PhysicsWorld.cpp 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Mutex.h"
  29. #include "PhysicsEvents.h"
  30. #include "PhysicsUtils.h"
  31. #include "PhysicsWorld.h"
  32. #include "Profiler.h"
  33. #include "Ray.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "Sort.h"
  38. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  41. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  42. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  43. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  44. namespace Urho3D
  45. {
  46. const char* PHYSICS_CATEGORY = "Physics";
  47. extern const char* SUBSYSTEM_CATEGORY;
  48. static const int MAX_SOLVER_ITERATIONS = 256;
  49. static const int DEFAULT_FPS = 60;
  50. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  51. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  52. {
  53. return lhs.distance_ < rhs.distance_;
  54. }
  55. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  56. {
  57. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  58. }
  59. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  60. {
  61. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  62. }
  63. /// Callback for physics world queries.
  64. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  65. {
  66. /// Construct.
  67. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  68. {
  69. }
  70. /// Add a contact result.
  71. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObjectWrapper *colObj0Wrap, int, int, const btCollisionObjectWrapper *colObj1Wrap, int, int)
  72. {
  73. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  74. if (body && !result_.Contains(body))
  75. result_.Push(body);
  76. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  77. if (body && !result_.Contains(body))
  78. result_.Push(body);
  79. return 0.0f;
  80. }
  81. /// Found rigid bodies.
  82. PODVector<RigidBody*>& result_;
  83. };
  84. OBJECTTYPESTATIC(PhysicsWorld);
  85. PhysicsWorld::PhysicsWorld(Context* context) :
  86. Component(context),
  87. collisionConfiguration_(0),
  88. collisionDispatcher_(0),
  89. broadphase_(0),
  90. solver_(0),
  91. world_(0),
  92. fps_(DEFAULT_FPS),
  93. timeAcc_(0.0f),
  94. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  95. interpolation_(true),
  96. applyingTransforms_(false),
  97. debugRenderer_(0),
  98. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  99. {
  100. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  101. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  102. broadphase_ = new btDbvtBroadphase();
  103. solver_ = new btSequentialImpulseConstraintSolver();
  104. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  105. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  106. world_->getDispatchInfo().m_useContinuous = true;
  107. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  108. world_->setDebugDrawer(this);
  109. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  110. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  111. }
  112. PhysicsWorld::~PhysicsWorld()
  113. {
  114. if (scene_)
  115. {
  116. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  117. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  118. (*i)->ReleaseConstraint();
  119. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  120. (*i)->ReleaseBody();
  121. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  122. (*i)->ReleaseShape();
  123. }
  124. delete world_;
  125. world_ = 0;
  126. delete solver_;
  127. solver_ = 0;
  128. delete broadphase_;
  129. broadphase_ = 0;
  130. delete collisionDispatcher_;
  131. collisionDispatcher_ = 0;
  132. delete collisionConfiguration_;
  133. collisionConfiguration_ = 0;
  134. }
  135. void PhysicsWorld::RegisterObject(Context* context)
  136. {
  137. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  138. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  139. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  140. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_INT, "Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  141. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  142. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  143. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  144. }
  145. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  146. {
  147. if (debugRenderer_)
  148. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  149. else
  150. return false;
  151. }
  152. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  153. {
  154. if (debugRenderer_)
  155. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  156. }
  157. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  158. {
  159. if (debug)
  160. {
  161. PROFILE(PhysicsDrawDebug);
  162. debugRenderer_ = debug;
  163. debugDepthTest_ = depthTest;
  164. world_->debugDrawWorld();
  165. debugRenderer_ = 0;
  166. }
  167. }
  168. void PhysicsWorld::reportErrorWarning(const char* warningString)
  169. {
  170. LOGWARNING("Physics: " + String(warningString));
  171. }
  172. void PhysicsWorld::Update(float timeStep)
  173. {
  174. PROFILE(UpdatePhysics);
  175. float internalTimeStep = 1.0f / fps_;
  176. delayedWorldTransforms_.Clear();
  177. if (interpolation_)
  178. {
  179. int maxSubSteps = (int)(timeStep * fps_) + 1;
  180. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  181. }
  182. else
  183. {
  184. timeAcc_ += timeStep;
  185. while (timeAcc_ >= internalTimeStep)
  186. {
  187. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  188. timeAcc_ -= internalTimeStep;
  189. }
  190. }
  191. // Apply delayed (parented) world transforms now
  192. while (!delayedWorldTransforms_.Empty())
  193. {
  194. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  195. i != delayedWorldTransforms_.End(); ++i)
  196. {
  197. const DelayedWorldTransform& transform = i->second_;
  198. // If parent's transform has already been assigned, can proceed
  199. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  200. {
  201. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  202. delayedWorldTransforms_.Erase(i);
  203. }
  204. }
  205. }
  206. }
  207. void PhysicsWorld::UpdateCollisions()
  208. {
  209. world_->performDiscreteCollisionDetection();
  210. }
  211. void PhysicsWorld::SetFps(int fps)
  212. {
  213. fps_ = Clamp(fps, 1, 1000);
  214. MarkNetworkUpdate();
  215. }
  216. void PhysicsWorld::SetGravity(Vector3 gravity)
  217. {
  218. world_->setGravity(ToBtVector3(gravity));
  219. MarkNetworkUpdate();
  220. }
  221. void PhysicsWorld::SetNumIterations(int num)
  222. {
  223. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  224. world_->getSolverInfo().m_numIterations = num;
  225. MarkNetworkUpdate();
  226. }
  227. void PhysicsWorld::SetInterpolation(bool enable)
  228. {
  229. interpolation_ = enable;
  230. }
  231. void PhysicsWorld::SetSplitImpulse(bool enable)
  232. {
  233. world_->getSolverInfo().m_splitImpulse = enable;
  234. MarkNetworkUpdate();
  235. }
  236. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  237. {
  238. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  239. MarkNetworkUpdate();
  240. }
  241. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  242. {
  243. PROFILE(PhysicsRaycast);
  244. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  245. maxDistance * ray.direction_));
  246. rayCallback.m_collisionFilterGroup = (short)0xffff;
  247. rayCallback.m_collisionFilterMask = collisionMask;
  248. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  249. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  250. {
  251. PhysicsRaycastResult newResult;
  252. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  253. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  254. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  255. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  256. result.Push(newResult);
  257. }
  258. Sort(result.Begin(), result.End(), CompareRaycastResults);
  259. }
  260. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  261. {
  262. PROFILE(PhysicsRaycastSingle);
  263. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  264. maxDistance * ray.direction_));
  265. rayCallback.m_collisionFilterGroup = (short)0xffff;
  266. rayCallback.m_collisionFilterMask = collisionMask;
  267. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  268. if (rayCallback.hasHit())
  269. {
  270. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  271. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  272. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  273. result.distance_ = (result.position_ - ray.origin_).Length();
  274. }
  275. else
  276. {
  277. result.body_ = 0;
  278. result.position_ = Vector3::ZERO;
  279. result.normal_ = Vector3::ZERO;
  280. result.distance_ = M_INFINITY;
  281. }
  282. }
  283. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  284. {
  285. PROFILE(PhysicsSphereCast);
  286. btSphereShape shape(radius);
  287. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  288. maxDistance * ray.direction_));
  289. convexCallback.m_collisionFilterGroup = (short)0xffff;
  290. convexCallback.m_collisionFilterMask = collisionMask;
  291. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  292. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  293. if (convexCallback.hasHit())
  294. {
  295. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  296. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  297. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  298. result.distance_ = (result.position_ - ray.origin_).Length();
  299. }
  300. else
  301. {
  302. result.body_ = 0;
  303. result.position_ = Vector3::ZERO;
  304. result.normal_ = Vector3::ZERO;
  305. result.distance_ = M_INFINITY;
  306. }
  307. }
  308. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  309. {
  310. PROFILE(PhysicsSphereQuery);
  311. result.Clear();
  312. btSphereShape sphereShape(sphere.radius_);
  313. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  314. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  315. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  316. tempRigidBody->activate();
  317. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  318. PhysicsQueryCallback callback(result);
  319. world_->contactTest(tempRigidBody, callback);
  320. world_->removeRigidBody(tempRigidBody);
  321. delete tempRigidBody;
  322. }
  323. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  324. {
  325. PROFILE(PhysicsBoxQuery);
  326. result.Clear();
  327. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  328. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  329. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  330. tempRigidBody->activate();
  331. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  332. PhysicsQueryCallback callback(result);
  333. world_->contactTest(tempRigidBody, callback);
  334. world_->removeRigidBody(tempRigidBody);
  335. delete tempRigidBody;
  336. }
  337. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  338. {
  339. PROFILE(GetCollidingBodies);
  340. result.Clear();
  341. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  342. i != currentCollisions_.End(); ++i)
  343. {
  344. if (i->first_.first_ == body)
  345. result.Push(i->first_.second_);
  346. else if (i->first_.second_ == body)
  347. result.Push(i->first_.first_);
  348. }
  349. }
  350. Vector3 PhysicsWorld::GetGravity() const
  351. {
  352. return ToVector3(world_->getGravity());
  353. }
  354. int PhysicsWorld::GetNumIterations() const
  355. {
  356. return world_->getSolverInfo().m_numIterations;
  357. }
  358. bool PhysicsWorld::GetSplitImpulse() const
  359. {
  360. return world_->getSolverInfo().m_splitImpulse != 0;
  361. }
  362. void PhysicsWorld::AddRigidBody(RigidBody* body)
  363. {
  364. rigidBodies_.Push(body);
  365. }
  366. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  367. {
  368. rigidBodies_.Remove(body);
  369. }
  370. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  371. {
  372. collisionShapes_.Push(shape);
  373. }
  374. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  375. {
  376. collisionShapes_.Remove(shape);
  377. }
  378. void PhysicsWorld::AddConstraint(Constraint* constraint)
  379. {
  380. constraints_.Push(constraint);
  381. }
  382. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  383. {
  384. constraints_.Remove(constraint);
  385. }
  386. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  387. {
  388. delayedWorldTransforms_[transform.rigidBody_] = transform;
  389. }
  390. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  391. {
  392. DebugRenderer* debug = GetComponent<DebugRenderer>();
  393. DrawDebugGeometry(debug, depthTest);
  394. }
  395. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  396. {
  397. debugRenderer_ = debug;
  398. }
  399. void PhysicsWorld::SetDebugDepthTest(bool enable)
  400. {
  401. debugDepthTest_ = enable;
  402. }
  403. void PhysicsWorld::CleanupGeometryCache()
  404. {
  405. // Remove cached shapes whose only reference is the cache itself
  406. for (HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  407. i != geometryCache_.End();)
  408. {
  409. HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  410. if (current->second_.Refs() == 1)
  411. geometryCache_.Erase(current);
  412. }
  413. }
  414. void PhysicsWorld::OnNodeSet(Node* node)
  415. {
  416. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  417. if (node)
  418. {
  419. scene_ = GetScene();
  420. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  421. }
  422. }
  423. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  424. {
  425. using namespace SceneSubsystemUpdate;
  426. Update(eventData[P_TIMESTEP].GetFloat());
  427. }
  428. void PhysicsWorld::PreStep(float timeStep)
  429. {
  430. // Send pre-step event
  431. using namespace PhysicsPreStep;
  432. VariantMap eventData;
  433. eventData[P_WORLD] = (void*)this;
  434. eventData[P_TIMESTEP] = timeStep;
  435. SendEvent(E_PHYSICSPRESTEP, eventData);
  436. // Start profiling block for the actual simulation step
  437. #ifdef ENABLE_PROFILING
  438. Profiler* profiler = GetSubsystem<Profiler>();
  439. if (profiler)
  440. profiler->BeginBlock("StepSimulation");
  441. #endif
  442. }
  443. void PhysicsWorld::PostStep(float timeStep)
  444. {
  445. #ifdef ENABLE_PROFILING
  446. Profiler* profiler = GetSubsystem<Profiler>();
  447. if (profiler)
  448. profiler->EndBlock();
  449. #endif
  450. SendCollisionEvents();
  451. // Send post-step event
  452. using namespace PhysicsPreStep;
  453. VariantMap eventData;
  454. eventData[P_WORLD] = (void*)this;
  455. eventData[P_TIMESTEP] = timeStep;
  456. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  457. }
  458. void PhysicsWorld::SendCollisionEvents()
  459. {
  460. PROFILE(SendCollisionEvents);
  461. currentCollisions_.Clear();
  462. int numManifolds = collisionDispatcher_->getNumManifolds();
  463. if (numManifolds)
  464. {
  465. VariantMap physicsCollisionData;
  466. VariantMap nodeCollisionData;
  467. VectorBuffer contacts;
  468. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  469. for (int i = 0; i < numManifolds; ++i)
  470. {
  471. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  472. int numContacts = contactManifold->getNumContacts();
  473. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  474. if (!numContacts)
  475. continue;
  476. const btCollisionObject* objectA = contactManifold->getBody0();
  477. const btCollisionObject* objectB = contactManifold->getBody1();
  478. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  479. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  480. // If it's not a rigidbody, maybe a ghost object
  481. if (!bodyA || !bodyB)
  482. continue;
  483. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  484. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  485. continue;
  486. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  487. continue;
  488. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  489. !bodyA->IsActive() && !bodyB->IsActive())
  490. continue;
  491. WeakPtr<RigidBody> bodyWeakA(bodyA);
  492. WeakPtr<RigidBody> bodyWeakB(bodyB);
  493. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  494. if (bodyA < bodyB)
  495. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  496. else
  497. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  498. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  499. // objects during collision event handling
  500. currentCollisions_[bodyPair] = contactManifold;
  501. }
  502. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  503. i != currentCollisions_.End(); ++i)
  504. {
  505. RigidBody* bodyA = i->first_.first_;
  506. RigidBody* bodyB = i->first_.second_;
  507. if (!bodyA || !bodyB)
  508. continue;
  509. btPersistentManifold* contactManifold = i->second_;
  510. int numContacts = contactManifold->getNumContacts();
  511. Node* nodeA = bodyA->GetNode();
  512. Node* nodeB = bodyB->GetNode();
  513. WeakPtr<Node> nodeWeakA(nodeA);
  514. WeakPtr<Node> nodeWeakB(nodeB);
  515. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  516. bool newCollision = !previousCollisions_.Contains(i->first_);
  517. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  518. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  519. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  520. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  521. physicsCollisionData[PhysicsCollision::P_PHANTOM] = phantom;
  522. contacts.Clear();
  523. for (int j = 0; j < numContacts; ++j)
  524. {
  525. btManifoldPoint& point = contactManifold->getContactPoint(j);
  526. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  527. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  528. contacts.WriteFloat(point.m_distance1);
  529. contacts.WriteFloat(point.m_appliedImpulse);
  530. }
  531. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  532. // Send separate collision start event if collision is new
  533. if (newCollision)
  534. {
  535. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData);
  536. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  537. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  538. continue;
  539. }
  540. // Then send the ongoing collision event
  541. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  542. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  543. continue;
  544. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  545. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  546. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  547. nodeCollisionData[NodeCollision::P_PHANTOM] = phantom;
  548. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  549. if (newCollision)
  550. {
  551. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  552. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  553. continue;
  554. }
  555. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData);
  556. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  557. continue;
  558. contacts.Clear();
  559. for (int j = 0; j < numContacts; ++j)
  560. {
  561. btManifoldPoint& point = contactManifold->getContactPoint(j);
  562. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  563. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  564. contacts.WriteFloat(point.m_distance1);
  565. contacts.WriteFloat(point.m_appliedImpulse);
  566. }
  567. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  568. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  569. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  570. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  571. if (newCollision)
  572. {
  573. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  574. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  575. continue;
  576. }
  577. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData);
  578. }
  579. }
  580. // Send collision end events as applicable
  581. {
  582. VariantMap physicsCollisionData;
  583. VariantMap nodeCollisionData;
  584. physicsCollisionData[PhysicsCollisionEnd::P_WORLD] = (void*)this;
  585. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  586. {
  587. if (!currentCollisions_.Contains(i->first_))
  588. {
  589. RigidBody* bodyA = i->first_.first_;
  590. RigidBody* bodyB = i->first_.second_;
  591. if (!bodyA || !bodyB)
  592. continue;
  593. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  594. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  595. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  596. continue;
  597. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  598. continue;
  599. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  600. !bodyA->IsActive() && !bodyB->IsActive())
  601. continue;
  602. Node* nodeA = bodyA->GetNode();
  603. Node* nodeB = bodyB->GetNode();
  604. WeakPtr<Node> nodeWeakA(nodeA);
  605. WeakPtr<Node> nodeWeakB(nodeB);
  606. physicsCollisionData[PhysicsCollisionEnd::P_BODYA] = (void*)bodyA;
  607. physicsCollisionData[PhysicsCollisionEnd::P_BODYB] = (void*)bodyB;
  608. physicsCollisionData[PhysicsCollisionEnd::P_NODEA] = (void*)nodeA;
  609. physicsCollisionData[PhysicsCollisionEnd::P_NODEB] = (void*)nodeB;
  610. physicsCollisionData[PhysicsCollisionEnd::P_PHANTOM] = phantom;
  611. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData);
  612. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  613. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  614. continue;
  615. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyA;
  616. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeB;
  617. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyB;
  618. nodeCollisionData[NodeCollisionEnd::P_PHANTOM] = phantom;
  619. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  620. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  621. continue;
  622. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyB;
  623. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeA;
  624. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyA;
  625. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  626. }
  627. }
  628. }
  629. previousCollisions_ = currentCollisions_;
  630. }
  631. void RegisterPhysicsLibrary(Context* context)
  632. {
  633. CollisionShape::RegisterObject(context);
  634. RigidBody::RegisterObject(context);
  635. Constraint::RegisterObject(context);
  636. PhysicsWorld::RegisterObject(context);
  637. }
  638. }