();
  1691. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  1692. float farClip = camera_->GetFarClip();
  1693. float nearClip = camera_->GetNearClip();
  1694. Vector4 fogParams(fogStart / farClip, fogEnd / farClip, 1.0f / (fogRange / farClip), 0.0f);
  1695. Vector4 elapsedTime((time->GetTotalMSec() & 0x3fffff) / 1000.0f, 0.0f, 0.0f, 0.0f);
  1696. graphics_->SetVertexShaderParameter(VSP_ELAPSEDTIME, elapsedTime);
  1697. graphics_->SetPixelShaderParameter(PSP_AMBIENTCOLOR, zone_->GetAmbientColor());
  1698. graphics_->SetPixelShaderParameter(PSP_ELAPSEDTIME, elapsedTime);
  1699. graphics_->SetPixelShaderParameter(PSP_FOGCOLOR, zone_->GetFogColor());
  1700. graphics_->SetPixelShaderParameter(PSP_FOGPARAMS, fogParams);
  1701. }
  1702. void View::DrawSplitLightToStencil(Camera& camera, Light* light, bool clear)
  1703. {
  1704. graphics_->ClearTransformSources();
  1705. Matrix3x4 view(camera.InverseWorldTransform());
  1706. switch (light->GetLightType())
  1707. {
  1708. case LIGHT_SPLITPOINT:
  1709. if (!clear)
  1710. {
  1711. Matrix4 projection(camera.GetProjection());
  1712. const Matrix3x4& model = light->GetVolumeTransform(camera);
  1713. float lightExtent = light->GetVolumeExtent();
  1714. float lightViewDist = (light->GetWorldPosition() - camera.GetWorldPosition()).LengthFast();
  1715. bool drawBackFaces = lightViewDist < (lightExtent + camera.GetNearClip());
  1716. graphics_->SetAlphaTest(false);
  1717. graphics_->SetColorWrite(false);
  1718. graphics_->SetDepthWrite(false);
  1719. graphics_->SetCullMode(drawBackFaces ? CULL_CW : CULL_CCW);
  1720. graphics_->SetDepthTest(drawBackFaces ? CMP_GREATER : CMP_LESS);
  1721. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1722. graphics_->SetVertexShaderParameter(VSP_MODEL, model);
  1723. graphics_->SetVertexShaderParameter(VSP_VIEWPROJ, projection * view);
  1724. // Draw the faces to stencil which we should draw (where no light has not been rendered yet)
  1725. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 0);
  1726. renderer_->spotLightGeometry_->Draw(graphics_);
  1727. // Draw the other faces to stencil to mark where we should not draw ("frees up" the pixels for other faces)
  1728. graphics_->SetCullMode(drawBackFaces ? CULL_CCW : CULL_CW);
  1729. graphics_->SetStencilTest(true, CMP_EQUAL, OP_DECR, OP_KEEP, OP_KEEP, 1);
  1730. renderer_->spotLightGeometry_->Draw(graphics_);
  1731. // Now set stencil test for rendering the lit geometries (also marks the pixels so that they will not be used again)
  1732. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 1);
  1733. graphics_->SetColorWrite(true);
  1734. }
  1735. else
  1736. {
  1737. // Clear stencil with a scissored clear operation
  1738. OptimizeLightByScissor(light->GetOriginalLight());
  1739. graphics_->Clear(CLEAR_STENCIL);
  1740. graphics_->SetScissorTest(false);
  1741. graphics_->SetStencilTest(false);
  1742. }
  1743. break;
  1744. case LIGHT_DIRECTIONAL:
  1745. // If light encompasses whole frustum, no drawing to frustum necessary
  1746. if ((light->GetNearSplit() <= camera.GetNearClip()) && (light->GetFarSplit() >= camera.GetFarClip()))
  1747. return;
  1748. else
  1749. {
  1750. if (!clear)
  1751. {
  1752. // Get projection without jitter offset to ensure the whole screen is filled
  1753. Matrix4 projection(camera.GetProjection(false));
  1754. Matrix3x4 nearTransform(light->GetDirLightTransform(camera, true));
  1755. Matrix3x4 farTransform(light->GetDirLightTransform(camera, false));
  1756. graphics_->SetAlphaTest(false);
  1757. graphics_->SetColorWrite(false);
  1758. graphics_->SetDepthWrite(false);
  1759. graphics_->SetCullMode(CULL_NONE);
  1760. // If the split begins at the near plane (first split), draw at split far plane
  1761. if (light->GetNearSplit() <= camera.GetNearClip())
  1762. {
  1763. graphics_->SetDepthTest(CMP_GREATEREQUAL);
  1764. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1765. graphics_->SetVertexShaderParameter(VSP_MODEL, farTransform);
  1766. graphics_->SetVertexShaderParameter(VSP_VIEWPROJ, projection);
  1767. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1768. }
  1769. // Otherwise draw at split near plane
  1770. else
  1771. {
  1772. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1773. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1774. graphics_->SetVertexShaderParameter(VSP_MODEL, nearTransform);
  1775. graphics_->SetVertexShaderParameter(VSP_VIEWPROJ, projection);
  1776. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1777. }
  1778. renderer_->dirLightGeometry_->Draw(graphics_);
  1779. graphics_->SetColorWrite(true);
  1780. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 1);
  1781. }
  1782. else
  1783. {
  1784. // Clear the whole stencil
  1785. graphics_->SetScissorTest(false);
  1786. graphics_->Clear(CLEAR_STENCIL);
  1787. graphics_->SetStencilTest(false);
  1788. }
  1789. }
  1790. break;
  1791. }
  1792. }
  1793. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor, bool useLightBuffer)
  1794. {
  1795. Texture2D* diffBuffer = 0;
  1796. VertexBuffer* instancingBuffer = 0;
  1797. if (useLightBuffer)
  1798. diffBuffer = graphics_->GetDiffBuffer();
  1799. if (renderer_->GetDynamicInstancing())
  1800. instancingBuffer = renderer_->instancingBuffer_;
  1801. graphics_->SetScissorTest(false);
  1802. graphics_->SetStencilTest(false);
  1803. // Priority instanced
  1804. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1805. queue.priorityBatchGroups_.End(); ++i)
  1806. {
  1807. const BatchGroup& group = i->second_;
  1808. if ((useLightBuffer) && (!group.light_))
  1809. graphics_->SetTexture(TU_LIGHTBUFFER, diffBuffer);
  1810. group.Draw(graphics_, instancingBuffer);
  1811. }
  1812. // Priority non-instanced
  1813. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1814. {
  1815. Batch* batch = *i;
  1816. if ((useLightBuffer) && (!batch->light_))
  1817. graphics_->SetTexture(TU_LIGHTBUFFER, diffBuffer);
  1818. batch->Draw(graphics_);
  1819. }
  1820. // Non-priority instanced
  1821. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1822. queue.batchGroups_.End(); ++i)
  1823. {
  1824. const BatchGroup& group = i->second_;
  1825. if ((useScissor) && (group.light_))
  1826. OptimizeLightByScissor(group.light_);
  1827. else
  1828. graphics_->SetScissorTest(false);
  1829. if ((useLightBuffer) && (!group.light_))
  1830. graphics_->SetTexture(TU_LIGHTBUFFER, diffBuffer);
  1831. group.Draw(graphics_, instancingBuffer);
  1832. }
  1833. // Non-priority non-instanced
  1834. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1835. {
  1836. Batch* batch = *i;
  1837. // For the transparent queue, both priority and non-priority batches are copied here, so check the flag
  1838. if ((useScissor) && (batch->light_) && (!batch->hasPriority_))
  1839. OptimizeLightByScissor(batch->light_);
  1840. else
  1841. graphics_->SetScissorTest(false);
  1842. if ((useLightBuffer) && (!batch->light_))
  1843. graphics_->SetTexture(TU_LIGHTBUFFER, diffBuffer);
  1844. batch->Draw(graphics_);
  1845. }
  1846. }
  1847. void View::RenderForwardLightBatchQueue(const BatchQueue& queue, Light* light)
  1848. {
  1849. VertexBuffer* instancingBuffer = 0;
  1850. if (renderer_->GetDynamicInstancing())
  1851. instancingBuffer = renderer_->instancingBuffer_;
  1852. graphics_->SetScissorTest(false);
  1853. graphics_->SetStencilTest(false);
  1854. // Priority instanced
  1855. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1856. queue.priorityBatchGroups_.End(); ++i)
  1857. {
  1858. const BatchGroup& group = i->second_;
  1859. group.Draw(graphics_, instancingBuffer);
  1860. }
  1861. // Priority non-instanced
  1862. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1863. {
  1864. Batch* batch = *i;
  1865. batch->Draw(graphics_);
  1866. }
  1867. // All base passes have been drawn. Optimize at this point by both scissor and stencil
  1868. if (light)
  1869. {
  1870. OptimizeLightByScissor(light);
  1871. LightType type = light->GetLightType();
  1872. if ((type == LIGHT_SPLITPOINT) || (type == LIGHT_DIRECTIONAL))
  1873. DrawSplitLightToStencil(*camera_, light);
  1874. }
  1875. // Non-priority instanced
  1876. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1877. queue.batchGroups_.End(); ++i)
  1878. {
  1879. const BatchGroup& group = i->second_;
  1880. group.Draw(graphics_, instancingBuffer);
  1881. }
  1882. // Non-priority non-instanced
  1883. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1884. {
  1885. Batch* batch = *i;
  1886. batch->Draw(graphics_);
  1887. }
  1888. }
  1889. void View::RenderShadowMap(const LightBatchQueue& queue)
  1890. {
  1891. PROFILE(RenderShadowMap);
  1892. Texture2D* shadowMap = queue.light_->GetShadowMap();
  1893. graphics_->ClearLastParameterSources();
  1894. graphics_->SetColorWrite(false);
  1895. graphics_->SetStencilTest(false);
  1896. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1897. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1898. graphics_->SetDepthStencil(shadowMap);
  1899. graphics_->Clear(CLEAR_DEPTH);
  1900. // Set shadow depth bias
  1901. BiasParameters parameters = queue.light_->GetShadowBias();
  1902. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1903. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1904. // However, do not do this for point lights
  1905. if (queue.light_->GetLightType() != LIGHT_SPLITPOINT)
  1906. {
  1907. float zoom = Min(queue.light_->GetShadowCamera()->GetZoom(),
  1908. (float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth());
  1909. Rect zoorect_(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1910. graphics_->SetScissorTest(true, zoorect_, false);
  1911. }
  1912. else
  1913. graphics_->SetScissorTest(false);
  1914. // Draw instanced and non-instanced shadow casters
  1915. RenderBatchQueue(queue.shadowBatches_);
  1916. graphics_->SetColorWrite(true);
  1917. graphics_->SetDepthBias(0.0f, 0.0f);
  1918. }