PhysicsWorld.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Joint.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsWorld.h"
  32. #include "ProcessUtils.h"
  33. #include "Profiler.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "VectorBuffer.h"
  38. #include <ode/ode.h>
  39. #include "Sort.h"
  40. #include "DebugNew.h"
  41. static const int DEFAULT_FPS = 60;
  42. static const int DEFAULT_MAXCONTACTS = 20;
  43. static const float DEFAULT_BOUNCETHRESHOLD = 0.1f;
  44. static unsigned numInstances = 0;
  45. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  46. {
  47. return lhs.distance_ < rhs.distance_;
  48. }
  49. OBJECTTYPESTATIC(PhysicsWorld);
  50. PhysicsWorld::PhysicsWorld(Context* context) :
  51. Component(context),
  52. physicsWorld_(0),
  53. space_(0),
  54. rayGeometry_(0),
  55. contactJoints_(0),
  56. fps_(DEFAULT_FPS),
  57. maxContacts_(DEFAULT_MAXCONTACTS),
  58. bounceThreshold_(DEFAULT_BOUNCETHRESHOLD),
  59. timeAcc_(0.0f),
  60. randomSeed_(0)
  61. {
  62. {
  63. MutexLock lock(GetStaticMutex());
  64. if (!numInstances)
  65. dInitODE();
  66. ++numInstances;
  67. }
  68. physicsWorld_ = dWorldCreate();
  69. space_ = dHashSpaceCreate(0);
  70. contactJoints_ = dJointGroupCreate(0);
  71. // Create ray geometry for physics world raycasts
  72. rayGeometry_ = dCreateRay(0, 0.0f);
  73. // Enable automatic resting of rigid bodies
  74. dWorldSetAutoDisableFlag(physicsWorld_, 1);
  75. contacts_ = new PODVector<dContact>(maxContacts_);
  76. }
  77. PhysicsWorld::~PhysicsWorld()
  78. {
  79. // Forcibly remove any cached geometries that still remain
  80. triangleMeshCache_.Clear();
  81. heightfieldCache_.Clear();
  82. if (contactJoints_)
  83. {
  84. dJointGroupDestroy(contactJoints_);
  85. contactJoints_ = 0;
  86. }
  87. if (rayGeometry_)
  88. {
  89. dGeomDestroy(rayGeometry_);
  90. rayGeometry_ = 0;
  91. }
  92. if (space_)
  93. {
  94. dSpaceDestroy(space_);
  95. space_ = 0;
  96. }
  97. if (contacts_)
  98. {
  99. PODVector<dContact>* contacts = static_cast<PODVector<dContact>*>(contacts_);
  100. delete contacts;
  101. contacts = 0;
  102. }
  103. if (physicsWorld_)
  104. {
  105. dWorldDestroy(physicsWorld_);
  106. physicsWorld_ = 0;
  107. }
  108. {
  109. MutexLock lock(GetStaticMutex());
  110. --numInstances;
  111. if (!numInstances)
  112. dCloseODE();
  113. }
  114. }
  115. void PhysicsWorld::RegisterObject(Context* context)
  116. {
  117. context->RegisterFactory<PhysicsWorld>();
  118. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  119. ATTRIBUTE(PhysicsWorld, VAR_INT, "Max Contacts", maxContacts_, DEFAULT_MAXCONTACTS, AM_DEFAULT);
  120. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Bounce Threshold", bounceThreshold_, DEFAULT_BOUNCETHRESHOLD, AM_DEFAULT);
  121. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Time Accumulator", timeAcc_, 0.0f, AM_DEFAULT);
  122. ATTRIBUTE(PhysicsWorld, VAR_INT, "Random Seed", randomSeed_, 0, AM_DEFAULT);
  123. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, Vector3::ZERO, AM_DEFAULT);
  124. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Linear Rest Threshold", GetLinearRestThreshold, SetLinearRestThreshold, float, 0.01f, AM_DEFAULT);
  125. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Linear Damping Threshold", GetLinearDampingThreshold, SetLinearDampingThreshold, float, 0.01f, AM_DEFAULT);
  126. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Linear Damping Scale", GetLinearDampingScale, SetLinearDampingScale, float, 0.0f, AM_DEFAULT);
  127. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Angular Rest Threshold", GetAngularRestThreshold, SetAngularRestThreshold, float, 0.01f, AM_DEFAULT);
  128. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Angular Damping Threshold", GetAngularDampingThreshold, SetAngularDampingThreshold, float, 0.01f, AM_DEFAULT);
  129. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Angular Damping Scale", GetAngularDampingScale, SetAngularDampingScale, float, 0.0f, AM_DEFAULT);
  130. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "ERP", GetERP, SetERP, float, 0.2f, AM_DEFAULT);
  131. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "CFM", GetCFM, SetCFM, float, 0.00001f, AM_DEFAULT);
  132. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Contact Surface Layer", GetContactSurfaceLayer, SetContactSurfaceLayer, float, 0.0f, AM_DEFAULT);
  133. }
  134. void PhysicsWorld::Update(float timeStep)
  135. {
  136. PROFILE(UpdatePhysics);
  137. float internalTimeStep = 1.0f / fps_;
  138. while (timeStep > 0.0f)
  139. {
  140. float currentStep = Min(timeStep, internalTimeStep);
  141. timeAcc_ += currentStep;
  142. timeStep -= currentStep;
  143. if (timeAcc_ >= internalTimeStep)
  144. {
  145. timeAcc_ -= internalTimeStep;
  146. // Send pre-step event
  147. using namespace PhysicsPreStep;
  148. VariantMap eventData;
  149. eventData[P_WORLD] = (void*)this;
  150. eventData[P_TIMESTEP] = internalTimeStep;
  151. SendEvent(E_PHYSICSPRESTEP, eventData);
  152. // Store the previous transforms of the physics objects
  153. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  154. (*i)->PreStep();
  155. /// \todo ODE random number generation is not threadsafe
  156. dRandSetSeed(randomSeed_);
  157. // Collide, step the world, and clear contact joints
  158. {
  159. PROFILE(CheckCollisions);
  160. dSpaceCollide(space_, this, NearCallback);
  161. }
  162. {
  163. PROFILE(StepPhysics);
  164. dWorldQuickStep(physicsWorld_, internalTimeStep);
  165. dJointGroupEmpty(contactJoints_);
  166. previousCollisions_ = currentCollisions_;
  167. currentCollisions_.Clear();
  168. }
  169. randomSeed_ = dRandGetSeed();
  170. // Send accumulated collision events
  171. SendCollisionEvents();
  172. // Interpolate transforms of physics objects
  173. float t = Clamp(timeAcc_ / internalTimeStep, 0.0f, 1.0f);
  174. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  175. (*i)->PostStep(t);
  176. // Send post-step event
  177. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  178. }
  179. }
  180. }
  181. void PhysicsWorld::SetFps(int fps)
  182. {
  183. fps_ = Max(fps, 1);
  184. }
  185. void PhysicsWorld::SetMaxContacts(unsigned num)
  186. {
  187. maxContacts_ = Max(num, 1);
  188. PODVector<dContact>* contacts = static_cast<PODVector<dContact>*>(contacts_);
  189. contacts->Resize(maxContacts_);
  190. }
  191. void PhysicsWorld::SetGravity(Vector3 gravity)
  192. {
  193. dWorldSetGravity(physicsWorld_, gravity.x_, gravity.y_, gravity.z_);
  194. }
  195. void PhysicsWorld::SetLinearRestThreshold(float threshold)
  196. {
  197. dWorldSetAutoDisableLinearThreshold(physicsWorld_, Max(threshold, 0.0f));
  198. }
  199. void PhysicsWorld::SetLinearDampingThreshold(float threshold)
  200. {
  201. dWorldSetLinearDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  202. }
  203. void PhysicsWorld::SetLinearDampingScale(float scale)
  204. {
  205. dWorldSetLinearDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  206. }
  207. void PhysicsWorld::SetAngularRestThreshold(float threshold)
  208. {
  209. dWorldSetAutoDisableAngularThreshold(physicsWorld_, threshold);
  210. }
  211. void PhysicsWorld::SetAngularDampingThreshold(float threshold)
  212. {
  213. dWorldSetAngularDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  214. }
  215. void PhysicsWorld::SetAngularDampingScale(float scale)
  216. {
  217. dWorldSetAngularDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  218. }
  219. void PhysicsWorld::SetBounceThreshold(float threshold)
  220. {
  221. bounceThreshold_ = Max(threshold, 0.0f);
  222. }
  223. void PhysicsWorld::SetERP(float erp)
  224. {
  225. dWorldSetERP(physicsWorld_, erp);
  226. }
  227. void PhysicsWorld::SetCFM(float cfm)
  228. {
  229. dWorldSetCFM(physicsWorld_, cfm);
  230. }
  231. void PhysicsWorld::SetContactSurfaceLayer(float depth)
  232. {
  233. dWorldSetContactSurfaceLayer(physicsWorld_, depth);
  234. }
  235. void PhysicsWorld::SetTimeAccumulator(float time)
  236. {
  237. timeAcc_ = time;
  238. }
  239. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  240. {
  241. PROFILE(PhysicsRaycast);
  242. result.Clear();
  243. dGeomRaySetLength(rayGeometry_, maxDistance);
  244. dGeomRaySet(rayGeometry_, ray.origin_.x_, ray.origin_.y_, ray.origin_.z_, ray.direction_.x_, ray.direction_.y_, ray.direction_.z_);
  245. dGeomSetCollideBits(rayGeometry_, collisionMask);
  246. dSpaceCollide2(rayGeometry_, (dGeomID)space_, &result, RaycastCallback);
  247. Sort(result.Begin(), result.End(), CompareRaycastResults);
  248. }
  249. Vector3 PhysicsWorld::GetGravity() const
  250. {
  251. dVector3 g;
  252. dWorldGetGravity(physicsWorld_, g);
  253. return Vector3(g[0], g[1], g[2]);
  254. }
  255. float PhysicsWorld::GetLinearRestThreshold() const
  256. {
  257. return dWorldGetAutoDisableLinearThreshold(physicsWorld_);
  258. }
  259. float PhysicsWorld::GetLinearDampingThreshold() const
  260. {
  261. return dWorldGetLinearDampingThreshold(physicsWorld_);
  262. }
  263. float PhysicsWorld::GetLinearDampingScale() const
  264. {
  265. return dWorldGetLinearDamping(physicsWorld_);
  266. }
  267. float PhysicsWorld::GetAngularRestThreshold() const
  268. {
  269. return dWorldGetAutoDisableAngularThreshold(physicsWorld_);
  270. }
  271. float PhysicsWorld::GetAngularDampingThreshold() const
  272. {
  273. return dWorldGetAngularDampingThreshold(physicsWorld_);
  274. }
  275. float PhysicsWorld::GetAngularDampingScale() const
  276. {
  277. return dWorldGetAngularDamping(physicsWorld_);
  278. }
  279. float PhysicsWorld::GetERP() const
  280. {
  281. return dWorldGetERP(physicsWorld_);
  282. }
  283. float PhysicsWorld::GetCFM() const
  284. {
  285. return dWorldGetCFM(physicsWorld_);
  286. }
  287. float PhysicsWorld::GetContactSurfaceLayer() const
  288. {
  289. return dWorldGetContactSurfaceLayer(physicsWorld_);
  290. }
  291. void PhysicsWorld::AddRigidBody(RigidBody* body)
  292. {
  293. rigidBodies_.Push(body);
  294. }
  295. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  296. {
  297. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  298. {
  299. if ((*i) == body)
  300. {
  301. rigidBodies_.Erase(i);
  302. return;
  303. }
  304. }
  305. }
  306. void PhysicsWorld::SendCollisionEvents()
  307. {
  308. PROFILE(SendCollisionEvents);
  309. VariantMap physicsCollisionData;
  310. VariantMap nodeCollisionData;
  311. VectorBuffer contacts;
  312. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  313. for (Vector<PhysicsCollisionInfo>::ConstIterator i = collisionInfos_.Begin(); i != collisionInfos_.End(); ++i)
  314. {
  315. // Skip if either of the nodes has been removed
  316. if (!i->nodeA_ || !i->nodeB_)
  317. continue;
  318. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)i->nodeA_;
  319. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)i->nodeB_;
  320. physicsCollisionData[PhysicsCollision::P_SHAPEA] = (void*)i->shapeA_;
  321. physicsCollisionData[PhysicsCollision::P_SHAPEB] = (void*)i->shapeB_;
  322. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = i->newCollision_;
  323. contacts.Clear();
  324. for (unsigned j = 0; j < i->contacts_.Size(); ++j)
  325. {
  326. contacts.WriteVector3(i->contacts_[j].position_);
  327. contacts.WriteVector3(i->contacts_[j].normal_);
  328. contacts.WriteFloat(i->contacts_[j].depth_);
  329. contacts.WriteFloat(i->contacts_[j].velocity_);
  330. }
  331. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  332. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  333. // Skip if either of the nodes is null, or has been removed as a response to the event
  334. if (!i->nodeA_ || !i->nodeB_)
  335. continue;
  336. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeA_;
  337. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeB_;
  338. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeB_;
  339. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = i->newCollision_;
  340. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  341. SendEvent(i->nodeA_, E_NODECOLLISION, nodeCollisionData);
  342. // Skip if either of the nodes has been removed as a response to the event
  343. if (!i->nodeA_ || !i->nodeB_)
  344. continue;
  345. contacts.Clear();
  346. for (unsigned j = 0; j < i->contacts_.Size(); ++j)
  347. {
  348. contacts.WriteVector3(i->contacts_[j].position_);
  349. contacts.WriteVector3(-i->contacts_[j].normal_);
  350. contacts.WriteFloat(i->contacts_[j].depth_);
  351. contacts.WriteFloat(i->contacts_[j].velocity_);
  352. }
  353. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeB_;
  354. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeA_;
  355. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeA_;
  356. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  357. SendEvent(i->nodeB_, E_NODECOLLISION, nodeCollisionData);
  358. }
  359. collisionInfos_.Clear();
  360. }
  361. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  362. {
  363. PROFILE(PhysicsDrawDebug);
  364. DebugRenderer* debug = GetComponent<DebugRenderer>();
  365. if (!debug)
  366. return;
  367. // Get all geometries, also those that have no rigid bodies
  368. PODVector<Node*> nodes;
  369. PODVector<CollisionShape*> shapes;
  370. node_->GetChildrenWithComponent<CollisionShape>(nodes, true);
  371. for (PODVector<Node*>::Iterator i = nodes.Begin(); i != nodes.End(); ++i)
  372. {
  373. (*i)->GetComponents<CollisionShape>(shapes);
  374. for (Vector<CollisionShape*>::Iterator j = shapes.Begin(); j != shapes.End(); ++j)
  375. (*j)->DrawDebugGeometry(debug, depthTest);
  376. }
  377. }
  378. void PhysicsWorld::CleanupGeometryCache()
  379. {
  380. // Remove cached shapes whose only reference is the cache itself
  381. for (Map<String, SharedPtr<TriangleMeshData> >::Iterator i = triangleMeshCache_.Begin();
  382. i != triangleMeshCache_.End();)
  383. {
  384. Map<String, SharedPtr<TriangleMeshData> >::Iterator current = i++;
  385. if (current->second_.Refs() == 1)
  386. triangleMeshCache_.Erase(current);
  387. }
  388. for (Map<String, SharedPtr<HeightfieldData> >::Iterator i = heightfieldCache_.Begin();
  389. i != heightfieldCache_.End();)
  390. {
  391. Map<String, SharedPtr<HeightfieldData> >::Iterator current = i++;
  392. if (current->second_.Refs() == 1)
  393. heightfieldCache_.Erase(current);
  394. }
  395. }
  396. void PhysicsWorld::OnNodeSet(Node* node)
  397. {
  398. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  399. if (node)
  400. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  401. }
  402. void PhysicsWorld::NearCallback(void *userData, dGeomID geomA, dGeomID geomB)
  403. {
  404. dBodyID bodyA = dGeomGetBody(geomA);
  405. dBodyID bodyB = dGeomGetBody(geomB);
  406. // If both geometries are static, no collision
  407. if (!bodyA && !bodyB)
  408. return;
  409. // If the geometries belong to the same body, no collision
  410. if (bodyA == bodyB)
  411. return;
  412. // If the bodies are already connected via other joints, no collision
  413. if (bodyA && bodyB && dAreConnectedExcluding(bodyA, bodyB, dJointTypeContact))
  414. return;
  415. // If both bodies are inactive, no collision
  416. RigidBody* rigidBodyA = bodyA ? static_cast<RigidBody*>(dBodyGetData(bodyA)) : 0;
  417. RigidBody* rigidBodyB = bodyB ? static_cast<RigidBody*>(dBodyGetData(bodyB)) : 0;
  418. if (rigidBodyA && !rigidBodyA->IsActive() && rigidBodyB && !rigidBodyB->IsActive())
  419. return;
  420. PhysicsWorld* world = static_cast<PhysicsWorld*>(userData);
  421. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  422. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  423. Node* nodeA = shapeA->GetNode();
  424. Node* nodeB = shapeB->GetNode();
  425. // Calculate average friction & bounce (physically incorrect)
  426. float friction = (shapeA->GetFriction() + shapeB->GetFriction()) * 0.5f;
  427. float bounce = (shapeA->GetBounce() + shapeB->GetBounce()) * 0.5f;
  428. PODVector<dContact>& contacts = *(static_cast<PODVector<dContact>*>(world->contacts_));
  429. for (unsigned i = 0; i < world->maxContacts_; ++i)
  430. {
  431. contacts[i].surface.mode = dContactApprox1;
  432. contacts[i].surface.mu = friction;
  433. if (bounce > 0.0f)
  434. {
  435. contacts[i].surface.mode |= dContactBounce;
  436. contacts[i].surface.bounce = bounce;
  437. contacts[i].surface.bounce_vel = world->bounceThreshold_;
  438. }
  439. }
  440. unsigned numContacts = dCollide(geomA, geomB, world->maxContacts_, &contacts[0].geom, sizeof(dContact));
  441. if (!numContacts)
  442. return;
  443. Pair<RigidBody*, RigidBody*> bodyPair;
  444. if (rigidBodyA < rigidBodyB)
  445. bodyPair = MakePair(rigidBodyA, rigidBodyB);
  446. else
  447. bodyPair = MakePair(rigidBodyB, rigidBodyA);
  448. PhysicsCollisionInfo collisionInfo;
  449. collisionInfo.nodeA_ = nodeA;
  450. collisionInfo.nodeB_ = nodeB;
  451. collisionInfo.shapeA_ = shapeA;
  452. collisionInfo.shapeB_ = shapeB;
  453. collisionInfo.newCollision_ = world->previousCollisions_.Find(bodyPair) == world->previousCollisions_.End();
  454. collisionInfo.contacts_.Clear();
  455. world->currentCollisions_.Insert(bodyPair);
  456. for (unsigned i = 0; i < numContacts; ++i)
  457. {
  458. // Calculate isotropic friction direction from relative tangent velocity between bodies
  459. // Adapted from http://www.ode.org/old_list_archives/2005-May/015836.html
  460. dVector3 velA;
  461. if (bodyA)
  462. dBodyGetPointVel(bodyA, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velA);
  463. else
  464. velA[0] = velA[1] = velA[2] = 0.0f;
  465. if (bodyB)
  466. {
  467. dVector3 velB;
  468. dBodyGetPointVel(bodyB, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velB);
  469. velA[0] -= velB[0];
  470. velA[1] -= velB[1];
  471. velA[2] -= velB[2];
  472. }
  473. // Normalize & only use our calculated friction if it has enough precision
  474. float length = sqrtf(velA[0] * velA[0] + velA[1] * velA[1] + velA[2] * velA[2]);
  475. if (length > M_EPSILON)
  476. {
  477. float invLen = 1.0f / length;
  478. velA[0] *= invLen;
  479. velA[1] *= invLen;
  480. velA[2] *= invLen;
  481. // Make sure friction is also perpendicular to normal
  482. dCROSS(contacts[i].fdir1, =, velA, contacts[i].geom.normal);
  483. contacts[i].surface.mode |= dContactFDir1;
  484. }
  485. // Create contact joint
  486. dJointID contact = dJointCreateContact(world->physicsWorld_, world->contactJoints_, &contacts[i]);
  487. dJointAttach(contact, bodyA, bodyB);
  488. // Store contact info
  489. PhysicsContactInfo contactInfo;
  490. contactInfo.position_ = Vector3(contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2]);
  491. contactInfo.normal_ = Vector3(contacts[i].geom.normal[0], contacts[i].geom.normal[1], contacts[i].geom.normal[2]);
  492. contactInfo.depth_ = contacts[i].geom.depth;
  493. contactInfo.velocity_ = length;
  494. collisionInfo.contacts_.Push(contactInfo);
  495. }
  496. // Store collision info to be sent later
  497. world->collisionInfos_.Push(collisionInfo);
  498. }
  499. void PhysicsWorld::RaycastCallback(void *userData, dGeomID geomA, dGeomID geomB)
  500. {
  501. dContact contact;
  502. unsigned numContacts = dCollide(geomA, geomB, 1, &contact.geom, sizeof(dContact));
  503. if (numContacts > 0)
  504. {
  505. PODVector<PhysicsRaycastResult>* result = static_cast<PODVector<PhysicsRaycastResult>*>(userData);
  506. PhysicsRaycastResult newResult;
  507. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  508. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  509. // Check which of the geometries is the raycast ray
  510. if (shapeA)
  511. newResult.node_ = shapeA->GetNode();
  512. else
  513. newResult.node_ = shapeB->GetNode();
  514. newResult.distance_ = contact.geom.depth;
  515. newResult.position_ = Vector3(contact.geom.pos[0], contact.geom.pos[1], contact.geom.pos[2]);
  516. newResult.normal_ = Vector3(contact.geom.normal[0], contact.geom.normal[1], contact.geom.normal[2]);
  517. result->Push(newResult);
  518. }
  519. }
  520. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  521. {
  522. using namespace SceneSubsystemUpdate;
  523. Update(eventData[P_TIMESTEP].GetFloat());
  524. }
  525. void RegisterPhysicsLibrary(Context* context)
  526. {
  527. CollisionShape::RegisterObject(context);
  528. Joint::RegisterObject(context);
  529. RigidBody::RegisterObject(context);
  530. PhysicsWorld::RegisterObject(context);
  531. }