PhysicsWorld.cpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Model.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  42. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  43. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  44. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  45. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  46. extern ContactAddedCallback gContactAddedCallback;
  47. namespace Urho3D
  48. {
  49. const char* PHYSICS_CATEGORY = "Physics";
  50. extern const char* SUBSYSTEM_CATEGORY;
  51. static const int MAX_SOLVER_ITERATIONS = 256;
  52. static const int DEFAULT_FPS = 60;
  53. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  54. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  55. {
  56. return lhs.distance_ < rhs.distance_;
  57. }
  58. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  59. {
  60. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  61. }
  62. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  63. {
  64. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  65. }
  66. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  67. {
  68. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  69. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  70. cp.m_combinedRestitution = colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  71. return true;
  72. }
  73. /// Callback for physics world queries.
  74. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  75. {
  76. /// Construct.
  77. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  78. {
  79. }
  80. /// Add a contact result.
  81. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObjectWrapper *colObj0Wrap, int, int, const btCollisionObjectWrapper *colObj1Wrap, int, int)
  82. {
  83. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  84. if (body && !result_.Contains(body))
  85. result_.Push(body);
  86. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  87. if (body && !result_.Contains(body))
  88. result_.Push(body);
  89. return 0.0f;
  90. }
  91. /// Found rigid bodies.
  92. PODVector<RigidBody*>& result_;
  93. };
  94. PhysicsWorld::PhysicsWorld(Context* context) :
  95. Component(context),
  96. collisionConfiguration_(0),
  97. collisionDispatcher_(0),
  98. broadphase_(0),
  99. solver_(0),
  100. world_(0),
  101. fps_(DEFAULT_FPS),
  102. timeAcc_(0.0f),
  103. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  104. interpolation_(true),
  105. internalEdge_(true),
  106. applyingTransforms_(false),
  107. debugRenderer_(0),
  108. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  109. {
  110. gContactAddedCallback = CustomMaterialCombinerCallback;
  111. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  112. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  113. broadphase_ = new btDbvtBroadphase();
  114. solver_ = new btSequentialImpulseConstraintSolver();
  115. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  116. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  117. world_->getDispatchInfo().m_useContinuous = true;
  118. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  119. world_->setDebugDrawer(this);
  120. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  121. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  122. }
  123. PhysicsWorld::~PhysicsWorld()
  124. {
  125. if (scene_)
  126. {
  127. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  128. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  129. (*i)->ReleaseConstraint();
  130. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  131. (*i)->ReleaseBody();
  132. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  133. (*i)->ReleaseShape();
  134. }
  135. delete world_;
  136. world_ = 0;
  137. delete solver_;
  138. solver_ = 0;
  139. delete broadphase_;
  140. broadphase_ = 0;
  141. delete collisionDispatcher_;
  142. collisionDispatcher_ = 0;
  143. delete collisionConfiguration_;
  144. collisionConfiguration_ = 0;
  145. }
  146. void PhysicsWorld::RegisterObject(Context* context)
  147. {
  148. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  149. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  150. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  151. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_INT, "Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  152. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  153. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  154. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Internal Edge Utility", internalEdge_, true, AM_DEFAULT);
  155. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  156. }
  157. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  158. {
  159. if (debugRenderer_)
  160. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  161. else
  162. return false;
  163. }
  164. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  165. {
  166. if (debugRenderer_)
  167. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  168. }
  169. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  170. {
  171. if (debug)
  172. {
  173. PROFILE(PhysicsDrawDebug);
  174. debugRenderer_ = debug;
  175. debugDepthTest_ = depthTest;
  176. world_->debugDrawWorld();
  177. debugRenderer_ = 0;
  178. }
  179. }
  180. void PhysicsWorld::reportErrorWarning(const char* warningString)
  181. {
  182. LOGWARNING("Physics: " + String(warningString));
  183. }
  184. void PhysicsWorld::Update(float timeStep)
  185. {
  186. PROFILE(UpdatePhysics);
  187. float internalTimeStep = 1.0f / fps_;
  188. delayedWorldTransforms_.Clear();
  189. if (interpolation_)
  190. {
  191. int maxSubSteps = (int)(timeStep * fps_) + 1;
  192. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  193. }
  194. else
  195. {
  196. timeAcc_ += timeStep;
  197. while (timeAcc_ >= internalTimeStep)
  198. {
  199. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  200. timeAcc_ -= internalTimeStep;
  201. }
  202. }
  203. // Apply delayed (parented) world transforms now
  204. while (!delayedWorldTransforms_.Empty())
  205. {
  206. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  207. i != delayedWorldTransforms_.End(); ++i)
  208. {
  209. const DelayedWorldTransform& transform = i->second_;
  210. // If parent's transform has already been assigned, can proceed
  211. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  212. {
  213. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  214. delayedWorldTransforms_.Erase(i);
  215. }
  216. }
  217. }
  218. }
  219. void PhysicsWorld::UpdateCollisions()
  220. {
  221. world_->performDiscreteCollisionDetection();
  222. }
  223. void PhysicsWorld::SetFps(int fps)
  224. {
  225. fps_ = Clamp(fps, 1, 1000);
  226. MarkNetworkUpdate();
  227. }
  228. void PhysicsWorld::SetGravity(Vector3 gravity)
  229. {
  230. world_->setGravity(ToBtVector3(gravity));
  231. MarkNetworkUpdate();
  232. }
  233. void PhysicsWorld::SetNumIterations(int num)
  234. {
  235. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  236. world_->getSolverInfo().m_numIterations = num;
  237. MarkNetworkUpdate();
  238. }
  239. void PhysicsWorld::SetInterpolation(bool enable)
  240. {
  241. interpolation_ = enable;
  242. }
  243. void PhysicsWorld::SetInternalEdge(bool enable)
  244. {
  245. internalEdge_ = enable;
  246. MarkNetworkUpdate();
  247. }
  248. void PhysicsWorld::SetSplitImpulse(bool enable)
  249. {
  250. world_->getSolverInfo().m_splitImpulse = enable;
  251. MarkNetworkUpdate();
  252. }
  253. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  254. {
  255. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  256. MarkNetworkUpdate();
  257. }
  258. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  259. {
  260. PROFILE(PhysicsRaycast);
  261. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  262. maxDistance * ray.direction_));
  263. rayCallback.m_collisionFilterGroup = (short)0xffff;
  264. rayCallback.m_collisionFilterMask = collisionMask;
  265. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  266. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  267. {
  268. PhysicsRaycastResult newResult;
  269. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  270. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  271. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  272. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  273. result.Push(newResult);
  274. }
  275. Sort(result.Begin(), result.End(), CompareRaycastResults);
  276. }
  277. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  278. {
  279. PROFILE(PhysicsRaycastSingle);
  280. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  281. maxDistance * ray.direction_));
  282. rayCallback.m_collisionFilterGroup = (short)0xffff;
  283. rayCallback.m_collisionFilterMask = collisionMask;
  284. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  285. if (rayCallback.hasHit())
  286. {
  287. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  288. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  289. result.distance_ = (result.position_ - ray.origin_).Length();
  290. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  291. }
  292. else
  293. {
  294. result.position_ = Vector3::ZERO;
  295. result.normal_ = Vector3::ZERO;
  296. result.distance_ = M_INFINITY;
  297. result.body_ = 0;
  298. }
  299. }
  300. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  301. {
  302. PROFILE(PhysicsSphereCast);
  303. btSphereShape shape(radius);
  304. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  305. maxDistance * ray.direction_));
  306. convexCallback.m_collisionFilterGroup = (short)0xffff;
  307. convexCallback.m_collisionFilterMask = collisionMask;
  308. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  309. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  310. if (convexCallback.hasHit())
  311. {
  312. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  313. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  314. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  315. result.distance_ = (result.position_ - ray.origin_).Length();
  316. }
  317. else
  318. {
  319. result.body_ = 0;
  320. result.position_ = Vector3::ZERO;
  321. result.normal_ = Vector3::ZERO;
  322. result.distance_ = M_INFINITY;
  323. }
  324. }
  325. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  326. {
  327. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  328. i != triMeshCache_.End();)
  329. {
  330. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  331. if (current->first_.first_ == model)
  332. triMeshCache_.Erase(current);
  333. }
  334. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  335. i != convexCache_.End();)
  336. {
  337. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  338. if (current->first_.first_ == model)
  339. convexCache_.Erase(current);
  340. }
  341. }
  342. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  343. {
  344. PROFILE(PhysicsSphereQuery);
  345. result.Clear();
  346. btSphereShape sphereShape(sphere.radius_);
  347. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  348. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  349. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  350. tempRigidBody->activate();
  351. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  352. PhysicsQueryCallback callback(result);
  353. world_->contactTest(tempRigidBody, callback);
  354. world_->removeRigidBody(tempRigidBody);
  355. delete tempRigidBody;
  356. }
  357. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  358. {
  359. PROFILE(PhysicsBoxQuery);
  360. result.Clear();
  361. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  362. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  363. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  364. tempRigidBody->activate();
  365. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  366. PhysicsQueryCallback callback(result);
  367. world_->contactTest(tempRigidBody, callback);
  368. world_->removeRigidBody(tempRigidBody);
  369. delete tempRigidBody;
  370. }
  371. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  372. {
  373. PROFILE(GetCollidingBodies);
  374. result.Clear();
  375. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  376. i != currentCollisions_.End(); ++i)
  377. {
  378. if (i->first_.first_ == body)
  379. result.Push(i->first_.second_);
  380. else if (i->first_.second_ == body)
  381. result.Push(i->first_.first_);
  382. }
  383. }
  384. Vector3 PhysicsWorld::GetGravity() const
  385. {
  386. return ToVector3(world_->getGravity());
  387. }
  388. int PhysicsWorld::GetNumIterations() const
  389. {
  390. return world_->getSolverInfo().m_numIterations;
  391. }
  392. bool PhysicsWorld::GetSplitImpulse() const
  393. {
  394. return world_->getSolverInfo().m_splitImpulse != 0;
  395. }
  396. void PhysicsWorld::AddRigidBody(RigidBody* body)
  397. {
  398. rigidBodies_.Push(body);
  399. }
  400. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  401. {
  402. rigidBodies_.Remove(body);
  403. }
  404. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  405. {
  406. collisionShapes_.Push(shape);
  407. }
  408. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  409. {
  410. collisionShapes_.Remove(shape);
  411. }
  412. void PhysicsWorld::AddConstraint(Constraint* constraint)
  413. {
  414. constraints_.Push(constraint);
  415. }
  416. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  417. {
  418. constraints_.Remove(constraint);
  419. }
  420. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  421. {
  422. delayedWorldTransforms_[transform.rigidBody_] = transform;
  423. }
  424. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  425. {
  426. DebugRenderer* debug = GetComponent<DebugRenderer>();
  427. DrawDebugGeometry(debug, depthTest);
  428. }
  429. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  430. {
  431. debugRenderer_ = debug;
  432. }
  433. void PhysicsWorld::SetDebugDepthTest(bool enable)
  434. {
  435. debugDepthTest_ = enable;
  436. }
  437. void PhysicsWorld::CleanupGeometryCache()
  438. {
  439. // Remove cached shapes whose only reference is the cache itself
  440. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  441. i != triMeshCache_.End();)
  442. {
  443. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  444. if (current->second_.Refs() == 1)
  445. triMeshCache_.Erase(current);
  446. }
  447. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  448. i != convexCache_.End();)
  449. {
  450. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  451. if (current->second_.Refs() == 1)
  452. convexCache_.Erase(current);
  453. }
  454. }
  455. void PhysicsWorld::OnNodeSet(Node* node)
  456. {
  457. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  458. if (node)
  459. {
  460. scene_ = GetScene();
  461. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  462. }
  463. }
  464. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  465. {
  466. using namespace SceneSubsystemUpdate;
  467. Update(eventData[P_TIMESTEP].GetFloat());
  468. }
  469. void PhysicsWorld::PreStep(float timeStep)
  470. {
  471. // Send pre-step event
  472. using namespace PhysicsPreStep;
  473. VariantMap& eventData = GetEventDataMap();
  474. eventData[P_WORLD] = (void*)this;
  475. eventData[P_TIMESTEP] = timeStep;
  476. SendEvent(E_PHYSICSPRESTEP, eventData);
  477. // Start profiling block for the actual simulation step
  478. #ifdef ENABLE_PROFILING
  479. Profiler* profiler = GetSubsystem<Profiler>();
  480. if (profiler)
  481. profiler->BeginBlock("StepSimulation");
  482. #endif
  483. }
  484. void PhysicsWorld::PostStep(float timeStep)
  485. {
  486. #ifdef ENABLE_PROFILING
  487. Profiler* profiler = GetSubsystem<Profiler>();
  488. if (profiler)
  489. profiler->EndBlock();
  490. #endif
  491. SendCollisionEvents();
  492. // Send post-step event
  493. using namespace PhysicsPreStep;
  494. VariantMap& eventData = GetEventDataMap();
  495. eventData[P_WORLD] = (void*)this;
  496. eventData[P_TIMESTEP] = timeStep;
  497. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  498. }
  499. void PhysicsWorld::SendCollisionEvents()
  500. {
  501. PROFILE(SendCollisionEvents);
  502. currentCollisions_.Clear();
  503. physicsCollisionData_.Clear();
  504. nodeCollisionData_.Clear();
  505. int numManifolds = collisionDispatcher_->getNumManifolds();
  506. if (numManifolds)
  507. {
  508. physicsCollisionData_[PhysicsCollision::P_WORLD] = (void*)this;
  509. for (int i = 0; i < numManifolds; ++i)
  510. {
  511. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  512. int numContacts = contactManifold->getNumContacts();
  513. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  514. if (!numContacts)
  515. continue;
  516. const btCollisionObject* objectA = contactManifold->getBody0();
  517. const btCollisionObject* objectB = contactManifold->getBody1();
  518. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  519. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  520. // If it's not a rigidbody, maybe a ghost object
  521. if (!bodyA || !bodyB)
  522. continue;
  523. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  524. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  525. continue;
  526. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  527. continue;
  528. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  529. !bodyA->IsActive() && !bodyB->IsActive())
  530. continue;
  531. WeakPtr<RigidBody> bodyWeakA(bodyA);
  532. WeakPtr<RigidBody> bodyWeakB(bodyB);
  533. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  534. if (bodyA < bodyB)
  535. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  536. else
  537. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  538. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  539. // objects during collision event handling
  540. currentCollisions_[bodyPair] = contactManifold;
  541. }
  542. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  543. i != currentCollisions_.End(); ++i)
  544. {
  545. RigidBody* bodyA = i->first_.first_;
  546. RigidBody* bodyB = i->first_.second_;
  547. if (!bodyA || !bodyB)
  548. continue;
  549. btPersistentManifold* contactManifold = i->second_;
  550. int numContacts = contactManifold->getNumContacts();
  551. Node* nodeA = bodyA->GetNode();
  552. Node* nodeB = bodyB->GetNode();
  553. WeakPtr<Node> nodeWeakA(nodeA);
  554. WeakPtr<Node> nodeWeakB(nodeB);
  555. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  556. bool newCollision = !previousCollisions_.Contains(i->first_);
  557. physicsCollisionData_[PhysicsCollision::P_NODEA] = (void*)nodeA;
  558. physicsCollisionData_[PhysicsCollision::P_NODEB] = (void*)nodeB;
  559. physicsCollisionData_[PhysicsCollision::P_BODYA] = (void*)bodyA;
  560. physicsCollisionData_[PhysicsCollision::P_BODYB] = (void*)bodyB;
  561. physicsCollisionData_[PhysicsCollision::P_PHANTOM] = phantom;
  562. contacts_.Clear();
  563. for (int j = 0; j < numContacts; ++j)
  564. {
  565. btManifoldPoint& point = contactManifold->getContactPoint(j);
  566. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  567. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  568. contacts_.WriteFloat(point.m_distance1);
  569. contacts_.WriteFloat(point.m_appliedImpulse);
  570. }
  571. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  572. // Send separate collision start event if collision is new
  573. if (newCollision)
  574. {
  575. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  576. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  577. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  578. continue;
  579. }
  580. // Then send the ongoing collision event
  581. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  582. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  583. continue;
  584. nodeCollisionData_[NodeCollision::P_BODY] = (void*)bodyA;
  585. nodeCollisionData_[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  586. nodeCollisionData_[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  587. nodeCollisionData_[NodeCollision::P_PHANTOM] = phantom;
  588. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  589. if (newCollision)
  590. {
  591. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  592. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  593. continue;
  594. }
  595. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  596. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  597. continue;
  598. contacts_.Clear();
  599. for (int j = 0; j < numContacts; ++j)
  600. {
  601. btManifoldPoint& point = contactManifold->getContactPoint(j);
  602. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  603. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  604. contacts_.WriteFloat(point.m_distance1);
  605. contacts_.WriteFloat(point.m_appliedImpulse);
  606. }
  607. nodeCollisionData_[NodeCollision::P_BODY] = (void*)bodyB;
  608. nodeCollisionData_[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  609. nodeCollisionData_[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  610. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  611. if (newCollision)
  612. {
  613. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  614. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  615. continue;
  616. }
  617. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  618. }
  619. }
  620. // Send collision end events as applicable
  621. {
  622. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = (void*)this;
  623. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  624. {
  625. if (!currentCollisions_.Contains(i->first_))
  626. {
  627. RigidBody* bodyA = i->first_.first_;
  628. RigidBody* bodyB = i->first_.second_;
  629. if (!bodyA || !bodyB)
  630. continue;
  631. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  632. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  633. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  634. continue;
  635. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  636. continue;
  637. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  638. !bodyA->IsActive() && !bodyB->IsActive())
  639. continue;
  640. Node* nodeA = bodyA->GetNode();
  641. Node* nodeB = bodyB->GetNode();
  642. WeakPtr<Node> nodeWeakA(nodeA);
  643. WeakPtr<Node> nodeWeakB(nodeB);
  644. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = (void*)bodyA;
  645. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = (void*)bodyB;
  646. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = (void*)nodeA;
  647. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = (void*)nodeB;
  648. physicsCollisionData_[PhysicsCollisionEnd::P_PHANTOM] = phantom;
  649. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  650. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  651. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  652. continue;
  653. nodeCollisionData_[NodeCollisionEnd::P_BODY] = (void*)bodyA;
  654. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeB;
  655. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyB;
  656. nodeCollisionData_[NodeCollisionEnd::P_PHANTOM] = phantom;
  657. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  658. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  659. continue;
  660. nodeCollisionData_[NodeCollisionEnd::P_BODY] = (void*)bodyB;
  661. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeA;
  662. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyA;
  663. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  664. }
  665. }
  666. }
  667. previousCollisions_ = currentCollisions_;
  668. }
  669. void RegisterPhysicsLibrary(Context* context)
  670. {
  671. CollisionShape::RegisterObject(context);
  672. RigidBody::RegisterObject(context);
  673. Constraint::RegisterObject(context);
  674. PhysicsWorld::RegisterObject(context);
  675. }
  676. }