View.cpp 100 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "ResourceCache.h"
  35. #include "PostProcess.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Sort.h"
  41. #include "Technique.h"
  42. #include "Texture2D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "Zone.h"
  48. #include "DebugNew.h"
  49. static const Vector3 directions[] =
  50. {
  51. Vector3(1.0f, 0.0f, 0.0f),
  52. Vector3(-1.0f, 0.0f, 0.0f),
  53. Vector3(0.0f, 1.0f, 0.0f),
  54. Vector3(0.0f, -1.0f, 0.0f),
  55. Vector3(0.0f, 0.0f, 1.0f),
  56. Vector3(0.0f, 0.0f, -1.0f)
  57. };
  58. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  60. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  61. {
  62. View* view = reinterpret_cast<View*>(item->aux_);
  63. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  64. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  65. OcclusionBuffer* buffer = view->occlusionBuffer_;
  66. while (start != end)
  67. {
  68. Drawable* drawable = *start;
  69. unsigned char flags = drawable->GetDrawableFlags();
  70. ++start;
  71. if (flags & DRAWABLE_ZONE)
  72. continue;
  73. drawable->UpdateDistance(view->frame_);
  74. // If draw distance non-zero, check it
  75. float maxDistance = drawable->GetDrawDistance();
  76. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  77. continue;
  78. if (buffer && drawable->IsOccludee() && !buffer->IsVisible(drawable->GetWorldBoundingBox()))
  79. continue;
  80. drawable->MarkInView(view->frame_);
  81. // For geometries, clear lights and find new zone if necessary
  82. if (flags & DRAWABLE_GEOMETRY)
  83. {
  84. drawable->ClearLights();
  85. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  86. view->FindZone(drawable, threadIndex);
  87. }
  88. }
  89. }
  90. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  91. {
  92. View* view = reinterpret_cast<View*>(item->aux_);
  93. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  94. view->ProcessLight(*query, threadIndex);
  95. }
  96. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  97. {
  98. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  99. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  100. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  101. while (start != end)
  102. {
  103. Drawable* drawable = *start;
  104. drawable->UpdateGeometry(frame);
  105. ++start;
  106. }
  107. }
  108. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  109. {
  110. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  111. queue->SortFrontToBack();
  112. }
  113. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  114. {
  115. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  116. queue->SortBackToFront();
  117. }
  118. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  119. {
  120. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  121. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  122. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  123. start->litBatches_.SortFrontToBack();
  124. }
  125. OBJECTTYPESTATIC(View);
  126. View::View(Context* context) :
  127. Object(context),
  128. graphics_(GetSubsystem<Graphics>()),
  129. renderer_(GetSubsystem<Renderer>()),
  130. octree_(0),
  131. camera_(0),
  132. cameraZone_(0),
  133. farClipZone_(0),
  134. renderTarget_(0)
  135. {
  136. frame_.camera_ = 0;
  137. // Create octree query vectors for each thread
  138. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  139. tempZones_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  140. }
  141. View::~View()
  142. {
  143. }
  144. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  145. {
  146. Scene* scene = viewport->GetScene();
  147. Camera* camera = viewport->GetCamera();
  148. if (!scene || !camera)
  149. return false;
  150. // If scene is loading asynchronously, it is incomplete and should not be rendered
  151. if (scene->IsAsyncLoading())
  152. return false;
  153. Octree* octree = scene->GetComponent<Octree>();
  154. if (!octree)
  155. return false;
  156. renderMode_ = renderer_->GetRenderMode();
  157. octree_ = octree;
  158. camera_ = camera;
  159. renderTarget_ = renderTarget;
  160. // Get active post-processing effects on the viewport
  161. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  162. postProcesses_.Clear();
  163. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  164. {
  165. PostProcess* effect = i->Get();
  166. if (effect && effect->IsActive())
  167. postProcesses_.Push(*i);
  168. }
  169. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  170. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  171. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  172. const IntRect& rect = viewport->GetRect();
  173. if (rect != IntRect::ZERO)
  174. {
  175. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  176. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  177. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  178. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  179. }
  180. else
  181. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  182. viewSize_ = IntVector2(viewRect_.right_ - viewRect_.left_, viewRect_.bottom_ - viewRect_.top_);
  183. rtSize_ = IntVector2(rtWidth, rtHeight);
  184. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  185. #ifdef USE_OPENGL
  186. if (renderTarget_)
  187. {
  188. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  189. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  190. }
  191. #endif
  192. drawShadows_ = renderer_->GetDrawShadows();
  193. materialQuality_ = renderer_->GetMaterialQuality();
  194. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  195. // Set possible quality overrides from the camera
  196. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  197. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  198. materialQuality_ = QUALITY_LOW;
  199. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  200. drawShadows_ = false;
  201. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  202. maxOccluderTriangles_ = 0;
  203. return true;
  204. }
  205. void View::Update(const FrameInfo& frame)
  206. {
  207. if (!camera_ || !octree_)
  208. return;
  209. frame_.camera_ = camera_;
  210. frame_.timeStep_ = frame.timeStep_;
  211. frame_.frameNumber_ = frame.frameNumber_;
  212. frame_.viewSize_ = viewSize_;
  213. // Clear screen buffers, old light scissor cache, geometry, light, occluder & batch lists
  214. screenBuffers_.Clear();
  215. lightScissorCache_.Clear();
  216. geometries_.Clear();
  217. allGeometries_.Clear();
  218. geometryDepthBounds_.Clear();
  219. lights_.Clear();
  220. zones_.Clear();
  221. occluders_.Clear();
  222. baseQueue_.Clear();
  223. preAlphaQueue_.Clear();
  224. gbufferQueue_.Clear();
  225. alphaQueue_.Clear();
  226. postAlphaQueue_.Clear();
  227. lightQueues_.Clear();
  228. vertexLightQueues_.Clear();
  229. // Do not update if camera projection is illegal
  230. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  231. if (!camera_->IsProjectionValid())
  232. return;
  233. // Set automatic aspect ratio if required
  234. if (camera_->GetAutoAspectRatio())
  235. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  236. // Cache the camera frustum to avoid recalculating it constantly
  237. frustum_ = camera_->GetFrustum();
  238. GetDrawables();
  239. GetBatches();
  240. UpdateGeometries();
  241. }
  242. void View::Render()
  243. {
  244. if (!octree_ || !camera_)
  245. return;
  246. // Allocate screen buffers for post-processing and blitting as necessary
  247. AllocateScreenBuffers();
  248. // Forget parameter sources from the previous view
  249. graphics_->ClearParameterSources();
  250. // If stream offset is supported, write all instance transforms to a single large buffer
  251. // Else we must lock the instance buffer for each batch group
  252. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  253. PrepareInstancingBuffer();
  254. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  255. // again to ensure correct projection will be used
  256. if (camera_->GetAutoAspectRatio())
  257. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  258. graphics_->SetColorWrite(true);
  259. graphics_->SetFillMode(FILL_SOLID);
  260. // Bind the face selection and indirection cube maps for point light shadows
  261. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  262. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  263. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  264. // ie. when using deferred rendering and/or doing post-processing
  265. if (renderTarget_)
  266. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  267. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  268. // as a render texture produced on Direct3D9
  269. #ifdef USE_OPENGL
  270. if (renderTarget_)
  271. camera_->SetFlipVertical(true);
  272. #endif
  273. // Render
  274. if (renderMode_ == RENDER_FORWARD)
  275. RenderBatchesForward();
  276. else
  277. RenderBatchesDeferred();
  278. #ifdef USE_OPENGL
  279. camera_->SetFlipVertical(false);
  280. #endif
  281. graphics_->SetViewTexture(0);
  282. graphics_->SetScissorTest(false);
  283. graphics_->SetStencilTest(false);
  284. graphics_->ResetStreamFrequencies();
  285. // Run post-processes or framebuffer blitting now
  286. if (screenBuffers_.Size())
  287. {
  288. if (postProcesses_.Size())
  289. RunPostProcesses();
  290. else
  291. BlitFramebuffer();
  292. }
  293. // If this is a main view, draw the associated debug geometry now
  294. if (!renderTarget_)
  295. {
  296. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  297. if (scene)
  298. {
  299. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  300. if (debug)
  301. {
  302. debug->SetView(camera_);
  303. debug->Render();
  304. }
  305. }
  306. }
  307. // "Forget" the camera, octree and zone after rendering
  308. camera_ = 0;
  309. octree_ = 0;
  310. cameraZone_ = 0;
  311. farClipZone_ = 0;
  312. occlusionBuffer_ = 0;
  313. frame_.camera_ = 0;
  314. }
  315. void View::GetDrawables()
  316. {
  317. PROFILE(GetDrawables);
  318. WorkQueue* queue = GetSubsystem<WorkQueue>();
  319. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  320. // Perform one octree query to get everything, then examine the results
  321. FrustumOctreeQuery query(tempDrawables, frustum_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT | DRAWABLE_ZONE);
  322. octree_->GetDrawables(query);
  323. // Get zones and occluders first
  324. highestZonePriority_ = M_MIN_INT;
  325. int bestPriority = M_MIN_INT;
  326. Vector3 cameraPos = camera_->GetWorldPosition();
  327. // Get default zone first in case we do not have zones defined
  328. Zone* defaultZone = renderer_->GetDefaultZone();
  329. cameraZone_ = farClipZone_ = defaultZone;
  330. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  331. {
  332. Drawable* drawable = *i;
  333. unsigned char flags = drawable->GetDrawableFlags();
  334. if (flags & DRAWABLE_ZONE)
  335. {
  336. Zone* zone = static_cast<Zone*>(drawable);
  337. zones_.Push(zone);
  338. int priority = zone->GetPriority();
  339. if (priority > highestZonePriority_)
  340. highestZonePriority_ = priority;
  341. if (zone->IsInside(cameraPos) && priority > bestPriority)
  342. {
  343. cameraZone_ = zone;
  344. bestPriority = priority;
  345. }
  346. }
  347. else if (flags & DRAWABLE_GEOMETRY && drawable->IsOccluder())
  348. occluders_.Push(drawable);
  349. }
  350. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  351. cameraZoneOverride_ = cameraZone_->GetOverride();
  352. if (!cameraZoneOverride_)
  353. {
  354. Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0, 0, camera_->GetFarClip());
  355. bestPriority = M_MIN_INT;
  356. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  357. {
  358. int priority = (*i)->GetPriority();
  359. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  360. {
  361. farClipZone_ = *i;
  362. bestPriority = priority;
  363. }
  364. }
  365. }
  366. if (farClipZone_ == defaultZone)
  367. farClipZone_ = cameraZone_;
  368. // If occlusion in use, get & render the occluders
  369. occlusionBuffer_ = 0;
  370. if (maxOccluderTriangles_ > 0)
  371. {
  372. UpdateOccluders(occluders_, camera_);
  373. if (occluders_.Size())
  374. {
  375. PROFILE(DrawOcclusion);
  376. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  377. DrawOccluders(occlusionBuffer_, occluders_);
  378. }
  379. }
  380. // Check visibility and find zones for moved drawables in worker threads
  381. {
  382. WorkItem item;
  383. item.workFunction_ = CheckVisibilityWork;
  384. item.aux_ = this;
  385. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  386. while (start != tempDrawables.End())
  387. {
  388. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  389. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  390. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  391. item.start_ = &(*start);
  392. item.end_ = &(*end);
  393. queue->AddWorkItem(item);
  394. start = end;
  395. }
  396. queue->Complete();
  397. }
  398. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  399. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  400. sceneBox_.defined_ = false;
  401. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  402. sceneViewBox_.defined_ = false;
  403. Matrix3x4 view(camera_->GetInverseWorldTransform());
  404. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  405. {
  406. Drawable* drawable = tempDrawables[i];
  407. unsigned char flags = drawable->GetDrawableFlags();
  408. if (flags & DRAWABLE_ZONE || !drawable->IsInView(frame_))
  409. continue;
  410. if (flags & DRAWABLE_GEOMETRY)
  411. {
  412. // Expand the scene bounding boxes. However, do not take skyboxes into account, as they have undefinedly large size
  413. // and the bounding boxes are also used for shadow focusing
  414. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  415. BoundingBox geomViewBox = geomBox.Transformed(view);
  416. if (drawable->GetType() != Skybox::GetTypeStatic())
  417. {
  418. sceneBox_.Merge(geomBox);
  419. sceneViewBox_.Merge(geomViewBox);
  420. }
  421. // Store depth info for split directional light queries
  422. GeometryDepthBounds bounds;
  423. bounds.min_ = geomViewBox.min_.z_;
  424. bounds.max_ = geomViewBox.max_.z_;
  425. geometryDepthBounds_.Push(bounds);
  426. geometries_.Push(drawable);
  427. allGeometries_.Push(drawable);
  428. }
  429. else if (flags & DRAWABLE_LIGHT)
  430. {
  431. Light* light = static_cast<Light*>(drawable);
  432. // Skip lights which are so dim that they can not contribute to a rendertarget
  433. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  434. lights_.Push(light);
  435. }
  436. }
  437. // Sort the lights to brightest/closest first
  438. for (unsigned i = 0; i < lights_.Size(); ++i)
  439. {
  440. Light* light = lights_[i];
  441. light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
  442. }
  443. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  444. }
  445. void View::GetBatches()
  446. {
  447. WorkQueue* queue = GetSubsystem<WorkQueue>();
  448. // Process lit geometries and shadow casters for each light
  449. {
  450. PROFILE_MULTIPLE(ProcessLights, lights_.Size());
  451. lightQueryResults_.Resize(lights_.Size());
  452. WorkItem item;
  453. item.workFunction_ = ProcessLightWork;
  454. item.aux_ = this;
  455. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  456. {
  457. LightQueryResult& query = lightQueryResults_[i];
  458. query.light_ = lights_[i];
  459. item.start_ = &query;
  460. queue->AddWorkItem(item);
  461. }
  462. // Ensure all lights have been processed before proceeding
  463. queue->Complete();
  464. }
  465. // Build light queues and lit batches
  466. {
  467. maxLightsDrawables_.Clear();
  468. lightQueueMapping_.Clear();
  469. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  470. {
  471. const LightQueryResult& query = *i;
  472. // If light has no affected geometries, no need to process further
  473. if (query.litGeometries_.Empty())
  474. continue;
  475. PROFILE(GetLightBatches);
  476. Light* light = query.light_;
  477. // Per-pixel light
  478. if (!light->GetPerVertex())
  479. {
  480. unsigned shadowSplits = query.numSplits_;
  481. // Initialize light queue. Store light-to-queue mapping so that the queue can be found later
  482. lightQueues_.Resize(lightQueues_.Size() + 1);
  483. LightBatchQueue& lightQueue = lightQueues_.Back();
  484. lightQueueMapping_[light] = &lightQueue;
  485. lightQueue.light_ = light;
  486. lightQueue.litBatches_.Clear();
  487. lightQueue.volumeBatches_.Clear();
  488. // Allocate shadow map now
  489. lightQueue.shadowMap_ = 0;
  490. if (shadowSplits > 0)
  491. {
  492. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  493. // If did not manage to get a shadow map, convert the light to unshadowed
  494. if (!lightQueue.shadowMap_)
  495. shadowSplits = 0;
  496. }
  497. // Setup shadow batch queues
  498. lightQueue.shadowSplits_.Resize(shadowSplits);
  499. for (unsigned j = 0; j < shadowSplits; ++j)
  500. {
  501. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  502. Camera* shadowCamera = query.shadowCameras_[j];
  503. shadowQueue.shadowCamera_ = shadowCamera;
  504. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  505. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  506. // Setup the shadow split viewport and finalize shadow camera parameters
  507. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  508. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  509. // Loop through shadow casters
  510. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  511. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  512. {
  513. Drawable* drawable = *k;
  514. if (!drawable->IsInView(frame_, false))
  515. {
  516. drawable->MarkInView(frame_, false);
  517. allGeometries_.Push(drawable);
  518. }
  519. unsigned numBatches = drawable->GetNumBatches();
  520. for (unsigned l = 0; l < numBatches; ++l)
  521. {
  522. Batch shadowBatch;
  523. drawable->GetBatch(shadowBatch, frame_, l);
  524. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  525. if (!shadowBatch.geometry_ || !tech)
  526. continue;
  527. Pass* pass = tech->GetPass(PASS_SHADOW);
  528. // Skip if material has no shadow pass
  529. if (!pass)
  530. continue;
  531. // Fill the rest of the batch
  532. shadowBatch.camera_ = shadowCamera;
  533. shadowBatch.zone_ = GetZone(drawable);
  534. shadowBatch.lightQueue_ = &lightQueue;
  535. FinalizeBatch(shadowBatch, tech, pass);
  536. shadowQueue.shadowBatches_.AddBatch(shadowBatch);
  537. }
  538. }
  539. }
  540. // Process lit geometries
  541. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  542. {
  543. Drawable* drawable = *j;
  544. drawable->AddLight(light);
  545. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  546. if (!drawable->GetMaxLights())
  547. GetLitBatches(drawable, lightQueue);
  548. else
  549. maxLightsDrawables_.Insert(drawable);
  550. }
  551. // In deferred modes, store the light volume batch now
  552. if (renderMode_ != RENDER_FORWARD)
  553. {
  554. Batch volumeBatch;
  555. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  556. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  557. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  558. volumeBatch.camera_ = camera_;
  559. volumeBatch.lightQueue_ = &lightQueue;
  560. volumeBatch.distance_ = light->GetDistance();
  561. volumeBatch.material_ = 0;
  562. volumeBatch.pass_ = 0;
  563. volumeBatch.zone_ = 0;
  564. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  565. lightQueue.volumeBatches_.Push(volumeBatch);
  566. }
  567. }
  568. // Per-vertex light
  569. else
  570. {
  571. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  572. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  573. {
  574. Drawable* drawable = *j;
  575. drawable->AddVertexLight(light);
  576. }
  577. }
  578. }
  579. }
  580. // Process drawables with limited per-pixel light count
  581. if (maxLightsDrawables_.Size())
  582. {
  583. PROFILE(GetMaxLightsBatches);
  584. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  585. {
  586. Drawable* drawable = *i;
  587. drawable->LimitLights();
  588. const PODVector<Light*>& lights = drawable->GetLights();
  589. for (unsigned i = 0; i < lights.Size(); ++i)
  590. {
  591. Light* light = lights[i];
  592. // Find the correct light queue again
  593. Map<Light*, LightBatchQueue*>::Iterator j = lightQueueMapping_.Find(light);
  594. if (j != lightQueueMapping_.End())
  595. GetLitBatches(drawable, *(j->second_));
  596. }
  597. }
  598. }
  599. // Build base pass batches
  600. {
  601. PROFILE(GetBaseBatches);
  602. hasZeroLightMask_ = false;
  603. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  604. {
  605. Drawable* drawable = *i;
  606. unsigned numBatches = drawable->GetNumBatches();
  607. bool vertexLightsProcessed = false;
  608. for (unsigned j = 0; j < numBatches; ++j)
  609. {
  610. Batch baseBatch;
  611. drawable->GetBatch(baseBatch, frame_, j);
  612. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  613. if (!baseBatch.geometry_ || !tech)
  614. continue;
  615. // Check here if the material technique refers to a rendertarget texture with camera(s) attached
  616. // Only check this for the main view (null rendertarget)
  617. if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
  618. CheckMaterialForAuxView(baseBatch.material_);
  619. // Fill the rest of the batch
  620. baseBatch.camera_ = camera_;
  621. baseBatch.zone_ = GetZone(drawable);
  622. baseBatch.isBase_ = true;
  623. Pass* pass = 0;
  624. // In deferred modes check for G-buffer and material passes first
  625. if (renderMode_ == RENDER_PREPASS)
  626. {
  627. pass = tech->GetPass(PASS_PREPASS);
  628. if (pass)
  629. {
  630. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  631. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  632. hasZeroLightMask_ = true;
  633. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  634. baseBatch.lightMask_ = GetLightMask(drawable);
  635. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  636. gbufferQueue_.AddBatch(baseBatch);
  637. pass = tech->GetPass(PASS_MATERIAL);
  638. }
  639. }
  640. if (renderMode_ == RENDER_DEFERRED)
  641. pass = tech->GetPass(PASS_DEFERRED);
  642. // Next check for forward base pass
  643. if (!pass)
  644. {
  645. // Skip if a lit base pass already exists
  646. if (j < 32 && drawable->HasBasePass(j))
  647. continue;
  648. pass = tech->GetPass(PASS_BASE);
  649. }
  650. if (pass)
  651. {
  652. // Check for vertex lights (both forward unlit, light pre-pass material pass, and deferred G-buffer)
  653. const PODVector<Light*>& vertexLights = drawable->GetVertexLights();
  654. if (!vertexLights.Empty())
  655. {
  656. // In deferred modes, check if this is an opaque object that has converted its lights to per-vertex
  657. // due to overflowing the pixel light count. These need to be skipped as the per-pixel accumulation
  658. // already renders the light
  659. /// \todo Sub-geometries might need different interpretation if opaque & alpha are mixed
  660. if (!vertexLightsProcessed)
  661. {
  662. drawable->LimitVertexLights(renderMode_ != RENDER_FORWARD && pass->GetBlendMode() == BLEND_REPLACE);
  663. vertexLightsProcessed = true;
  664. }
  665. // The vertex light vector possibly became empty, so re-check
  666. if (!vertexLights.Empty())
  667. {
  668. // Find a vertex light queue. If not found, create new
  669. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  670. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  671. if (i == vertexLightQueues_.End())
  672. {
  673. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  674. i->second_.light_ = 0;
  675. i->second_.shadowMap_ = 0;
  676. i->second_.vertexLights_ = vertexLights;
  677. }
  678. baseBatch.lightQueue_ = &(i->second_);
  679. }
  680. }
  681. if (pass->GetBlendMode() == BLEND_REPLACE)
  682. {
  683. if (pass->GetType() != PASS_DEFERRED)
  684. {
  685. FinalizeBatch(baseBatch, tech, pass);
  686. baseQueue_.AddBatch(baseBatch);
  687. }
  688. else
  689. {
  690. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  691. baseBatch.lightMask_ = GetLightMask(drawable);
  692. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  693. gbufferQueue_.AddBatch(baseBatch);
  694. }
  695. }
  696. else
  697. {
  698. // Transparent batches can not be instanced
  699. FinalizeBatch(baseBatch, tech, pass, false);
  700. alphaQueue_.AddBatch(baseBatch);
  701. }
  702. continue;
  703. }
  704. // If no base pass, finally check for pre-alpha / post-alpha custom passes
  705. pass = tech->GetPass(PASS_PREALPHA);
  706. if (pass)
  707. {
  708. FinalizeBatch(baseBatch, tech, pass);
  709. preAlphaQueue_.AddBatch(baseBatch);
  710. continue;
  711. }
  712. pass = tech->GetPass(PASS_POSTALPHA);
  713. if (pass)
  714. {
  715. // Post-alpha pass is treated similarly as alpha, and is not instanced
  716. FinalizeBatch(baseBatch, tech, pass, false);
  717. postAlphaQueue_.AddBatch(baseBatch);
  718. continue;
  719. }
  720. }
  721. }
  722. }
  723. }
  724. void View::UpdateGeometries()
  725. {
  726. PROFILE(UpdateGeometries);
  727. WorkQueue* queue = GetSubsystem<WorkQueue>();
  728. // Sort batches
  729. {
  730. WorkItem item;
  731. item.workFunction_ = SortBatchQueueFrontToBackWork;
  732. item.start_ = &baseQueue_;
  733. queue->AddWorkItem(item);
  734. item.start_ = &preAlphaQueue_;
  735. queue->AddWorkItem(item);
  736. if (renderMode_ != RENDER_FORWARD)
  737. {
  738. item.start_ = &gbufferQueue_;
  739. queue->AddWorkItem(item);
  740. }
  741. item.workFunction_ = SortBatchQueueBackToFrontWork;
  742. item.start_ = &alphaQueue_;
  743. queue->AddWorkItem(item);
  744. item.start_ = &postAlphaQueue_;
  745. queue->AddWorkItem(item);
  746. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  747. {
  748. item.workFunction_ = SortLightQueueWork;
  749. item.start_ = &(*i);
  750. queue->AddWorkItem(item);
  751. }
  752. }
  753. // Update geometries. Split into threaded and non-threaded updates.
  754. {
  755. nonThreadedGeometries_.Clear();
  756. threadedGeometries_.Clear();
  757. for (PODVector<Drawable*>::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i)
  758. {
  759. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  760. if (type == UPDATE_MAIN_THREAD)
  761. nonThreadedGeometries_.Push(*i);
  762. else if (type == UPDATE_WORKER_THREAD)
  763. threadedGeometries_.Push(*i);
  764. }
  765. if (threadedGeometries_.Size())
  766. {
  767. WorkItem item;
  768. item.workFunction_ = UpdateDrawableGeometriesWork;
  769. item.aux_ = const_cast<FrameInfo*>(&frame_);
  770. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  771. while (start != threadedGeometries_.End())
  772. {
  773. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  774. if (end - start > DRAWABLES_PER_WORK_ITEM)
  775. end = start + DRAWABLES_PER_WORK_ITEM;
  776. item.start_ = &(*start);
  777. item.end_ = &(*end);
  778. queue->AddWorkItem(item);
  779. start = end;
  780. }
  781. }
  782. // While the work queue is processed, update non-threaded geometries
  783. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  784. (*i)->UpdateGeometry(frame_);
  785. }
  786. // Finally ensure all threaded work has completed
  787. queue->Complete();
  788. }
  789. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  790. {
  791. Light* light = lightQueue.light_;
  792. Light* firstLight = drawable->GetFirstLight();
  793. Zone* zone = GetZone(drawable);
  794. // Shadows on transparencies can only be rendered if shadow maps are not reused
  795. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  796. bool hasVertexLights = drawable->GetVertexLights().Size() > 0;
  797. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  798. unsigned numBatches = drawable->GetNumBatches();
  799. for (unsigned i = 0; i < numBatches; ++i)
  800. {
  801. Batch litBatch;
  802. drawable->GetBatch(litBatch, frame_, i);
  803. Technique* tech = GetTechnique(drawable, litBatch.material_);
  804. if (!litBatch.geometry_ || !tech)
  805. continue;
  806. // Do not create pixel lit forward passes for materials that render into the G-buffer
  807. if ((renderMode_ == RENDER_PREPASS && tech->HasPass(PASS_PREPASS)) || (renderMode_ == RENDER_DEFERRED &&
  808. tech->HasPass(PASS_DEFERRED)))
  809. continue;
  810. Pass* pass = 0;
  811. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  812. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  813. if (i < 32 && light == firstLight && !hasVertexLights && !hasAmbientGradient && !drawable->HasBasePass(i))
  814. {
  815. pass = tech->GetPass(PASS_LITBASE);
  816. if (pass)
  817. {
  818. litBatch.isBase_ = true;
  819. drawable->SetBasePass(i);
  820. }
  821. }
  822. // If no lit base pass, get ordinary light pass
  823. if (!pass)
  824. pass = tech->GetPass(PASS_LIGHT);
  825. // Skip if material does not receive light at all
  826. if (!pass)
  827. continue;
  828. // Fill the rest of the batch
  829. litBatch.camera_ = camera_;
  830. litBatch.lightQueue_ = &lightQueue;
  831. litBatch.zone_ = GetZone(drawable);
  832. // Check from the ambient pass whether the object is opaque or transparent
  833. Pass* ambientPass = tech->GetPass(PASS_BASE);
  834. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  835. {
  836. FinalizeBatch(litBatch, tech, pass);
  837. lightQueue.litBatches_.AddBatch(litBatch);
  838. }
  839. else
  840. {
  841. // Transparent batches can not be instanced
  842. FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows);
  843. alphaQueue_.AddBatch(litBatch);
  844. }
  845. }
  846. }
  847. void View::RenderBatchesForward()
  848. {
  849. // Reset the light optimization stencil reference value
  850. lightStencilValue_ = 1;
  851. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  852. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  853. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  854. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  855. // If not reusing shadowmaps, render all of them first
  856. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  857. {
  858. PROFILE(RenderShadowMaps);
  859. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  860. {
  861. if (i->shadowMap_)
  862. RenderShadowMap(*i);
  863. }
  864. }
  865. graphics_->SetRenderTarget(0, renderTarget);
  866. graphics_->SetDepthStencil(depthStencil);
  867. graphics_->SetViewport(viewRect_);
  868. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, farClipZone_->GetFogColor());
  869. if (!baseQueue_.IsEmpty())
  870. {
  871. // Render opaque object unlit base pass
  872. PROFILE(RenderBase);
  873. RenderBatchQueue(baseQueue_);
  874. }
  875. if (!lightQueues_.Empty())
  876. {
  877. // Render shadow maps + opaque objects' additive lighting
  878. PROFILE(RenderLights);
  879. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  880. {
  881. // If reusing shadowmaps, render each of them before the lit batches
  882. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  883. {
  884. RenderShadowMap(*i);
  885. graphics_->SetRenderTarget(0, renderTarget);
  886. graphics_->SetDepthStencil(depthStencil);
  887. graphics_->SetViewport(viewRect_);
  888. }
  889. RenderLightBatchQueue(i->litBatches_, i->light_);
  890. }
  891. }
  892. graphics_->SetScissorTest(false);
  893. graphics_->SetStencilTest(false);
  894. graphics_->SetRenderTarget(0, renderTarget);
  895. graphics_->SetDepthStencil(depthStencil);
  896. graphics_->SetViewport(viewRect_);
  897. if (!preAlphaQueue_.IsEmpty())
  898. {
  899. // Render pre-alpha custom pass
  900. PROFILE(RenderPreAlpha);
  901. RenderBatchQueue(preAlphaQueue_);
  902. }
  903. if (!alphaQueue_.IsEmpty())
  904. {
  905. // Render transparent objects (both base passes & additive lighting)
  906. PROFILE(RenderAlpha);
  907. RenderBatchQueue(alphaQueue_, true);
  908. }
  909. if (!postAlphaQueue_.IsEmpty())
  910. {
  911. // Render pre-alpha custom pass
  912. PROFILE(RenderPostAlpha);
  913. RenderBatchQueue(postAlphaQueue_);
  914. }
  915. // Resolve multisampled backbuffer now if necessary
  916. if (resolve)
  917. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  918. }
  919. void View::RenderBatchesDeferred()
  920. {
  921. // If not reusing shadowmaps, render all of them first
  922. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  923. {
  924. PROFILE(RenderShadowMaps);
  925. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  926. {
  927. if (i->shadowMap_)
  928. RenderShadowMap(*i);
  929. }
  930. }
  931. bool hwDepth = graphics_->GetHardwareDepthSupport();
  932. // In light prepass mode the albedo buffer is used for light accumulation instead
  933. Texture2D* albedoBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  934. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  935. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  936. Graphics::GetLinearDepthFormat());
  937. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  938. RenderSurface* depthStencil = hwDepth ? depthBuffer->GetRenderSurface() : renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  939. if (renderMode_ == RENDER_PREPASS)
  940. {
  941. graphics_->SetRenderTarget(0, normalBuffer);
  942. graphics_->SetDepthStencil(depthStencil);
  943. graphics_->SetViewport(viewRect_);
  944. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  945. if (!hwDepth)
  946. graphics_->SetRenderTarget(1, depthBuffer);
  947. }
  948. else
  949. {
  950. graphics_->SetRenderTarget(0, renderTarget);
  951. graphics_->SetDepthStencil(depthStencil);
  952. graphics_->SetViewport(viewRect_);
  953. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, farClipZone_->GetFogColor());
  954. graphics_->SetRenderTarget(1, albedoBuffer);
  955. graphics_->SetRenderTarget(2, normalBuffer);
  956. if (!hwDepth)
  957. graphics_->SetRenderTarget(3, depthBuffer);
  958. }
  959. if (!gbufferQueue_.IsEmpty())
  960. {
  961. // Render G-buffer batches
  962. PROFILE(RenderGBuffer);
  963. RenderBatchQueue(gbufferQueue_);
  964. }
  965. RenderSurface* lightRenderTarget = renderMode_ == RENDER_PREPASS ? albedoBuffer->GetRenderSurface() : renderTarget;
  966. if (renderMode_ == RENDER_PREPASS)
  967. {
  968. // Clear the light accumulation buffer. However, skip the clear if the first light is a directional light with full mask
  969. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  970. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  971. graphics_->SetRenderTarget(0, lightRenderTarget);
  972. graphics_->ResetRenderTarget(1);
  973. graphics_->SetDepthStencil(depthStencil);
  974. graphics_->SetViewport(viewRect_);
  975. if (!optimizeLightBuffer)
  976. graphics_->Clear(CLEAR_COLOR);
  977. }
  978. else
  979. {
  980. graphics_->ResetRenderTarget(1);
  981. graphics_->ResetRenderTarget(2);
  982. graphics_->ResetRenderTarget(3);
  983. }
  984. if (!lightQueues_.Empty())
  985. {
  986. // Render shadow maps + light volumes
  987. PROFILE(RenderLights);
  988. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  989. {
  990. // If reusing shadowmaps, render each of them before the lit batches
  991. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  992. {
  993. RenderShadowMap(*i);
  994. graphics_->SetRenderTarget(0, lightRenderTarget);
  995. graphics_->SetDepthStencil(depthStencil);
  996. graphics_->SetViewport(viewRect_);
  997. }
  998. if (renderMode_ == RENDER_DEFERRED)
  999. graphics_->SetTexture(TU_ALBEDOBUFFER, albedoBuffer);
  1000. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  1001. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  1002. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1003. {
  1004. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1005. i->volumeBatches_[j].Draw(graphics_, renderer_);
  1006. }
  1007. }
  1008. }
  1009. graphics_->SetTexture(TU_ALBEDOBUFFER, 0);
  1010. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  1011. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  1012. if (renderMode_ == RENDER_PREPASS)
  1013. {
  1014. // Clear destination rendertarget with fog color
  1015. graphics_->SetRenderTarget(0, renderTarget);
  1016. graphics_->SetDepthStencil(depthStencil);
  1017. graphics_->SetViewport(viewRect_);
  1018. graphics_->Clear(CLEAR_COLOR, farClipZone_->GetFogColor());
  1019. }
  1020. if (!baseQueue_.IsEmpty())
  1021. {
  1022. // Render opaque objects with deferred lighting result
  1023. PROFILE(RenderBase);
  1024. if (renderMode_ == RENDER_PREPASS)
  1025. graphics_->SetTexture(TU_LIGHTBUFFER, albedoBuffer);
  1026. RenderBatchQueue(baseQueue_);
  1027. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1028. }
  1029. if (!preAlphaQueue_.IsEmpty())
  1030. {
  1031. // Render pre-alpha custom pass
  1032. PROFILE(RenderPreAlpha);
  1033. RenderBatchQueue(preAlphaQueue_);
  1034. }
  1035. if (!alphaQueue_.IsEmpty())
  1036. {
  1037. // Render transparent objects (both base passes & additive lighting)
  1038. PROFILE(RenderAlpha);
  1039. RenderBatchQueue(alphaQueue_, true);
  1040. }
  1041. if (!postAlphaQueue_.IsEmpty())
  1042. {
  1043. // Render pre-alpha custom pass
  1044. PROFILE(RenderPostAlpha);
  1045. RenderBatchQueue(postAlphaQueue_);
  1046. }
  1047. }
  1048. void View::AllocateScreenBuffers()
  1049. {
  1050. unsigned neededBuffers = 0;
  1051. #ifdef USE_OPENGL
  1052. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1053. if (renderMode_ != RENDER_FORWARD && !renderTarget_)
  1054. neededBuffers = 1;
  1055. #endif
  1056. unsigned postProcessPasses = 0;
  1057. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1058. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1059. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1060. if (postProcessPasses)
  1061. neededBuffers = Min((int)postProcessPasses, 2);
  1062. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1063. for (unsigned i = 0; i < neededBuffers; ++i)
  1064. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat(), true));
  1065. }
  1066. void View::BlitFramebuffer()
  1067. {
  1068. // Blit the final image to destination rendertarget
  1069. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1070. graphics_->SetAlphaTest(false);
  1071. graphics_->SetBlendMode(BLEND_REPLACE);
  1072. graphics_->SetDepthTest(CMP_ALWAYS);
  1073. graphics_->SetDepthWrite(true);
  1074. graphics_->SetScissorTest(false);
  1075. graphics_->SetStencilTest(false);
  1076. graphics_->SetRenderTarget(0, renderTarget_);
  1077. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1078. graphics_->SetViewport(viewRect_);
  1079. String shaderName = "CopyFramebuffer";
  1080. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1081. float rtWidth = (float)rtSize_.x_;
  1082. float rtHeight = (float)rtSize_.y_;
  1083. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1084. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1085. #ifdef USE_OPENGL
  1086. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1087. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1088. #else
  1089. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1090. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1091. #endif
  1092. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1093. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1094. DrawFullscreenQuad(camera_, false);
  1095. }
  1096. void View::RunPostProcesses()
  1097. {
  1098. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1099. // Ping-pong buffer indices for read and write
  1100. unsigned readRtIndex = 0;
  1101. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1102. graphics_->SetAlphaTest(false);
  1103. graphics_->SetBlendMode(BLEND_REPLACE);
  1104. graphics_->SetDepthTest(CMP_ALWAYS);
  1105. graphics_->SetScissorTest(false);
  1106. graphics_->SetStencilTest(false);
  1107. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1108. {
  1109. PostProcess* effect = postProcesses_[i];
  1110. // For each effect, rendertargets can be re-used. Allocate them now
  1111. renderer_->SaveScreenBufferAllocations();
  1112. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1113. HashMap<StringHash, Texture2D*> renderTargets;
  1114. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1115. renderTargetInfos.End(); ++j)
  1116. {
  1117. unsigned width = j->second_.size_.x_;
  1118. unsigned height = j->second_.size_.y_;
  1119. if (j->second_.sizeDivisor_)
  1120. {
  1121. width = viewSize_.x_ / width;
  1122. height = viewSize_.y_ / height;
  1123. }
  1124. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1125. }
  1126. // Run each effect pass
  1127. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1128. {
  1129. PostProcessPass* pass = effect->GetPass(j);
  1130. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1131. bool swapBuffers = false;
  1132. // Write depth on the last pass only
  1133. graphics_->SetDepthWrite(lastPass);
  1134. // Set output rendertarget
  1135. RenderSurface* rt = 0;
  1136. String output = pass->GetOutput().ToLower();
  1137. if (output == "viewport")
  1138. {
  1139. if (!lastPass)
  1140. {
  1141. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1142. swapBuffers = true;
  1143. }
  1144. else
  1145. rt = renderTarget_;
  1146. graphics_->SetRenderTarget(0, rt);
  1147. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1148. graphics_->SetViewport(viewRect_);
  1149. }
  1150. else
  1151. {
  1152. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1153. if (k != renderTargets.End())
  1154. rt = k->second_->GetRenderSurface();
  1155. else
  1156. continue; // Skip pass if rendertarget can not be found
  1157. graphics_->SetRenderTarget(0, rt);
  1158. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1159. graphics_->SetViewport(IntRect(0, 0, rt->GetWidth(), rt->GetHeight()));
  1160. }
  1161. // Set shaders, shader parameters and textures
  1162. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1163. renderer_->GetPixelShader(pass->GetPixelShader()));
  1164. const HashMap<StringHash, Vector4>& globalParameters = effect->GetShaderParameters();
  1165. for (HashMap<StringHash, Vector4>::ConstIterator k = globalParameters.Begin(); k != globalParameters.End(); ++k)
  1166. graphics_->SetShaderParameter(k->first_, k->second_);
  1167. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1168. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1169. graphics_->SetShaderParameter(k->first_, k->second_);
  1170. float rtWidth = (float)rtSize_.x_;
  1171. float rtHeight = (float)rtSize_.y_;
  1172. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1173. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1174. #ifdef USE_OPENGL
  1175. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1176. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1177. #else
  1178. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1179. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1180. #endif
  1181. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1182. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1183. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1184. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator k = renderTargetInfos.Begin(); k !=
  1185. renderTargetInfos.End(); ++k)
  1186. {
  1187. String invSizeName = k->second_.name_ + "InvSize";
  1188. String offsetsName = k->second_.name_ + "Offsets";
  1189. float width = (float)renderTargets[k->first_]->GetWidth();
  1190. float height = (float)renderTargets[k->first_]->GetHeight();
  1191. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1192. #ifdef USE_OPENGL
  1193. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1194. #else
  1195. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1196. #endif
  1197. }
  1198. const String* textureNames = pass->GetTextures();
  1199. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1200. {
  1201. if (!textureNames[k].Empty())
  1202. {
  1203. // Texture may either refer to a rendertarget or to a texture resource
  1204. if (!textureNames[k].Compare("viewport", false))
  1205. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1206. else
  1207. {
  1208. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1209. if (l != renderTargets.End())
  1210. graphics_->SetTexture(k, l->second_);
  1211. else
  1212. {
  1213. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1214. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1215. if (texture)
  1216. graphics_->SetTexture(k, texture);
  1217. else
  1218. pass->SetTexture((TextureUnit)k, String());
  1219. }
  1220. }
  1221. }
  1222. }
  1223. DrawFullscreenQuad(camera_, false);
  1224. // Swap the ping-pong buffer sides now if necessary
  1225. if (swapBuffers)
  1226. Swap(readRtIndex, writeRtIndex);
  1227. }
  1228. // Forget the rendertargets allocated during this effect
  1229. renderer_->RestoreScreenBufferAllocations();
  1230. }
  1231. }
  1232. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1233. {
  1234. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1235. float halfViewSize = camera->GetHalfViewSize();
  1236. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1237. Vector3 cameraPos = camera->GetWorldPosition();
  1238. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1239. {
  1240. Drawable* occluder = *i;
  1241. bool erase = false;
  1242. if (!occluder->IsInView(frame_, false))
  1243. occluder->UpdateDistance(frame_);
  1244. // Check occluder's draw distance (in main camera view)
  1245. float maxDistance = occluder->GetDrawDistance();
  1246. if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
  1247. erase = true;
  1248. else
  1249. {
  1250. // Check that occluder is big enough on the screen
  1251. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1252. float diagonal = box.Size().Length();
  1253. float compare;
  1254. if (!camera->IsOrthographic())
  1255. compare = diagonal * halfViewSize / occluder->GetDistance();
  1256. else
  1257. compare = diagonal * invOrthoSize;
  1258. if (compare < occluderSizeThreshold_)
  1259. erase = true;
  1260. else
  1261. {
  1262. // Store amount of triangles divided by screen size as a sorting key
  1263. // (best occluders are big and have few triangles)
  1264. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1265. }
  1266. }
  1267. if (erase)
  1268. i = occluders.Erase(i);
  1269. else
  1270. ++i;
  1271. }
  1272. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1273. if (occluders.Size())
  1274. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1275. }
  1276. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1277. {
  1278. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1279. buffer->Clear();
  1280. for (unsigned i = 0; i < occluders.Size(); ++i)
  1281. {
  1282. Drawable* occluder = occluders[i];
  1283. if (i > 0)
  1284. {
  1285. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1286. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1287. continue;
  1288. }
  1289. // Check for running out of triangles
  1290. if (!occluder->DrawOcclusion(buffer))
  1291. break;
  1292. }
  1293. buffer->BuildDepthHierarchy();
  1294. }
  1295. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1296. {
  1297. Light* light = query.light_;
  1298. LightType type = light->GetLightType();
  1299. // Check if light should be shadowed
  1300. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1301. // If shadow distance non-zero, check it
  1302. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1303. isShadowed = false;
  1304. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1305. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1306. query.litGeometries_.Clear();
  1307. switch (type)
  1308. {
  1309. case LIGHT_DIRECTIONAL:
  1310. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1311. {
  1312. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1313. query.litGeometries_.Push(geometries_[i]);
  1314. }
  1315. break;
  1316. case LIGHT_SPOT:
  1317. {
  1318. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1319. octree_->GetDrawables(octreeQuery);
  1320. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1321. {
  1322. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1323. query.litGeometries_.Push(tempDrawables[i]);
  1324. }
  1325. }
  1326. break;
  1327. case LIGHT_POINT:
  1328. {
  1329. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()),
  1330. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1331. octree_->GetDrawables(octreeQuery);
  1332. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1333. {
  1334. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1335. query.litGeometries_.Push(tempDrawables[i]);
  1336. }
  1337. }
  1338. break;
  1339. }
  1340. // If no lit geometries or not shadowed, no need to process shadow cameras
  1341. if (query.litGeometries_.Empty() || !isShadowed)
  1342. {
  1343. query.numSplits_ = 0;
  1344. return;
  1345. }
  1346. // Determine number of shadow cameras and setup their initial positions
  1347. SetupShadowCameras(query);
  1348. // Process each split for shadow casters
  1349. query.shadowCasters_.Clear();
  1350. for (unsigned i = 0; i < query.numSplits_; ++i)
  1351. {
  1352. Camera* shadowCamera = query.shadowCameras_[i];
  1353. Frustum shadowCameraFrustum = shadowCamera->GetFrustum();
  1354. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1355. // For point light check that the face is visible: if not, can skip the split
  1356. if (type == LIGHT_POINT)
  1357. {
  1358. BoundingBox shadowCameraBox(shadowCameraFrustum);
  1359. if (frustum_.IsInsideFast(shadowCameraBox) == OUTSIDE)
  1360. continue;
  1361. }
  1362. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1363. if (type == LIGHT_DIRECTIONAL)
  1364. {
  1365. if (sceneViewBox_.min_.z_ > query.shadowFarSplits_[i])
  1366. continue;
  1367. if (sceneViewBox_.max_.z_ < query.shadowNearSplits_[i])
  1368. continue;
  1369. }
  1370. // For spot light (which has only one shadow split) we can optimize by reusing the query for
  1371. // lit geometries, whose result still exists in tempDrawables
  1372. if (type != LIGHT_SPOT)
  1373. {
  1374. FrustumOctreeQuery octreeQuery(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1375. camera_->GetViewMask(), true);
  1376. octree_->GetDrawables(octreeQuery);
  1377. }
  1378. // Check which shadow casters actually contribute to the shadowing
  1379. ProcessShadowCasters(query, tempDrawables, i);
  1380. }
  1381. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1382. // only cost has been the shadow camera setup & queries
  1383. if (query.shadowCasters_.Empty())
  1384. query.numSplits_ = 0;
  1385. }
  1386. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1387. {
  1388. Light* light = query.light_;
  1389. Matrix3x4 lightView;
  1390. Matrix4 lightProj;
  1391. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1392. lightView = shadowCamera->GetInverseWorldTransform();
  1393. lightProj = shadowCamera->GetProjection();
  1394. bool dirLight = shadowCamera->IsOrthographic();
  1395. query.shadowCasterBox_[splitIndex].defined_ = false;
  1396. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1397. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1398. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1399. Frustum lightViewFrustum;
  1400. if (!dirLight)
  1401. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1402. else
  1403. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, query.shadowNearSplits_[splitIndex]),
  1404. Min(sceneViewBox_.max_.z_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1405. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1406. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1407. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1408. return;
  1409. BoundingBox lightViewBox;
  1410. BoundingBox lightProjBox;
  1411. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1412. {
  1413. Drawable* drawable = *i;
  1414. // In case this is a spot light query result reused for optimization, we may have non-shadowcasters included.
  1415. // Check for that first
  1416. if (!drawable->GetCastShadows())
  1417. continue;
  1418. // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
  1419. // times. However, this should not cause problems as no scene modification happens at this point.
  1420. if (!drawable->IsInView(frame_, false))
  1421. drawable->UpdateDistance(frame_);
  1422. // Check shadow distance
  1423. float maxShadowDistance = drawable->GetShadowDistance();
  1424. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1425. continue;
  1426. // Check shadow mask
  1427. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1428. continue;
  1429. // Project shadow caster bounding box to light view space for visibility check
  1430. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1431. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1432. {
  1433. // Merge to shadow caster bounding box and add to the list
  1434. if (dirLight)
  1435. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1436. else
  1437. {
  1438. lightProjBox = lightViewBox.Projected(lightProj);
  1439. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1440. }
  1441. query.shadowCasters_.Push(drawable);
  1442. }
  1443. }
  1444. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1445. }
  1446. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1447. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1448. {
  1449. if (shadowCamera->IsOrthographic())
  1450. {
  1451. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1452. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1453. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1454. }
  1455. else
  1456. {
  1457. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1458. if (drawable->IsInView(frame_))
  1459. return true;
  1460. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1461. Vector3 center = lightViewBox.Center();
  1462. Ray extrusionRay(center, center.Normalized());
  1463. float extrusionDistance = shadowCamera->GetFarClip();
  1464. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1465. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1466. float sizeFactor = extrusionDistance / originalDistance;
  1467. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1468. // than necessary, so the test will be conservative
  1469. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1470. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1471. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1472. lightViewBox.Merge(extrudedBox);
  1473. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1474. }
  1475. }
  1476. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1477. {
  1478. unsigned width = shadowMap->GetWidth();
  1479. unsigned height = shadowMap->GetHeight();
  1480. int maxCascades = renderer_->GetMaxShadowCascades();
  1481. // Due to instruction count limits, deferred modes in SM2.0 can only support up to 3 cascades
  1482. #ifndef USE_OPENGL
  1483. if (renderMode_ != RENDER_FORWARD && !graphics_->GetSM3Support())
  1484. maxCascades = Max(maxCascades, 3);
  1485. #endif
  1486. switch (light->GetLightType())
  1487. {
  1488. case LIGHT_DIRECTIONAL:
  1489. if (maxCascades == 1)
  1490. return IntRect(0, 0, width, height);
  1491. else if (maxCascades == 2)
  1492. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1493. else
  1494. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1495. (splitIndex / 2 + 1) * height / 2);
  1496. case LIGHT_SPOT:
  1497. return IntRect(0, 0, width, height);
  1498. case LIGHT_POINT:
  1499. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1500. (splitIndex / 2 + 1) * height / 3);
  1501. }
  1502. return IntRect();
  1503. }
  1504. void View::OptimizeLightByScissor(Light* light)
  1505. {
  1506. if (light && light->GetLightType() != LIGHT_DIRECTIONAL)
  1507. graphics_->SetScissorTest(true, GetLightScissor(light));
  1508. else
  1509. graphics_->SetScissorTest(false);
  1510. }
  1511. void View::OptimizeLightByStencil(Light* light)
  1512. {
  1513. if (light)
  1514. {
  1515. LightType type = light->GetLightType();
  1516. if (type == LIGHT_DIRECTIONAL)
  1517. {
  1518. graphics_->SetStencilTest(false);
  1519. return;
  1520. }
  1521. Geometry* geometry = renderer_->GetLightGeometry(light);
  1522. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1523. Matrix4 projection(camera_->GetProjection());
  1524. float lightDist;
  1525. if (type == LIGHT_POINT)
  1526. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).Distance(camera_->GetWorldPosition());
  1527. else
  1528. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  1529. // If the camera is actually inside the light volume, do not draw to stencil as it would waste fillrate
  1530. if (lightDist < M_EPSILON)
  1531. {
  1532. graphics_->SetStencilTest(false);
  1533. return;
  1534. }
  1535. // If the stencil value has wrapped, clear the whole stencil first
  1536. if (!lightStencilValue_)
  1537. {
  1538. graphics_->Clear(CLEAR_STENCIL);
  1539. lightStencilValue_ = 1;
  1540. }
  1541. // If possible, render the stencil volume front faces. However, close to the near clip plane render back faces instead
  1542. // to avoid clipping.
  1543. if (lightDist < camera_->GetNearClip() * 2.0f)
  1544. {
  1545. renderer_->SetCullMode(CULL_CW, camera_);
  1546. graphics_->SetDepthTest(CMP_GREATER);
  1547. }
  1548. else
  1549. {
  1550. renderer_->SetCullMode(CULL_CCW, camera_);
  1551. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1552. }
  1553. graphics_->SetColorWrite(false);
  1554. graphics_->SetDepthWrite(false);
  1555. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, lightStencilValue_);
  1556. graphics_->SetShaders(renderer_->GetStencilVS(), renderer_->GetStencilPS());
  1557. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1558. graphics_->SetShaderParameter(VSP_MODEL, light->GetVolumeTransform(camera_));
  1559. geometry->Draw(graphics_);
  1560. graphics_->ClearTransformSources();
  1561. graphics_->SetColorWrite(true);
  1562. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, lightStencilValue_);
  1563. // Increase stencil value for next light
  1564. ++lightStencilValue_;
  1565. }
  1566. else
  1567. graphics_->SetStencilTest(false);
  1568. }
  1569. const Rect& View::GetLightScissor(Light* light)
  1570. {
  1571. HashMap<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1572. if (i != lightScissorCache_.End())
  1573. return i->second_;
  1574. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1575. Matrix4 projection(camera_->GetProjection());
  1576. switch (light->GetLightType())
  1577. {
  1578. case LIGHT_POINT:
  1579. {
  1580. BoundingBox viewBox(light->GetWorldBoundingBox().Transformed(view));
  1581. return lightScissorCache_[light] = viewBox.Projected(projection);
  1582. }
  1583. case LIGHT_SPOT:
  1584. {
  1585. Frustum viewFrustum(light->GetFrustum().Transformed(view));
  1586. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1587. }
  1588. default:
  1589. return lightScissorCache_[light] = Rect::FULL;
  1590. }
  1591. }
  1592. void View::SetupShadowCameras(LightQueryResult& query)
  1593. {
  1594. Light* light = query.light_;
  1595. LightType type = light->GetLightType();
  1596. int splits = 0;
  1597. if (type == LIGHT_DIRECTIONAL)
  1598. {
  1599. const CascadeParameters& cascade = light->GetShadowCascade();
  1600. float nearSplit = camera_->GetNearClip();
  1601. float farSplit;
  1602. while (splits < renderer_->GetMaxShadowCascades())
  1603. {
  1604. // If split is completely beyond camera far clip, we are done
  1605. if (nearSplit > camera_->GetFarClip())
  1606. break;
  1607. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1608. if (farSplit <= nearSplit)
  1609. break;
  1610. // Setup the shadow camera for the split
  1611. Camera* shadowCamera = renderer_->GetShadowCamera();
  1612. query.shadowCameras_[splits] = shadowCamera;
  1613. query.shadowNearSplits_[splits] = nearSplit;
  1614. query.shadowFarSplits_[splits] = farSplit;
  1615. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1616. nearSplit = farSplit;
  1617. ++splits;
  1618. }
  1619. }
  1620. if (type == LIGHT_SPOT)
  1621. {
  1622. Camera* shadowCamera = renderer_->GetShadowCamera();
  1623. query.shadowCameras_[0] = shadowCamera;
  1624. Node* cameraNode = shadowCamera->GetNode();
  1625. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1626. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1627. shadowCamera->SetFarClip(light->GetRange());
  1628. shadowCamera->SetFov(light->GetFov());
  1629. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1630. splits = 1;
  1631. }
  1632. if (type == LIGHT_POINT)
  1633. {
  1634. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1635. {
  1636. Camera* shadowCamera = renderer_->GetShadowCamera();
  1637. query.shadowCameras_[i] = shadowCamera;
  1638. Node* cameraNode = shadowCamera->GetNode();
  1639. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1640. cameraNode->SetPosition(light->GetWorldPosition());
  1641. cameraNode->SetDirection(directions[i]);
  1642. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1643. shadowCamera->SetFarClip(light->GetRange());
  1644. shadowCamera->SetFov(90.0f);
  1645. shadowCamera->SetAspectRatio(1.0f);
  1646. }
  1647. splits = MAX_CUBEMAP_FACES;
  1648. }
  1649. query.numSplits_ = splits;
  1650. }
  1651. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1652. {
  1653. Node* cameraNode = shadowCamera->GetNode();
  1654. float extrusionDistance = camera_->GetFarClip();
  1655. const FocusParameters& parameters = light->GetShadowFocus();
  1656. // Calculate initial position & rotation
  1657. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1658. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1659. cameraNode->SetTransform(pos, light->GetWorldRotation());
  1660. // Calculate main camera shadowed frustum in light's view space
  1661. farSplit = Min(farSplit, camera_->GetFarClip());
  1662. // Use the scene Z bounds to limit frustum size if applicable
  1663. if (parameters.focus_)
  1664. {
  1665. nearSplit = Max(sceneViewBox_.min_.z_, nearSplit);
  1666. farSplit = Min(sceneViewBox_.max_.z_, farSplit);
  1667. }
  1668. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1669. Polyhedron frustumVolume;
  1670. frustumVolume.Define(splitFrustum);
  1671. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1672. if (parameters.focus_)
  1673. {
  1674. BoundingBox litGeometriesBox;
  1675. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1676. {
  1677. // Skip skyboxes as they have undefinedly large bounding box size
  1678. if (geometries_[i]->GetType() == Skybox::GetTypeStatic())
  1679. continue;
  1680. if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit &&
  1681. (GetLightMask(geometries_[i]) & light->GetLightMask()))
  1682. litGeometriesBox.Merge(geometries_[i]->GetWorldBoundingBox());
  1683. }
  1684. if (litGeometriesBox.defined_)
  1685. {
  1686. frustumVolume.Clip(litGeometriesBox);
  1687. // If volume became empty, restore it to avoid zero size
  1688. if (frustumVolume.Empty())
  1689. frustumVolume.Define(splitFrustum);
  1690. }
  1691. }
  1692. // Transform frustum volume to light space
  1693. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1694. frustumVolume.Transform(lightView);
  1695. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1696. BoundingBox shadowBox;
  1697. if (!parameters.nonUniform_)
  1698. shadowBox.Define(Sphere(frustumVolume));
  1699. else
  1700. shadowBox.Define(frustumVolume);
  1701. shadowCamera->SetOrthographic(true);
  1702. shadowCamera->SetAspectRatio(1.0f);
  1703. shadowCamera->SetNearClip(0.0f);
  1704. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1705. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1706. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1707. }
  1708. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1709. const BoundingBox& shadowCasterBox)
  1710. {
  1711. const FocusParameters& parameters = light->GetShadowFocus();
  1712. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1713. LightType type = light->GetLightType();
  1714. if (type == LIGHT_DIRECTIONAL)
  1715. {
  1716. BoundingBox shadowBox;
  1717. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1718. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1719. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1720. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1721. // Requantize and snap to shadow map texels
  1722. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1723. }
  1724. if (type == LIGHT_SPOT)
  1725. {
  1726. if (parameters.focus_)
  1727. {
  1728. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1729. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1730. float viewSize = Max(viewSizeX, viewSizeY);
  1731. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1732. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1733. float quantize = parameters.quantize_ * invOrthoSize;
  1734. float minView = parameters.minView_ * invOrthoSize;
  1735. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1736. if (viewSize < 1.0f)
  1737. shadowCamera->SetZoom(1.0f / viewSize);
  1738. }
  1739. }
  1740. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1741. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1742. if (shadowCamera->GetZoom() >= 1.0f)
  1743. {
  1744. if (light->GetLightType() != LIGHT_POINT)
  1745. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1746. else
  1747. {
  1748. #ifdef USE_OPENGL
  1749. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1750. #else
  1751. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1752. #endif
  1753. }
  1754. }
  1755. }
  1756. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1757. const BoundingBox& viewBox)
  1758. {
  1759. Node* cameraNode = shadowCamera->GetNode();
  1760. const FocusParameters& parameters = light->GetShadowFocus();
  1761. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1762. float minX = viewBox.min_.x_;
  1763. float minY = viewBox.min_.y_;
  1764. float maxX = viewBox.max_.x_;
  1765. float maxY = viewBox.max_.y_;
  1766. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1767. Vector2 viewSize(maxX - minX, maxY - minY);
  1768. // Quantize size to reduce swimming
  1769. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1770. if (parameters.nonUniform_)
  1771. {
  1772. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1773. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1774. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1775. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1776. }
  1777. else if (parameters.focus_)
  1778. {
  1779. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1780. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1781. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1782. viewSize.y_ = viewSize.x_;
  1783. }
  1784. shadowCamera->SetOrthoSize(viewSize);
  1785. // Center shadow camera to the view space bounding box
  1786. Vector3 pos(shadowCamera->GetWorldPosition());
  1787. Quaternion rot(shadowCamera->GetWorldRotation());
  1788. Vector3 adjust(center.x_, center.y_, 0.0f);
  1789. cameraNode->Translate(rot * adjust);
  1790. // If the shadow map viewport is known, snap to whole texels
  1791. if (shadowMapWidth > 0.0f)
  1792. {
  1793. Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
  1794. // Take into account that shadow map border will not be used
  1795. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1796. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1797. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1798. cameraNode->Translate(rot * snap);
  1799. }
  1800. }
  1801. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1802. {
  1803. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1804. int bestPriority = M_MIN_INT;
  1805. Zone* newZone = 0;
  1806. // If bounding box center is in view, can use the visible zones. Else must query via the octree
  1807. if (frustum_.IsInside(center))
  1808. {
  1809. // First check if the last zone remains a conclusive result
  1810. Zone* lastZone = drawable->GetLastZone();
  1811. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1812. lastZone->GetPriority() >= highestZonePriority_)
  1813. newZone = lastZone;
  1814. else
  1815. {
  1816. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1817. {
  1818. int priority = (*i)->GetPriority();
  1819. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1820. {
  1821. newZone = *i;
  1822. bestPriority = priority;
  1823. }
  1824. }
  1825. }
  1826. }
  1827. else
  1828. {
  1829. PODVector<Zone*>& tempZones = tempZones_[threadIndex];
  1830. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>&>(tempZones), center, DRAWABLE_ZONE);
  1831. octree_->GetDrawables(query);
  1832. bestPriority = M_MIN_INT;
  1833. for (PODVector<Zone*>::Iterator i = tempZones.Begin(); i != tempZones.End(); ++i)
  1834. {
  1835. int priority = (*i)->GetPriority();
  1836. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1837. {
  1838. newZone = *i;
  1839. bestPriority = priority;
  1840. }
  1841. }
  1842. }
  1843. drawable->SetZone(newZone);
  1844. }
  1845. Zone* View::GetZone(Drawable* drawable)
  1846. {
  1847. if (cameraZoneOverride_)
  1848. return cameraZone_;
  1849. Zone* drawableZone = drawable->GetZone();
  1850. return drawableZone ? drawableZone : cameraZone_;
  1851. }
  1852. unsigned View::GetLightMask(Drawable* drawable)
  1853. {
  1854. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1855. }
  1856. unsigned View::GetShadowMask(Drawable* drawable)
  1857. {
  1858. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1859. }
  1860. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1861. {
  1862. unsigned long long hash = 0;
  1863. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1864. hash += (unsigned long long)(*i);
  1865. return hash;
  1866. }
  1867. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1868. {
  1869. if (!material)
  1870. material = renderer_->GetDefaultMaterial();
  1871. if (!material)
  1872. return 0;
  1873. float lodDistance = drawable->GetLodDistance();
  1874. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1875. if (techniques.Empty())
  1876. return 0;
  1877. // Check for suitable technique. Techniques should be ordered like this:
  1878. // Most distant & highest quality
  1879. // Most distant & lowest quality
  1880. // Second most distant & highest quality
  1881. // ...
  1882. for (unsigned i = 0; i < techniques.Size(); ++i)
  1883. {
  1884. const TechniqueEntry& entry = techniques[i];
  1885. Technique* technique = entry.technique_;
  1886. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1887. continue;
  1888. if (lodDistance >= entry.lodDistance_)
  1889. return technique;
  1890. }
  1891. // If no suitable technique found, fallback to the last
  1892. return techniques.Back().technique_;
  1893. }
  1894. void View::CheckMaterialForAuxView(Material* material)
  1895. {
  1896. const SharedPtr<Texture>* textures = material->GetTextures();
  1897. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1898. {
  1899. // Have to check cube & 2D textures separately
  1900. Texture* texture = textures[i];
  1901. if (texture)
  1902. {
  1903. if (texture->GetType() == Texture2D::GetTypeStatic())
  1904. {
  1905. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1906. RenderSurface* target = tex2D->GetRenderSurface();
  1907. if (target)
  1908. {
  1909. Viewport* viewport = target->GetViewport();
  1910. if (viewport->GetScene() && viewport->GetCamera())
  1911. renderer_->AddView(target, viewport);
  1912. }
  1913. }
  1914. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1915. {
  1916. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1917. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1918. {
  1919. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1920. if (target)
  1921. {
  1922. Viewport* viewport = target->GetViewport();
  1923. if (viewport->GetScene() && viewport->GetCamera())
  1924. renderer_->AddView(target, viewport);
  1925. }
  1926. }
  1927. }
  1928. }
  1929. }
  1930. // Set frame number so that we can early-out next time we come across this material on the same frame
  1931. material->MarkForAuxView(frame_.frameNumber_);
  1932. }
  1933. void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows)
  1934. {
  1935. // Convert to instanced if possible
  1936. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  1937. batch.geometryType_ = GEOM_INSTANCED;
  1938. batch.pass_ = pass;
  1939. renderer_->SetBatchShaders(batch, tech, pass, allowShadows);
  1940. batch.CalculateSortKey();
  1941. }
  1942. void View::PrepareInstancingBuffer()
  1943. {
  1944. PROFILE(PrepareInstancingBuffer);
  1945. unsigned totalInstances = 0;
  1946. totalInstances += baseQueue_.GetNumInstances(renderer_);
  1947. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  1948. if (renderMode_ != RENDER_FORWARD)
  1949. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  1950. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1951. {
  1952. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1953. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  1954. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  1955. }
  1956. // If fail to set buffer size, fall back to per-group locking
  1957. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  1958. {
  1959. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  1960. unsigned freeIndex = 0;
  1961. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  1962. if (lockedData)
  1963. {
  1964. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1965. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1966. if (renderMode_ != RENDER_FORWARD)
  1967. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1968. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1969. {
  1970. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1971. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1972. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1973. }
  1974. instancingBuffer->Unlock();
  1975. }
  1976. }
  1977. }
  1978. void View::SetupLightVolumeBatch(Batch& batch)
  1979. {
  1980. Light* light = batch.lightQueue_->light_;
  1981. LightType type = light->GetLightType();
  1982. float lightDist;
  1983. // Use replace blend mode for the first pre-pass light volume, and additive for the rest
  1984. graphics_->SetAlphaTest(false);
  1985. graphics_->SetBlendMode(renderMode_ == RENDER_PREPASS && light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  1986. graphics_->SetDepthWrite(false);
  1987. if (type != LIGHT_DIRECTIONAL)
  1988. {
  1989. if (type == LIGHT_POINT)
  1990. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).Distance(camera_->GetWorldPosition());
  1991. else
  1992. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  1993. // Draw front faces if not inside light volume
  1994. if (lightDist < camera_->GetNearClip() * 2.0f)
  1995. {
  1996. renderer_->SetCullMode(CULL_CW, camera_);
  1997. graphics_->SetDepthTest(CMP_GREATER);
  1998. }
  1999. else
  2000. {
  2001. renderer_->SetCullMode(CULL_CCW, camera_);
  2002. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2003. }
  2004. }
  2005. else
  2006. {
  2007. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2008. // refresh the directional light's model transform before rendering
  2009. light->GetVolumeTransform(camera_);
  2010. graphics_->SetCullMode(CULL_NONE);
  2011. graphics_->SetDepthTest(CMP_ALWAYS);
  2012. }
  2013. graphics_->SetScissorTest(false);
  2014. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2015. }
  2016. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  2017. {
  2018. Light quadDirLight(context_);
  2019. quadDirLight.SetLightType(LIGHT_DIRECTIONAL);
  2020. Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
  2021. graphics_->SetCullMode(CULL_NONE);
  2022. graphics_->SetShaderParameter(VSP_MODEL, model);
  2023. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  2024. graphics_->ClearTransformSources();
  2025. renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
  2026. }
  2027. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor)
  2028. {
  2029. graphics_->SetScissorTest(false);
  2030. // During G-buffer rendering, mark opaque pixels to stencil buffer
  2031. bool isGBuffer = &queue == &gbufferQueue_;
  2032. if (!isGBuffer)
  2033. graphics_->SetStencilTest(false);
  2034. // Base instanced
  2035. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
  2036. queue.sortedBaseBatchGroups_.End(); ++i)
  2037. {
  2038. BatchGroup* group = *i;
  2039. if (isGBuffer)
  2040. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  2041. group->Draw(graphics_, renderer_);
  2042. }
  2043. // Base non-instanced
  2044. for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
  2045. {
  2046. Batch* batch = *i;
  2047. if (isGBuffer)
  2048. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  2049. batch->Draw(graphics_, renderer_);
  2050. }
  2051. // Non-base instanced
  2052. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  2053. {
  2054. BatchGroup* group = *i;
  2055. if (useScissor && group->lightQueue_)
  2056. OptimizeLightByScissor(group->lightQueue_->light_);
  2057. if (isGBuffer)
  2058. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  2059. group->Draw(graphics_, renderer_);
  2060. }
  2061. // Non-base non-instanced
  2062. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  2063. {
  2064. Batch* batch = *i;
  2065. if (useScissor)
  2066. {
  2067. if (!batch->isBase_ && batch->lightQueue_)
  2068. OptimizeLightByScissor(batch->lightQueue_->light_);
  2069. else
  2070. graphics_->SetScissorTest(false);
  2071. }
  2072. if (isGBuffer)
  2073. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  2074. batch->Draw(graphics_, renderer_);
  2075. }
  2076. }
  2077. void View::RenderLightBatchQueue(const BatchQueue& queue, Light* light)
  2078. {
  2079. graphics_->SetScissorTest(false);
  2080. graphics_->SetStencilTest(false);
  2081. // Base instanced
  2082. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
  2083. queue.sortedBaseBatchGroups_.End(); ++i)
  2084. {
  2085. BatchGroup* group = *i;
  2086. group->Draw(graphics_, renderer_);
  2087. }
  2088. // Base non-instanced
  2089. for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
  2090. {
  2091. Batch* batch = *i;
  2092. batch->Draw(graphics_, renderer_);
  2093. }
  2094. // All base passes have been drawn. Optimize at this point by both stencil volume and scissor
  2095. // However, if there are no non-base batches, just exit
  2096. if (queue.sortedBatchGroups_.Empty() && queue.sortedBatches_.Empty())
  2097. return;
  2098. OptimizeLightByStencil(light);
  2099. OptimizeLightByScissor(light);
  2100. // Non-base instanced
  2101. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  2102. {
  2103. BatchGroup* group = *i;
  2104. group->Draw(graphics_, renderer_);
  2105. }
  2106. // Non-base non-instanced
  2107. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  2108. {
  2109. Batch* batch = *i;
  2110. batch->Draw(graphics_, renderer_);
  2111. }
  2112. }
  2113. void View::RenderShadowMap(const LightBatchQueue& queue)
  2114. {
  2115. PROFILE(RenderShadowMap);
  2116. Texture2D* shadowMap = queue.shadowMap_;
  2117. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2118. graphics_->SetColorWrite(false);
  2119. graphics_->SetStencilTest(false);
  2120. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2121. graphics_->SetDepthStencil(shadowMap);
  2122. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2123. graphics_->Clear(CLEAR_DEPTH);
  2124. // Set shadow depth bias
  2125. BiasParameters parameters = queue.light_->GetShadowBias();
  2126. // Adjust the light's constant depth bias according to global shadow map resolution
  2127. /// \todo Should remove this adjustment and find a more flexible solution
  2128. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2129. if (shadowMapSize <= 512)
  2130. parameters.constantBias_ *= 2.0f;
  2131. else if (shadowMapSize >= 2048)
  2132. parameters.constantBias_ *= 0.5f;
  2133. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2134. // Render each of the splits
  2135. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2136. {
  2137. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2138. if (!shadowQueue.shadowBatches_.IsEmpty())
  2139. {
  2140. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2141. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  2142. // However, do not do this for point lights, which need to render continuously across cube faces
  2143. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  2144. if (queue.light_->GetLightType() != LIGHT_POINT)
  2145. {
  2146. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  2147. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  2148. graphics_->SetScissorTest(true, zoomRect, false);
  2149. }
  2150. else
  2151. graphics_->SetScissorTest(false);
  2152. // Draw instanced and non-instanced shadow casters
  2153. RenderBatchQueue(shadowQueue.shadowBatches_);
  2154. }
  2155. }
  2156. graphics_->SetColorWrite(true);
  2157. graphics_->SetDepthBias(0.0f, 0.0f);
  2158. }
  2159. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2160. {
  2161. // If using the backbuffer, return the backbuffer depth-stencil
  2162. if (!renderTarget)
  2163. return 0;
  2164. // Then check for linked depth-stencil
  2165. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2166. // Finally get one from Renderer
  2167. if (!depthStencil)
  2168. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2169. return depthStencil;
  2170. }