PhysicsWorld.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Joint.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsWorld.h"
  32. #include "ProcessUtils.h"
  33. #include "Profiler.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "StringUtils.h"
  38. #include "VectorBuffer.h"
  39. #include <ode/ode.h>
  40. #include <algorithm>
  41. #include "DebugNew.h"
  42. static const int DEFAULT_FPS = 60;
  43. static const int DEFAULT_MAXCONTACTS = 20;
  44. static const float DEFAULT_BOUNCETHRESHOLD = 0.1f;
  45. static unsigned numInstances = 0;
  46. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  47. {
  48. return lhs.distance_ < rhs.distance_;
  49. }
  50. OBJECTTYPESTATIC(PhysicsWorld);
  51. PhysicsWorld::PhysicsWorld(Context* context) :
  52. Component(context),
  53. physicsWorld_(0),
  54. space_(0),
  55. rayGeometry_(0),
  56. contactJoints_(0),
  57. fps_(DEFAULT_FPS),
  58. maxContacts_(DEFAULT_MAXCONTACTS),
  59. bounceThreshold_(DEFAULT_BOUNCETHRESHOLD),
  60. timeAcc_(0.0f),
  61. randomSeed_(0)
  62. {
  63. {
  64. MutexLock Lock(GetStaticMutex());
  65. if (!numInstances)
  66. dInitODE();
  67. ++numInstances;
  68. }
  69. physicsWorld_ = dWorldCreate();
  70. space_ = dHashSpaceCreate(0);
  71. contactJoints_ = dJointGroupCreate(0);
  72. // Create ray geometry for physics world raycasts
  73. rayGeometry_ = dCreateRay(0, 0.0f);
  74. // Enable automatic resting of rigid bodies
  75. dWorldSetAutoDisableFlag(physicsWorld_, 1);
  76. contacts_ = new std::vector<dContact>(maxContacts_);
  77. }
  78. PhysicsWorld::~PhysicsWorld()
  79. {
  80. // Forcibly remove any cached geometries that still remain
  81. triangleMeshCache_.clear();
  82. heightfieldCache_.clear();
  83. if (contactJoints_)
  84. {
  85. dJointGroupDestroy(contactJoints_);
  86. contactJoints_ = 0;
  87. }
  88. if (rayGeometry_)
  89. {
  90. dGeomDestroy(rayGeometry_);
  91. rayGeometry_ = 0;
  92. }
  93. if (space_)
  94. {
  95. dSpaceDestroy(space_);
  96. space_ = 0;
  97. }
  98. if (contacts_)
  99. {
  100. std::vector<dContact>* contacts = static_cast<std::vector<dContact>*>(contacts_);
  101. delete contacts;
  102. contacts = 0;
  103. }
  104. if (physicsWorld_)
  105. {
  106. dWorldDestroy(physicsWorld_);
  107. physicsWorld_ = 0;
  108. }
  109. {
  110. MutexLock Lock(GetStaticMutex());
  111. --numInstances;
  112. if (!numInstances)
  113. dCloseODE();
  114. }
  115. }
  116. void PhysicsWorld::RegisterObject(Context* context)
  117. {
  118. context->RegisterFactory<PhysicsWorld>();
  119. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS);
  120. ATTRIBUTE(PhysicsWorld, VAR_INT, "Max Contacts", maxContacts_, DEFAULT_MAXCONTACTS);
  121. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Bounce Threshold", bounceThreshold_, DEFAULT_BOUNCETHRESHOLD);
  122. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Time Accumulator", timeAcc_, 0.0f);
  123. ATTRIBUTE(PhysicsWorld, VAR_INT, "Random Seed", randomSeed_, 0);
  124. ID_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", ATTR_GRAVITY, Vector3::ZERO);
  125. ID_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Linear Rest Threshold", ATTR_LIN_RESTTHRESHOLD, 0.01f);
  126. ID_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Linear Damping Threshold", ATTR_LIN_DAMPINGTHRESHOLD, 0.01f);
  127. ID_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Linear Damping Scale", ATTR_LIN_DAMPINGSCALE, 0.0f);
  128. ID_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Angular Rest Threshold", ATTR_ANG_RESTTHRESHOLD, 0.01f);
  129. ID_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Angular Damping Threshold", ATTR_ANG_DAMPINGTHRESHOLD, 0.01f);
  130. ID_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Angular Damping Scale", ATTR_ANG_DAMPINGSCALE, 0.0f);
  131. ID_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "ERP", ATTR_ERP, 0.2f);
  132. ID_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "CFM", ATTR_CFM, 0.00001f);
  133. ID_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Contact Surface Layer", ATTR_CONTACTSURFACELAYER, 0.0f);
  134. }
  135. void PhysicsWorld::OnSetAttribute(const AttributeInfo& attr, const Variant& value)
  136. {
  137. switch (attr.offset_)
  138. {
  139. case ATTR_GRAVITY:
  140. SetGravity(value.GetVector3());
  141. break;
  142. case ATTR_LIN_RESTTHRESHOLD:
  143. SetLinearRestThreshold(value.GetFloat());
  144. break;
  145. case ATTR_LIN_DAMPINGTHRESHOLD:
  146. SetLinearDampingThreshold(value.GetFloat());
  147. break;
  148. case ATTR_LIN_DAMPINGSCALE:
  149. SetLinearDampingScale(value.GetFloat());
  150. break;
  151. case ATTR_ANG_RESTTHRESHOLD:
  152. SetAngularRestThreshold(value.GetFloat());
  153. break;
  154. case ATTR_ANG_DAMPINGTHRESHOLD:
  155. SetAngularDampingThreshold(value.GetFloat());
  156. break;
  157. case ATTR_ANG_DAMPINGSCALE:
  158. SetAngularDampingScale(value.GetFloat());
  159. break;
  160. case ATTR_ERP:
  161. SetERP(value.GetFloat());
  162. break;
  163. case ATTR_CFM:
  164. SetCFM(value.GetFloat());
  165. break;
  166. case ATTR_CONTACTSURFACELAYER:
  167. SetContactSurfaceLayer(value.GetFloat());
  168. break;
  169. default:
  170. Serializable::OnSetAttribute(attr, value);
  171. break;
  172. }
  173. }
  174. Variant PhysicsWorld::OnGetAttribute(const AttributeInfo& attr)
  175. {
  176. switch (attr.offset_)
  177. {
  178. case ATTR_GRAVITY:
  179. return GetGravity();
  180. case ATTR_LIN_RESTTHRESHOLD:
  181. return GetLinearRestThreshold();
  182. case ATTR_LIN_DAMPINGTHRESHOLD:
  183. return GetLinearDampingThreshold();
  184. case ATTR_LIN_DAMPINGSCALE:
  185. return GetLinearDampingScale();
  186. case ATTR_ANG_RESTTHRESHOLD:
  187. return GetAngularRestThreshold();
  188. case ATTR_ANG_DAMPINGTHRESHOLD:
  189. return GetAngularDampingThreshold();
  190. case ATTR_ANG_DAMPINGSCALE:
  191. return GetAngularDampingScale();
  192. case ATTR_ERP:
  193. return GetERP();
  194. case ATTR_CFM:
  195. return GetCFM();
  196. case ATTR_CONTACTSURFACELAYER:
  197. return GetContactSurfaceLayer();
  198. default:
  199. return Serializable::OnGetAttribute(attr);
  200. }
  201. }
  202. void PhysicsWorld::Update(float timeStep)
  203. {
  204. PROFILE(UpdatePhysics);
  205. float internalTimeStep = 1.0f / fps_;
  206. while (timeStep > 0.0f)
  207. {
  208. float currentStep = Min(timeStep, internalTimeStep);
  209. timeAcc_ += currentStep;
  210. timeStep -= currentStep;
  211. if (timeAcc_ >= internalTimeStep)
  212. {
  213. timeAcc_ -= internalTimeStep;
  214. // Send pre-step event
  215. using namespace PhysicsPreStep;
  216. VariantMap eventData;
  217. eventData[P_WORLD] = (void*)this;
  218. eventData[P_TIMESTEP] = internalTimeStep;
  219. SendEvent(E_PHYSICSPRESTEP, eventData);
  220. // Store the previous transforms of the physics objects
  221. for (std::vector<RigidBody*>::iterator i = rigidBodies_.begin(); i != rigidBodies_.end(); ++i)
  222. (*i)->PreStep();
  223. /// \todo ODE random number generation is not threadsafe
  224. dRandSetSeed(randomSeed_);
  225. // Collide, step the world, and clear contact joints
  226. {
  227. PROFILE(CheckCollisions);
  228. dSpaceCollide(space_, this, NearCallback);
  229. }
  230. {
  231. PROFILE(StepPhysics);
  232. dWorldQuickStep(physicsWorld_, internalTimeStep);
  233. dJointGroupEmpty(contactJoints_);
  234. previousCollisions_ = currentCollisions_;
  235. currentCollisions_.clear();
  236. }
  237. randomSeed_ = dRandGetSeed();
  238. // Send accumulated collision events
  239. SendCollisionEvents();
  240. // Interpolate transforms of physics objects
  241. float t = Clamp(timeAcc_ / internalTimeStep, 0.0f, 1.0f);
  242. for (std::vector<RigidBody*>::iterator i = rigidBodies_.begin(); i != rigidBodies_.end(); ++i)
  243. (*i)->PostStep(t);
  244. // Send post-step event
  245. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  246. }
  247. }
  248. }
  249. void PhysicsWorld::SetFps(int fps)
  250. {
  251. fps_ = Max(fps, 1);
  252. }
  253. void PhysicsWorld::SetMaxContacts(unsigned num)
  254. {
  255. maxContacts_ = Max(num, 1);
  256. std::vector<dContact>* contacts = static_cast<std::vector<dContact>*>(contacts_);
  257. contacts->resize(maxContacts_);
  258. }
  259. void PhysicsWorld::SetGravity(const Vector3& gravity)
  260. {
  261. dWorldSetGravity(physicsWorld_, gravity.x_, gravity.y_, gravity.z_);;
  262. }
  263. void PhysicsWorld::SetLinearRestThreshold(float threshold)
  264. {
  265. dWorldSetAutoDisableLinearThreshold(physicsWorld_, Max(threshold, 0.0f));
  266. }
  267. void PhysicsWorld::SetLinearDampingThreshold(float threshold)
  268. {
  269. dWorldSetLinearDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  270. }
  271. void PhysicsWorld::SetLinearDampingScale(float scale)
  272. {
  273. dWorldSetLinearDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  274. }
  275. void PhysicsWorld::SetAngularRestThreshold(float threshold)
  276. {
  277. dWorldSetAutoDisableAngularThreshold(physicsWorld_, threshold);
  278. }
  279. void PhysicsWorld::SetAngularDampingThreshold(float threshold)
  280. {
  281. dWorldSetAngularDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  282. }
  283. void PhysicsWorld::SetAngularDampingScale(float scale)
  284. {
  285. dWorldSetAngularDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  286. }
  287. void PhysicsWorld::SetBounceThreshold(float threshold)
  288. {
  289. bounceThreshold_ = Max(threshold, 0.0f);
  290. }
  291. void PhysicsWorld::SetERP(float erp)
  292. {
  293. dWorldSetERP(physicsWorld_, erp);
  294. }
  295. void PhysicsWorld::SetCFM(float cfm)
  296. {
  297. dWorldSetCFM(physicsWorld_, cfm);
  298. }
  299. void PhysicsWorld::SetContactSurfaceLayer(float depth)
  300. {
  301. dWorldSetContactSurfaceLayer(physicsWorld_, depth);
  302. }
  303. void PhysicsWorld::SetTimeAccumulator(float time)
  304. {
  305. timeAcc_ = time;
  306. }
  307. void PhysicsWorld::Raycast(std::vector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  308. {
  309. PROFILE(PhysicsRaycast);
  310. result.clear();
  311. dGeomRaySetLength(rayGeometry_, maxDistance);
  312. dGeomRaySet(rayGeometry_, ray.origin_.x_, ray.origin_.y_, ray.origin_.z_, ray.direction_.x_, ray.direction_.y_, ray.direction_.z_);
  313. dGeomSetCollideBits(rayGeometry_, collisionMask);
  314. dSpaceCollide2(rayGeometry_, (dGeomID)space_, &result, RaycastCallback);
  315. std::sort(result.begin(), result.end(), CompareRaycastResults);
  316. }
  317. Vector3 PhysicsWorld::GetGravity() const
  318. {
  319. dVector3 g;
  320. dWorldGetGravity(physicsWorld_, g);
  321. return Vector3(g[0], g[1], g[2]);
  322. }
  323. float PhysicsWorld::GetLinearRestThreshold() const
  324. {
  325. return dWorldGetAutoDisableLinearThreshold(physicsWorld_);
  326. }
  327. float PhysicsWorld::GetLinearDampingThreshold() const
  328. {
  329. return dWorldGetLinearDampingThreshold(physicsWorld_);
  330. }
  331. float PhysicsWorld::GetLinearDampingScale() const
  332. {
  333. return dWorldGetLinearDamping(physicsWorld_);
  334. }
  335. float PhysicsWorld::GetAngularRestThreshold() const
  336. {
  337. return dWorldGetAutoDisableAngularThreshold(physicsWorld_);
  338. }
  339. float PhysicsWorld::GetAngularDampingThreshold() const
  340. {
  341. return dWorldGetAngularDampingThreshold(physicsWorld_);
  342. }
  343. float PhysicsWorld::GetAngularDampingScale() const
  344. {
  345. return dWorldGetAngularDamping(physicsWorld_);
  346. }
  347. float PhysicsWorld::GetERP() const
  348. {
  349. return dWorldGetERP(physicsWorld_);
  350. }
  351. float PhysicsWorld::GetCFM() const
  352. {
  353. return dWorldGetCFM(physicsWorld_);
  354. }
  355. float PhysicsWorld::GetContactSurfaceLayer() const
  356. {
  357. return dWorldGetContactSurfaceLayer(physicsWorld_);
  358. }
  359. void PhysicsWorld::AddRigidBody(RigidBody* body)
  360. {
  361. rigidBodies_.push_back(body);
  362. }
  363. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  364. {
  365. for (std::vector<RigidBody*>::iterator i = rigidBodies_.begin(); i != rigidBodies_.end(); ++i)
  366. {
  367. if ((*i) == body)
  368. {
  369. rigidBodies_.erase(i);
  370. return;
  371. }
  372. }
  373. }
  374. void PhysicsWorld::SendCollisionEvents()
  375. {
  376. PROFILE(SendCollisionEvents);
  377. VariantMap physicsCollisionData;
  378. VariantMap nodeCollisionData;
  379. VectorBuffer contacts;
  380. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  381. for (std::vector<PhysicsCollisionInfo>::const_iterator i = collisionInfos_.begin(); i != collisionInfos_.end(); ++i)
  382. {
  383. // Skip if either of the nodes has been removed
  384. if ((!i->nodeA_) || (!i->nodeB_))
  385. continue;
  386. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)i->nodeA_;
  387. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)i->nodeB_;
  388. physicsCollisionData[PhysicsCollision::P_SHAPEA] = (void*)i->shapeA_;
  389. physicsCollisionData[PhysicsCollision::P_SHAPEB] = (void*)i->shapeB_;
  390. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = i->newCollision_;
  391. contacts.Clear();
  392. for (unsigned j = 0; j < i->contacts_.size(); ++j)
  393. {
  394. contacts.WriteVector3(i->contacts_[j].position_);
  395. contacts.WriteVector3(i->contacts_[j].normal_);
  396. contacts.WriteFloat(i->contacts_[j].depth_);
  397. contacts.WriteFloat(i->contacts_[j].velocity_);
  398. }
  399. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  400. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  401. // Skip if either of the nodes is null, or has been removed as a response to the event
  402. if ((!i->nodeA_) || (!i->nodeB_))
  403. continue;
  404. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeA_;
  405. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeB_;
  406. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeB_;
  407. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = i->newCollision_;
  408. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  409. SendEvent(i->nodeA_, E_NODECOLLISION, nodeCollisionData);
  410. // Skip if either of the nodes has been removed as a response to the event
  411. if ((!i->nodeA_) || (!i->nodeB_))
  412. continue;
  413. contacts.Clear();
  414. for (unsigned j = 0; j < i->contacts_.size(); ++j)
  415. {
  416. contacts.WriteVector3(i->contacts_[j].position_);
  417. contacts.WriteVector3(-i->contacts_[j].normal_);
  418. contacts.WriteFloat(i->contacts_[j].depth_);
  419. contacts.WriteFloat(i->contacts_[j].velocity_);
  420. }
  421. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeB_;
  422. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeA_;
  423. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeA_;
  424. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  425. SendEvent(i->nodeB_, E_NODECOLLISION, nodeCollisionData);
  426. }
  427. collisionInfos_.clear();
  428. }
  429. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  430. {
  431. PROFILE(PhysicsDrawDebug);
  432. DebugRenderer* debug = GetComponent<DebugRenderer>();
  433. if (!debug)
  434. return;
  435. // Get all geometries, also those that have no rigid bodies
  436. std::vector<Node*> nodes;
  437. std::vector<CollisionShape*> shapes;
  438. node_->GetChildrenWithComponent<CollisionShape>(nodes, true);
  439. for (std::vector<Node*>::iterator i = nodes.begin(); i != nodes.end(); ++i)
  440. {
  441. (*i)->GetComponents<CollisionShape>(shapes);
  442. for (std::vector<CollisionShape*>::iterator j = shapes.begin(); j != shapes.end(); ++j)
  443. (*j)->DrawDebugGeometry(debug, depthTest);
  444. }
  445. }
  446. void PhysicsWorld::CleanupGeometryCache()
  447. {
  448. // Remove cached shapes whose only reference is the cache itself
  449. for (std::map<std::string, SharedPtr<TriangleMeshData> >::iterator i = triangleMeshCache_.begin();
  450. i != triangleMeshCache_.end();)
  451. {
  452. std::map<std::string, SharedPtr<TriangleMeshData> >::iterator current = i++;
  453. if (current->second.GetRefCount() == 1)
  454. triangleMeshCache_.erase(current);
  455. }
  456. for (std::map<std::string, SharedPtr<HeightfieldData> >::iterator i = heightfieldCache_.begin();
  457. i != heightfieldCache_.end();)
  458. {
  459. std::map<std::string, SharedPtr<HeightfieldData> >::iterator current = i++;
  460. if (current->second.GetRefCount() == 1)
  461. heightfieldCache_.erase(current);
  462. }
  463. }
  464. void PhysicsWorld::OnNodeSet(Node* node)
  465. {
  466. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  467. if (node)
  468. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  469. }
  470. void PhysicsWorld::NearCallback(void *userData, dGeomID geomA, dGeomID geomB)
  471. {
  472. dBodyID bodyA = dGeomGetBody(geomA);
  473. dBodyID bodyB = dGeomGetBody(geomB);
  474. // If both geometries are static, no collision
  475. if ((!bodyA) && (!bodyB))
  476. return;
  477. // If the geometries belong to the same body, no collision
  478. if (bodyA == bodyB)
  479. return;
  480. // If the bodies are already connected via other joints, no collision
  481. if ((bodyA) && (bodyB) && (dAreConnectedExcluding(bodyA, bodyB, dJointTypeContact)))
  482. return;
  483. // If both bodies are inactive, no collision
  484. RigidBody* rigidBodyA = bodyA ? static_cast<RigidBody*>(dBodyGetData(bodyA)) : 0;
  485. RigidBody* rigidBodyB = bodyB ? static_cast<RigidBody*>(dBodyGetData(bodyB)) : 0;
  486. if ((rigidBodyA) && (!rigidBodyA->IsActive()) && (rigidBodyB) && (!rigidBodyB->IsActive()))
  487. return;
  488. PhysicsWorld* world = static_cast<PhysicsWorld*>(userData);
  489. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  490. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  491. Node* nodeA = shapeA->GetNode();
  492. Node* nodeB = shapeB->GetNode();
  493. // Calculate average friction & bounce (physically incorrect)
  494. float friction = (shapeA->GetFriction() + shapeB->GetFriction()) * 0.5f;
  495. float bounce = (shapeA->GetBounce() + shapeB->GetBounce()) * 0.5f;
  496. std::vector<dContact>& contacts = *(static_cast<std::vector<dContact>*>(world->contacts_));
  497. for (unsigned i = 0; i < world->maxContacts_; ++i)
  498. {
  499. contacts[i].surface.mode = dContactApprox1;
  500. contacts[i].surface.mu = friction;
  501. if (bounce > 0.0f)
  502. {
  503. contacts[i].surface.mode |= dContactBounce;
  504. contacts[i].surface.bounce = bounce;
  505. contacts[i].surface.bounce_vel = world->bounceThreshold_;
  506. }
  507. }
  508. unsigned numContacts = dCollide(geomA, geomB, world->maxContacts_, &contacts[0].geom, sizeof(dContact));
  509. if (!numContacts)
  510. return;
  511. std::pair<RigidBody*, RigidBody*> bodyPair;
  512. if (rigidBodyA < rigidBodyB)
  513. bodyPair = std::make_pair(rigidBodyA, rigidBodyB);
  514. else
  515. bodyPair = std::make_pair(rigidBodyB, rigidBodyA);
  516. PhysicsCollisionInfo collisionInfo;
  517. collisionInfo.nodeA_ = nodeA;
  518. collisionInfo.nodeB_ = nodeB;
  519. collisionInfo.shapeA_ = shapeA;
  520. collisionInfo.shapeB_ = shapeB;
  521. collisionInfo.newCollision_ = world->previousCollisions_.find(bodyPair) == world->previousCollisions_.end();
  522. collisionInfo.contacts_.clear();
  523. world->currentCollisions_.insert(bodyPair);
  524. for (unsigned i = 0; i < numContacts; ++i)
  525. {
  526. // Calculate isotropic friction direction from relative tangent velocity between bodies
  527. // Adapted from http://www.ode.org/old_list_archives/2005-May/015836.html
  528. dVector3 velA;
  529. if (bodyA)
  530. dBodyGetPointVel(bodyA, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velA);
  531. else
  532. velA[0] = velA[1] = velA[2] = 0.0f;
  533. if (bodyB)
  534. {
  535. dVector3 velB;
  536. dBodyGetPointVel(bodyB, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velB);
  537. velA[0] -= velB[0];
  538. velA[1] -= velB[1];
  539. velA[2] -= velB[2];
  540. }
  541. // Normalize & only use our Calculated friction if it has enough precision
  542. float length = sqrtf(velA[0] * velA[0] + velA[1] * velA[1] + velA[2] * velA[2]);
  543. if (length > M_EPSILON)
  544. {
  545. float invLen = 1.0f / length;
  546. velA[0] *= invLen;
  547. velA[1] *= invLen;
  548. velA[2] *= invLen;
  549. // Make sure friction is also perpendicular to normal
  550. dCROSS(contacts[i].fdir1, =, velA, contacts[i].geom.normal);
  551. contacts[i].surface.mode |= dContactFDir1;
  552. }
  553. // Create contact joint
  554. dJointID contact = dJointCreateContact(world->physicsWorld_, world->contactJoints_, &contacts[i]);
  555. dJointAttach(contact, bodyA, bodyB);
  556. // Store contact info
  557. PhysicsContactInfo contactInfo;
  558. contactInfo.position_ = Vector3(contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2]);
  559. contactInfo.normal_ = Vector3(contacts[i].geom.normal[0], contacts[i].geom.normal[1], contacts[i].geom.normal[2]);
  560. contactInfo.depth_ = contacts[i].geom.depth;
  561. contactInfo.velocity_ = length;
  562. collisionInfo.contacts_.push_back(contactInfo);
  563. }
  564. // Store collision info to be sent later
  565. world->collisionInfos_.push_back(collisionInfo);
  566. }
  567. void PhysicsWorld::RaycastCallback(void *userData, dGeomID geomA, dGeomID geomB)
  568. {
  569. dContact contact;
  570. unsigned numContacts = dCollide(geomA, geomB, 1, &contact.geom, sizeof(dContact));
  571. if (numContacts > 0)
  572. {
  573. std::vector<PhysicsRaycastResult>* result = static_cast<std::vector<PhysicsRaycastResult>*>(userData);
  574. PhysicsRaycastResult newResult;
  575. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  576. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  577. // Check which of the geometries is the raycast ray
  578. if (shapeA)
  579. newResult.node_ = shapeA->GetNode();
  580. else
  581. newResult.node_ = shapeB->GetNode();
  582. newResult.distance_ = contact.geom.depth;
  583. newResult.position_ = Vector3(contact.geom.pos[0], contact.geom.pos[1], contact.geom.pos[2]);
  584. newResult.normal_ = Vector3(contact.geom.normal[0], contact.geom.normal[1], contact.geom.normal[2]);
  585. result->push_back(newResult);
  586. }
  587. }
  588. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  589. {
  590. using namespace SceneSubsystemUpdate;
  591. Update(eventData[P_TIMESTEP].GetFloat());
  592. }
  593. void RegisterPhysicsLibrary(Context* context)
  594. {
  595. CollisionShape::RegisterObject(context);
  596. Joint::RegisterObject(context);
  597. RigidBody::RegisterObject(context);
  598. PhysicsWorld::RegisterObject(context);
  599. }