| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- /*
- Open Asset Import Library (ASSIMP)
- ----------------------------------------------------------------------
- Copyright (c) 2006-2010, ASSIMP Development Team
- All rights reserved.
- Redistribution and use of this software in source and binary forms,
- with or without modification, are permitted provided that the
- following conditions are met:
- * Redistributions of source code must retain the above
- copyright notice, this list of conditions and the
- following disclaimer.
- * Redistributions in binary form must reproduce the above
- copyright notice, this list of conditions and the
- following disclaimer in the documentation and/or other
- materials provided with the distribution.
- * Neither the name of the ASSIMP team, nor the names of its
- contributors may be used to endorse or promote products
- derived from this software without specific prior
- written permission of the ASSIMP Development Team.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- ----------------------------------------------------------------------
- */
- /** @file aiQuaternion.h
- * @brief Quaternion structure, including operators when compiling in C++
- */
- #ifndef AI_QUATERNION_H_INC
- #define AI_QUATERNION_H_INC
- #include <math.h>
- #include "aiTypes.h"
- #ifdef __cplusplus
- extern "C" {
- #endif
- // ---------------------------------------------------------------------------
- /** Represents a quaternion in a 4D vector. */
- struct aiQuaternion
- {
- #ifdef __cplusplus
- aiQuaternion() : w(0.0f), x(0.0f), y(0.0f), z(0.0f) {}
- aiQuaternion(float _w, float _x, float _y, float _z) : w(_w), x(_x), y(_y), z(_z) {}
- /** Construct from rotation matrix. Result is undefined if the matrix is not orthonormal. */
- aiQuaternion( const aiMatrix3x3& pRotMatrix);
- /** Construct from euler angles */
- aiQuaternion( float rotx, float roty, float rotz);
- /** Construct from an axis-angle pair */
- aiQuaternion( aiVector3D axis, float angle);
- /** Construct from a normalized quaternion stored in a vec3 */
- aiQuaternion( aiVector3D normalized);
- /** Returns a matrix representation of the quaternion */
- aiMatrix3x3 GetMatrix() const;
- bool operator== (const aiQuaternion& o) const
- {return x == o.x && y == o.y && z == o.z && w == o.w;}
- bool operator!= (const aiQuaternion& o) const
- {return !(*this == o);}
- /** Normalize the quaternion */
- aiQuaternion& Normalize();
- /** Compute quaternion conjugate */
- aiQuaternion& Conjugate ();
- /** Rotate a point by this quaternion */
- aiVector3D Rotate (const aiVector3D& in);
- /** Multiply two quaternions */
- aiQuaternion operator* (const aiQuaternion& two) const;
- /** Performs a spherical interpolation between two quaternions and writes the result into the third.
- * @param pOut Target object to received the interpolated rotation.
- * @param pStart Start rotation of the interpolation at factor == 0.
- * @param pEnd End rotation, factor == 1.
- * @param pFactor Interpolation factor between 0 and 1. Values outside of this range yield undefined results.
- */
- static void Interpolate( aiQuaternion& pOut, const aiQuaternion& pStart, const aiQuaternion& pEnd, float pFactor);
- #endif // __cplusplus
- //! w,x,y,z components of the quaternion
- float w, x, y, z;
- } ;
- #ifdef __cplusplus
- // ---------------------------------------------------------------------------
- // Constructs a quaternion from a rotation matrix
- inline aiQuaternion::aiQuaternion( const aiMatrix3x3 &pRotMatrix)
- {
- float t = 1 + pRotMatrix.a1 + pRotMatrix.b2 + pRotMatrix.c3;
- // large enough
- if( t > 0.001f)
- {
- float s = sqrt( t) * 2.0f;
- x = (pRotMatrix.c2 - pRotMatrix.b3) / s;
- y = (pRotMatrix.a3 - pRotMatrix.c1) / s;
- z = (pRotMatrix.b1 - pRotMatrix.a2) / s;
- w = 0.25f * s;
- } // else we have to check several cases
- else if( pRotMatrix.a1 > pRotMatrix.b2 && pRotMatrix.a1 > pRotMatrix.c3 )
- {
- // Column 0:
- float s = sqrt( 1.0f + pRotMatrix.a1 - pRotMatrix.b2 - pRotMatrix.c3) * 2.0f;
- x = 0.25f * s;
- y = (pRotMatrix.b1 + pRotMatrix.a2) / s;
- z = (pRotMatrix.a3 + pRotMatrix.c1) / s;
- w = (pRotMatrix.c2 - pRotMatrix.b3) / s;
- }
- else if( pRotMatrix.b2 > pRotMatrix.c3)
- {
- // Column 1:
- float s = sqrt( 1.0f + pRotMatrix.b2 - pRotMatrix.a1 - pRotMatrix.c3) * 2.0f;
- x = (pRotMatrix.b1 + pRotMatrix.a2) / s;
- y = 0.25f * s;
- z = (pRotMatrix.c2 + pRotMatrix.b3) / s;
- w = (pRotMatrix.a3 - pRotMatrix.c1) / s;
- } else
- {
- // Column 2:
- float s = sqrt( 1.0f + pRotMatrix.c3 - pRotMatrix.a1 - pRotMatrix.b2) * 2.0f;
- x = (pRotMatrix.a3 + pRotMatrix.c1) / s;
- y = (pRotMatrix.c2 + pRotMatrix.b3) / s;
- z = 0.25f * s;
- w = (pRotMatrix.b1 - pRotMatrix.a2) / s;
- }
- }
- // ---------------------------------------------------------------------------
- // Construction from euler angles
- inline aiQuaternion::aiQuaternion( float fPitch, float fYaw, float fRoll )
- {
- const float fSinPitch(sin(fPitch*0.5F));
- const float fCosPitch(cos(fPitch*0.5F));
- const float fSinYaw(sin(fYaw*0.5F));
- const float fCosYaw(cos(fYaw*0.5F));
- const float fSinRoll(sin(fRoll*0.5F));
- const float fCosRoll(cos(fRoll*0.5F));
- const float fCosPitchCosYaw(fCosPitch*fCosYaw);
- const float fSinPitchSinYaw(fSinPitch*fSinYaw);
- x = fSinRoll * fCosPitchCosYaw - fCosRoll * fSinPitchSinYaw;
- y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
- z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
- w = fCosRoll * fCosPitchCosYaw + fSinRoll * fSinPitchSinYaw;
- }
- // ---------------------------------------------------------------------------
- // Returns a matrix representation of the quaternion
- inline aiMatrix3x3 aiQuaternion::GetMatrix() const
- {
- aiMatrix3x3 resMatrix;
- resMatrix.a1 = 1.0f - 2.0f * (y * y + z * z);
- resMatrix.a2 = 2.0f * (x * y - z * w);
- resMatrix.a3 = 2.0f * (x * z + y * w);
- resMatrix.b1 = 2.0f * (x * y + z * w);
- resMatrix.b2 = 1.0f - 2.0f * (x * x + z * z);
- resMatrix.b3 = 2.0f * (y * z - x * w);
- resMatrix.c1 = 2.0f * (x * z - y * w);
- resMatrix.c2 = 2.0f * (y * z + x * w);
- resMatrix.c3 = 1.0f - 2.0f * (x * x + y * y);
- return resMatrix;
- }
- // ---------------------------------------------------------------------------
- // Construction from an axis-angle pair
- inline aiQuaternion::aiQuaternion( aiVector3D axis, float angle)
- {
- axis.Normalize();
- const float sin_a = sin( angle / 2 );
- const float cos_a = cos( angle / 2 );
- x = axis.x * sin_a;
- y = axis.y * sin_a;
- z = axis.z * sin_a;
- w = cos_a;
- }
- // ---------------------------------------------------------------------------
- // Construction from am existing, normalized quaternion
- inline aiQuaternion::aiQuaternion( aiVector3D normalized)
- {
- x = normalized.x;
- y = normalized.y;
- z = normalized.z;
- const float t = 1.0f - (x*x) - (y*y) - (z*z);
- if (t < 0.0f)
- w = 0.0f;
- else w = sqrt (t);
- }
- // ---------------------------------------------------------------------------
- // Performs a spherical interpolation between two quaternions
- // Implementation adopted from the gmtl project. All others I found on the net fail in some cases.
- // Congrats, gmtl!
- inline void aiQuaternion::Interpolate( aiQuaternion& pOut, const aiQuaternion& pStart, const aiQuaternion& pEnd, float pFactor)
- {
- // calc cosine theta
- float cosom = pStart.x * pEnd.x + pStart.y * pEnd.y + pStart.z * pEnd.z + pStart.w * pEnd.w;
- // adjust signs (if necessary)
- aiQuaternion end = pEnd;
- if( cosom < 0.0f)
- {
- cosom = -cosom;
- end.x = -end.x; // Reverse all signs
- end.y = -end.y;
- end.z = -end.z;
- end.w = -end.w;
- }
- // Calculate coefficients
- float sclp, sclq;
- if( (1.0f - cosom) > 0.0001f) // 0.0001 -> some epsillon
- {
- // Standard case (slerp)
- float omega, sinom;
- omega = acos( cosom); // extract theta from dot product's cos theta
- sinom = sin( omega);
- sclp = sin( (1.0f - pFactor) * omega) / sinom;
- sclq = sin( pFactor * omega) / sinom;
- } else
- {
- // Very close, do linear interp (because it's faster)
- sclp = 1.0f - pFactor;
- sclq = pFactor;
- }
- pOut.x = sclp * pStart.x + sclq * end.x;
- pOut.y = sclp * pStart.y + sclq * end.y;
- pOut.z = sclp * pStart.z + sclq * end.z;
- pOut.w = sclp * pStart.w + sclq * end.w;
- }
- // ---------------------------------------------------------------------------
- inline aiQuaternion& aiQuaternion::Normalize()
- {
- // compute the magnitude and divide through it
- const float mag = sqrt(x*x + y*y + z*z + w*w);
- if (mag)
- {
- const float invMag = 1.0f/mag;
- x *= invMag;
- y *= invMag;
- z *= invMag;
- w *= invMag;
- }
- return *this;
- }
- // ---------------------------------------------------------------------------
- inline aiQuaternion aiQuaternion::operator* (const aiQuaternion& t) const
- {
- return aiQuaternion(w*t.w - x*t.x - y*t.y - z*t.z,
- w*t.x + x*t.w + y*t.z - z*t.y,
- w*t.y + y*t.w + z*t.x - x*t.z,
- w*t.z + z*t.w + x*t.y - y*t.x);
- }
- // ---------------------------------------------------------------------------
- inline aiQuaternion& aiQuaternion::Conjugate ()
- {
- x = -x;
- y = -y;
- z = -z;
- return *this;
- }
- // ---------------------------------------------------------------------------
- inline aiVector3D aiQuaternion::Rotate (const aiVector3D& v)
- {
- aiQuaternion q2(0.f,v.x,v.y,v.z), q = *this, qinv = q;
- q.Conjugate();
- q = q*q2*qinv;
- return aiVector3D(q.x,q.y,q.z);
- }
- } // end extern "C"
- #endif // __cplusplus
- #endif // AI_QUATERNION_H_INC
|