PhysicsWorld.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Mutex.h"
  29. #include "PhysicsEvents.h"
  30. #include "PhysicsUtils.h"
  31. #include "PhysicsWorld.h"
  32. #include "Profiler.h"
  33. #include "Ray.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "Sort.h"
  38. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  41. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  42. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  43. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  44. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  45. extern ContactAddedCallback gContactAddedCallback;
  46. namespace Urho3D
  47. {
  48. const char* PHYSICS_CATEGORY = "Physics";
  49. extern const char* SUBSYSTEM_CATEGORY;
  50. static const int MAX_SOLVER_ITERATIONS = 256;
  51. static const int DEFAULT_FPS = 60;
  52. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  53. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  54. {
  55. return lhs.distance_ < rhs.distance_;
  56. }
  57. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  58. {
  59. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  60. }
  61. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  62. {
  63. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  64. }
  65. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  66. {
  67. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  68. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  69. cp.m_combinedRestitution = colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  70. return true;
  71. }
  72. /// Callback for physics world queries.
  73. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  74. {
  75. /// Construct.
  76. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  77. {
  78. }
  79. /// Add a contact result.
  80. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObjectWrapper *colObj0Wrap, int, int, const btCollisionObjectWrapper *colObj1Wrap, int, int)
  81. {
  82. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  83. if (body && !result_.Contains(body))
  84. result_.Push(body);
  85. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  86. if (body && !result_.Contains(body))
  87. result_.Push(body);
  88. return 0.0f;
  89. }
  90. /// Found rigid bodies.
  91. PODVector<RigidBody*>& result_;
  92. };
  93. OBJECTTYPESTATIC(PhysicsWorld);
  94. PhysicsWorld::PhysicsWorld(Context* context) :
  95. Component(context),
  96. collisionConfiguration_(0),
  97. collisionDispatcher_(0),
  98. broadphase_(0),
  99. solver_(0),
  100. world_(0),
  101. fps_(DEFAULT_FPS),
  102. timeAcc_(0.0f),
  103. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  104. interpolation_(true),
  105. applyingTransforms_(false),
  106. debugRenderer_(0),
  107. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  108. {
  109. gContactAddedCallback = CustomMaterialCombinerCallback;
  110. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  111. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  112. broadphase_ = new btDbvtBroadphase();
  113. solver_ = new btSequentialImpulseConstraintSolver();
  114. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  115. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  116. world_->getDispatchInfo().m_useContinuous = true;
  117. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  118. world_->setDebugDrawer(this);
  119. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  120. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  121. }
  122. PhysicsWorld::~PhysicsWorld()
  123. {
  124. if (scene_)
  125. {
  126. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  127. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  128. (*i)->ReleaseConstraint();
  129. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  130. (*i)->ReleaseBody();
  131. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  132. (*i)->ReleaseShape();
  133. }
  134. delete world_;
  135. world_ = 0;
  136. delete solver_;
  137. solver_ = 0;
  138. delete broadphase_;
  139. broadphase_ = 0;
  140. delete collisionDispatcher_;
  141. collisionDispatcher_ = 0;
  142. delete collisionConfiguration_;
  143. collisionConfiguration_ = 0;
  144. }
  145. void PhysicsWorld::RegisterObject(Context* context)
  146. {
  147. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  148. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  149. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  150. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_INT, "Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  151. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  152. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  153. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  154. }
  155. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  156. {
  157. if (debugRenderer_)
  158. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  159. else
  160. return false;
  161. }
  162. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  163. {
  164. if (debugRenderer_)
  165. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  166. }
  167. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  168. {
  169. if (debug)
  170. {
  171. PROFILE(PhysicsDrawDebug);
  172. debugRenderer_ = debug;
  173. debugDepthTest_ = depthTest;
  174. world_->debugDrawWorld();
  175. debugRenderer_ = 0;
  176. }
  177. }
  178. void PhysicsWorld::reportErrorWarning(const char* warningString)
  179. {
  180. LOGWARNING("Physics: " + String(warningString));
  181. }
  182. void PhysicsWorld::Update(float timeStep)
  183. {
  184. PROFILE(UpdatePhysics);
  185. float internalTimeStep = 1.0f / fps_;
  186. delayedWorldTransforms_.Clear();
  187. if (interpolation_)
  188. {
  189. int maxSubSteps = (int)(timeStep * fps_) + 1;
  190. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  191. }
  192. else
  193. {
  194. timeAcc_ += timeStep;
  195. while (timeAcc_ >= internalTimeStep)
  196. {
  197. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  198. timeAcc_ -= internalTimeStep;
  199. }
  200. }
  201. // Apply delayed (parented) world transforms now
  202. while (!delayedWorldTransforms_.Empty())
  203. {
  204. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  205. i != delayedWorldTransforms_.End(); ++i)
  206. {
  207. const DelayedWorldTransform& transform = i->second_;
  208. // If parent's transform has already been assigned, can proceed
  209. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  210. {
  211. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  212. delayedWorldTransforms_.Erase(i);
  213. }
  214. }
  215. }
  216. }
  217. void PhysicsWorld::UpdateCollisions()
  218. {
  219. world_->performDiscreteCollisionDetection();
  220. }
  221. void PhysicsWorld::SetFps(int fps)
  222. {
  223. fps_ = Clamp(fps, 1, 1000);
  224. MarkNetworkUpdate();
  225. }
  226. void PhysicsWorld::SetGravity(Vector3 gravity)
  227. {
  228. world_->setGravity(ToBtVector3(gravity));
  229. MarkNetworkUpdate();
  230. }
  231. void PhysicsWorld::SetNumIterations(int num)
  232. {
  233. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  234. world_->getSolverInfo().m_numIterations = num;
  235. MarkNetworkUpdate();
  236. }
  237. void PhysicsWorld::SetInterpolation(bool enable)
  238. {
  239. interpolation_ = enable;
  240. }
  241. void PhysicsWorld::SetSplitImpulse(bool enable)
  242. {
  243. world_->getSolverInfo().m_splitImpulse = enable;
  244. MarkNetworkUpdate();
  245. }
  246. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  247. {
  248. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  249. MarkNetworkUpdate();
  250. }
  251. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  252. {
  253. PROFILE(PhysicsRaycast);
  254. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  255. maxDistance * ray.direction_));
  256. rayCallback.m_collisionFilterGroup = (short)0xffff;
  257. rayCallback.m_collisionFilterMask = collisionMask;
  258. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  259. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  260. {
  261. PhysicsRaycastResult newResult;
  262. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  263. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  264. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  265. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  266. result.Push(newResult);
  267. }
  268. Sort(result.Begin(), result.End(), CompareRaycastResults);
  269. }
  270. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  271. {
  272. PROFILE(PhysicsRaycastSingle);
  273. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  274. maxDistance * ray.direction_));
  275. rayCallback.m_collisionFilterGroup = (short)0xffff;
  276. rayCallback.m_collisionFilterMask = collisionMask;
  277. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  278. if (rayCallback.hasHit())
  279. {
  280. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  281. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  282. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  283. result.distance_ = (result.position_ - ray.origin_).Length();
  284. }
  285. else
  286. {
  287. result.body_ = 0;
  288. result.position_ = Vector3::ZERO;
  289. result.normal_ = Vector3::ZERO;
  290. result.distance_ = M_INFINITY;
  291. }
  292. }
  293. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  294. {
  295. PROFILE(PhysicsSphereCast);
  296. btSphereShape shape(radius);
  297. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  298. maxDistance * ray.direction_));
  299. convexCallback.m_collisionFilterGroup = (short)0xffff;
  300. convexCallback.m_collisionFilterMask = collisionMask;
  301. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  302. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  303. if (convexCallback.hasHit())
  304. {
  305. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  306. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  307. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  308. result.distance_ = (result.position_ - ray.origin_).Length();
  309. }
  310. else
  311. {
  312. result.body_ = 0;
  313. result.position_ = Vector3::ZERO;
  314. result.normal_ = Vector3::ZERO;
  315. result.distance_ = M_INFINITY;
  316. }
  317. }
  318. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  319. {
  320. PROFILE(PhysicsSphereQuery);
  321. result.Clear();
  322. btSphereShape sphereShape(sphere.radius_);
  323. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  324. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  325. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  326. tempRigidBody->activate();
  327. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  328. PhysicsQueryCallback callback(result);
  329. world_->contactTest(tempRigidBody, callback);
  330. world_->removeRigidBody(tempRigidBody);
  331. delete tempRigidBody;
  332. }
  333. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  334. {
  335. PROFILE(PhysicsBoxQuery);
  336. result.Clear();
  337. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  338. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  339. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  340. tempRigidBody->activate();
  341. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  342. PhysicsQueryCallback callback(result);
  343. world_->contactTest(tempRigidBody, callback);
  344. world_->removeRigidBody(tempRigidBody);
  345. delete tempRigidBody;
  346. }
  347. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  348. {
  349. PROFILE(GetCollidingBodies);
  350. result.Clear();
  351. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  352. i != currentCollisions_.End(); ++i)
  353. {
  354. if (i->first_.first_ == body)
  355. result.Push(i->first_.second_);
  356. else if (i->first_.second_ == body)
  357. result.Push(i->first_.first_);
  358. }
  359. }
  360. Vector3 PhysicsWorld::GetGravity() const
  361. {
  362. return ToVector3(world_->getGravity());
  363. }
  364. int PhysicsWorld::GetNumIterations() const
  365. {
  366. return world_->getSolverInfo().m_numIterations;
  367. }
  368. bool PhysicsWorld::GetSplitImpulse() const
  369. {
  370. return world_->getSolverInfo().m_splitImpulse != 0;
  371. }
  372. void PhysicsWorld::AddRigidBody(RigidBody* body)
  373. {
  374. rigidBodies_.Push(body);
  375. }
  376. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  377. {
  378. rigidBodies_.Remove(body);
  379. }
  380. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  381. {
  382. collisionShapes_.Push(shape);
  383. }
  384. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  385. {
  386. collisionShapes_.Remove(shape);
  387. }
  388. void PhysicsWorld::AddConstraint(Constraint* constraint)
  389. {
  390. constraints_.Push(constraint);
  391. }
  392. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  393. {
  394. constraints_.Remove(constraint);
  395. }
  396. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  397. {
  398. delayedWorldTransforms_[transform.rigidBody_] = transform;
  399. }
  400. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  401. {
  402. DebugRenderer* debug = GetComponent<DebugRenderer>();
  403. DrawDebugGeometry(debug, depthTest);
  404. }
  405. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  406. {
  407. debugRenderer_ = debug;
  408. }
  409. void PhysicsWorld::SetDebugDepthTest(bool enable)
  410. {
  411. debugDepthTest_ = enable;
  412. }
  413. void PhysicsWorld::CleanupGeometryCache()
  414. {
  415. // Remove cached shapes whose only reference is the cache itself
  416. for (HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  417. i != geometryCache_.End();)
  418. {
  419. HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  420. if (current->second_.Refs() == 1)
  421. geometryCache_.Erase(current);
  422. }
  423. }
  424. void PhysicsWorld::OnNodeSet(Node* node)
  425. {
  426. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  427. if (node)
  428. {
  429. scene_ = GetScene();
  430. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  431. }
  432. }
  433. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  434. {
  435. using namespace SceneSubsystemUpdate;
  436. Update(eventData[P_TIMESTEP].GetFloat());
  437. }
  438. void PhysicsWorld::PreStep(float timeStep)
  439. {
  440. // Send pre-step event
  441. using namespace PhysicsPreStep;
  442. VariantMap eventData;
  443. eventData[P_WORLD] = (void*)this;
  444. eventData[P_TIMESTEP] = timeStep;
  445. SendEvent(E_PHYSICSPRESTEP, eventData);
  446. // Start profiling block for the actual simulation step
  447. #ifdef ENABLE_PROFILING
  448. Profiler* profiler = GetSubsystem<Profiler>();
  449. if (profiler)
  450. profiler->BeginBlock("StepSimulation");
  451. #endif
  452. }
  453. void PhysicsWorld::PostStep(float timeStep)
  454. {
  455. #ifdef ENABLE_PROFILING
  456. Profiler* profiler = GetSubsystem<Profiler>();
  457. if (profiler)
  458. profiler->EndBlock();
  459. #endif
  460. SendCollisionEvents();
  461. // Send post-step event
  462. using namespace PhysicsPreStep;
  463. VariantMap eventData;
  464. eventData[P_WORLD] = (void*)this;
  465. eventData[P_TIMESTEP] = timeStep;
  466. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  467. }
  468. void PhysicsWorld::SendCollisionEvents()
  469. {
  470. PROFILE(SendCollisionEvents);
  471. currentCollisions_.Clear();
  472. int numManifolds = collisionDispatcher_->getNumManifolds();
  473. if (numManifolds)
  474. {
  475. VariantMap physicsCollisionData;
  476. VariantMap nodeCollisionData;
  477. VectorBuffer contacts;
  478. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  479. for (int i = 0; i < numManifolds; ++i)
  480. {
  481. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  482. int numContacts = contactManifold->getNumContacts();
  483. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  484. if (!numContacts)
  485. continue;
  486. const btCollisionObject* objectA = contactManifold->getBody0();
  487. const btCollisionObject* objectB = contactManifold->getBody1();
  488. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  489. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  490. // If it's not a rigidbody, maybe a ghost object
  491. if (!bodyA || !bodyB)
  492. continue;
  493. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  494. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  495. continue;
  496. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  497. continue;
  498. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  499. !bodyA->IsActive() && !bodyB->IsActive())
  500. continue;
  501. WeakPtr<RigidBody> bodyWeakA(bodyA);
  502. WeakPtr<RigidBody> bodyWeakB(bodyB);
  503. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  504. if (bodyA < bodyB)
  505. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  506. else
  507. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  508. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  509. // objects during collision event handling
  510. currentCollisions_[bodyPair] = contactManifold;
  511. }
  512. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  513. i != currentCollisions_.End(); ++i)
  514. {
  515. RigidBody* bodyA = i->first_.first_;
  516. RigidBody* bodyB = i->first_.second_;
  517. if (!bodyA || !bodyB)
  518. continue;
  519. btPersistentManifold* contactManifold = i->second_;
  520. int numContacts = contactManifold->getNumContacts();
  521. Node* nodeA = bodyA->GetNode();
  522. Node* nodeB = bodyB->GetNode();
  523. WeakPtr<Node> nodeWeakA(nodeA);
  524. WeakPtr<Node> nodeWeakB(nodeB);
  525. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  526. bool newCollision = !previousCollisions_.Contains(i->first_);
  527. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  528. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  529. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  530. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  531. physicsCollisionData[PhysicsCollision::P_PHANTOM] = phantom;
  532. contacts.Clear();
  533. for (int j = 0; j < numContacts; ++j)
  534. {
  535. btManifoldPoint& point = contactManifold->getContactPoint(j);
  536. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  537. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  538. contacts.WriteFloat(point.m_distance1);
  539. contacts.WriteFloat(point.m_appliedImpulse);
  540. }
  541. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  542. // Send separate collision start event if collision is new
  543. if (newCollision)
  544. {
  545. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData);
  546. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  547. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  548. continue;
  549. }
  550. // Then send the ongoing collision event
  551. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  552. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  553. continue;
  554. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  555. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  556. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  557. nodeCollisionData[NodeCollision::P_PHANTOM] = phantom;
  558. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  559. if (newCollision)
  560. {
  561. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  562. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  563. continue;
  564. }
  565. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData);
  566. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  567. continue;
  568. contacts.Clear();
  569. for (int j = 0; j < numContacts; ++j)
  570. {
  571. btManifoldPoint& point = contactManifold->getContactPoint(j);
  572. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  573. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  574. contacts.WriteFloat(point.m_distance1);
  575. contacts.WriteFloat(point.m_appliedImpulse);
  576. }
  577. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  578. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  579. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  580. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  581. if (newCollision)
  582. {
  583. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  584. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  585. continue;
  586. }
  587. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData);
  588. }
  589. }
  590. // Send collision end events as applicable
  591. {
  592. VariantMap physicsCollisionData;
  593. VariantMap nodeCollisionData;
  594. physicsCollisionData[PhysicsCollisionEnd::P_WORLD] = (void*)this;
  595. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  596. {
  597. if (!currentCollisions_.Contains(i->first_))
  598. {
  599. RigidBody* bodyA = i->first_.first_;
  600. RigidBody* bodyB = i->first_.second_;
  601. if (!bodyA || !bodyB)
  602. continue;
  603. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  604. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  605. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  606. continue;
  607. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  608. continue;
  609. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  610. !bodyA->IsActive() && !bodyB->IsActive())
  611. continue;
  612. Node* nodeA = bodyA->GetNode();
  613. Node* nodeB = bodyB->GetNode();
  614. WeakPtr<Node> nodeWeakA(nodeA);
  615. WeakPtr<Node> nodeWeakB(nodeB);
  616. physicsCollisionData[PhysicsCollisionEnd::P_BODYA] = (void*)bodyA;
  617. physicsCollisionData[PhysicsCollisionEnd::P_BODYB] = (void*)bodyB;
  618. physicsCollisionData[PhysicsCollisionEnd::P_NODEA] = (void*)nodeA;
  619. physicsCollisionData[PhysicsCollisionEnd::P_NODEB] = (void*)nodeB;
  620. physicsCollisionData[PhysicsCollisionEnd::P_PHANTOM] = phantom;
  621. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData);
  622. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  623. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  624. continue;
  625. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyA;
  626. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeB;
  627. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyB;
  628. nodeCollisionData[NodeCollisionEnd::P_PHANTOM] = phantom;
  629. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  630. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  631. continue;
  632. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyB;
  633. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeA;
  634. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyA;
  635. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  636. }
  637. }
  638. }
  639. previousCollisions_ = currentCollisions_;
  640. }
  641. void RegisterPhysicsLibrary(Context* context)
  642. {
  643. CollisionShape::RegisterObject(context);
  644. RigidBody::RegisterObject(context);
  645. Constraint::RegisterObject(context);
  646. PhysicsWorld::RegisterObject(context);
  647. }
  648. }