View.cpp 100 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Oorni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "GraphicsImpl.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "ResourceCache.h"
  35. #include "PostProcess.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Sort.h"
  41. #include "Technique.h"
  42. #include "Texture2D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "Zone.h"
  48. #include "DebugNew.h"
  49. namespace Urho3D
  50. {
  51. static const Vector3 directions[] =
  52. {
  53. Vector3(1.0f, 0.0f, 0.0f),
  54. Vector3(-1.0f, 0.0f, 0.0f),
  55. Vector3(0.0f, 1.0f, 0.0f),
  56. Vector3(0.0f, -1.0f, 0.0f),
  57. Vector3(0.0f, 0.0f, 1.0f),
  58. Vector3(0.0f, 0.0f, -1.0f)
  59. };
  60. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  61. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  62. /// %Frustum octree query for shadowcasters.
  63. class ShadowCasterOctreeQuery : public OctreeQuery
  64. {
  65. public:
  66. /// Construct with frustum and query parameters.
  67. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  68. unsigned viewMask = DEFAULT_VIEWMASK) :
  69. OctreeQuery(result, drawableFlags, viewMask),
  70. frustum_(frustum)
  71. {
  72. }
  73. /// Intersection test for an octant.
  74. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  75. {
  76. if (inside)
  77. return INSIDE;
  78. else
  79. return frustum_.IsInside(box);
  80. }
  81. /// Intersection test for drawables.
  82. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  83. {
  84. while (start != end)
  85. {
  86. Drawable* drawable = *start;
  87. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->GetCastShadows() && drawable->IsVisible() &&
  88. (drawable->GetViewMask() & viewMask_))
  89. {
  90. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  91. result_.Push(drawable);
  92. }
  93. ++start;
  94. }
  95. }
  96. /// Frustum.
  97. Frustum frustum_;
  98. };
  99. /// %Frustum octree query for zones and occluders.
  100. class ZoneOccluderOctreeQuery : public OctreeQuery
  101. {
  102. public:
  103. /// Construct with frustum and query parameters.
  104. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  105. unsigned viewMask = DEFAULT_VIEWMASK) :
  106. OctreeQuery(result, drawableFlags, viewMask),
  107. frustum_(frustum)
  108. {
  109. }
  110. /// Intersection test for an octant.
  111. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  112. {
  113. if (inside)
  114. return INSIDE;
  115. else
  116. return frustum_.IsInside(box);
  117. }
  118. /// Intersection test for drawables.
  119. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  120. {
  121. while (start != end)
  122. {
  123. Drawable* drawable = *start;
  124. unsigned char flags = drawable->GetDrawableFlags();
  125. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && drawable->IsVisible() &&
  126. (drawable->GetViewMask() & viewMask_))
  127. {
  128. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  129. result_.Push(drawable);
  130. }
  131. ++start;
  132. }
  133. }
  134. /// Frustum.
  135. Frustum frustum_;
  136. };
  137. /// %Frustum octree query with occlusion.
  138. class OccludedFrustumOctreeQuery : public OctreeQuery
  139. {
  140. public:
  141. /// Construct with frustum, occlusion buffer and query parameters.
  142. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  143. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  144. OctreeQuery(result, drawableFlags, viewMask),
  145. frustum_(frustum),
  146. buffer_(buffer)
  147. {
  148. }
  149. /// Intersection test for an octant.
  150. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  151. {
  152. if (inside)
  153. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  154. else
  155. {
  156. Intersection result = frustum_.IsInside(box);
  157. if (result != OUTSIDE && !buffer_->IsVisible(box))
  158. result = OUTSIDE;
  159. return result;
  160. }
  161. }
  162. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  163. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  164. {
  165. while (start != end)
  166. {
  167. Drawable* drawable = *start;
  168. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->IsVisible() &&
  169. (drawable->GetViewMask() & viewMask_))
  170. {
  171. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  172. result_.Push(drawable);
  173. }
  174. ++start;
  175. }
  176. }
  177. /// Frustum.
  178. Frustum frustum_;
  179. /// Occlusion buffer.
  180. OcclusionBuffer* buffer_;
  181. };
  182. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  183. {
  184. View* view = reinterpret_cast<View*>(item->aux_);
  185. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  186. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  187. OcclusionBuffer* buffer = view->occlusionBuffer_;
  188. const Matrix3x4& viewMatrix = view->camera_->GetInverseWorldTransform();
  189. while (start != end)
  190. {
  191. Drawable* drawable = *start++;
  192. drawable->UpdateBatches(view->frame_);
  193. // If draw distance non-zero, check it
  194. float maxDistance = drawable->GetDrawDistance();
  195. if ((maxDistance <= 0.0f || drawable->GetDistance() <= maxDistance) && (!buffer || !drawable->IsOccludee() ||
  196. buffer->IsVisible(drawable->GetWorldBoundingBox())))
  197. {
  198. drawable->MarkInView(view->frame_);
  199. // For geometries, clear lights and calculate view space Z range
  200. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  201. {
  202. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  203. Vector3 center = geomBox.Center();
  204. float viewCenterZ = viewMatrix.m20_ * center.x_ + viewMatrix.m21_ * center.y_ + viewMatrix.m22_ * center.z_ +
  205. viewMatrix.m23_;
  206. Vector3 edge = geomBox.Size() * 0.5f;
  207. float viewEdgeZ = Abs(viewMatrix.m20_) * edge.x_ + Abs(viewMatrix.m21_) * edge.y_ + Abs(viewMatrix.m22_) *
  208. edge.z_;
  209. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  210. drawable->ClearLights();
  211. }
  212. }
  213. }
  214. }
  215. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  216. {
  217. View* view = reinterpret_cast<View*>(item->aux_);
  218. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  219. view->ProcessLight(*query, threadIndex);
  220. }
  221. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  222. {
  223. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  224. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  225. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  226. while (start != end)
  227. {
  228. Drawable* drawable = *start;
  229. drawable->UpdateGeometry(frame);
  230. ++start;
  231. }
  232. }
  233. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  234. {
  235. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  236. queue->SortFrontToBack();
  237. }
  238. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  239. {
  240. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  241. queue->SortBackToFront();
  242. }
  243. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  244. {
  245. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  246. start->litBatches_.SortFrontToBack();
  247. }
  248. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  249. {
  250. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  251. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  252. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  253. }
  254. OBJECTTYPESTATIC(View);
  255. View::View(Context* context) :
  256. Object(context),
  257. graphics_(GetSubsystem<Graphics>()),
  258. renderer_(GetSubsystem<Renderer>()),
  259. octree_(0),
  260. camera_(0),
  261. cameraZone_(0),
  262. farClipZone_(0),
  263. renderTarget_(0)
  264. {
  265. frame_.camera_ = 0;
  266. // Create octree query vector for each thread
  267. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  268. }
  269. View::~View()
  270. {
  271. }
  272. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  273. {
  274. Scene* scene = viewport->GetScene();
  275. Camera* camera = viewport->GetCamera();
  276. if (!scene || !camera || !camera->GetNode())
  277. return false;
  278. // If scene is loading asynchronously, it is incomplete and should not be rendered
  279. if (scene->IsAsyncLoading())
  280. return false;
  281. Octree* octree = scene->GetComponent<Octree>();
  282. if (!octree)
  283. return false;
  284. // Do not accept view if camera projection is illegal
  285. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  286. if (!camera->IsProjectionValid())
  287. return false;
  288. renderMode_ = renderer_->GetRenderMode();
  289. octree_ = octree;
  290. camera_ = camera;
  291. cameraNode_ = camera->GetNode();
  292. renderTarget_ = renderTarget;
  293. // Get active post-processing effects on the viewport
  294. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  295. postProcesses_.Clear();
  296. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  297. {
  298. PostProcess* effect = i->Get();
  299. if (effect && effect->IsActive())
  300. postProcesses_.Push(*i);
  301. }
  302. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  303. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  304. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  305. const IntRect& rect = viewport->GetRect();
  306. if (rect != IntRect::ZERO)
  307. {
  308. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  309. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  310. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  311. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  312. }
  313. else
  314. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  315. viewSize_ = viewRect_.Size();
  316. rtSize_ = IntVector2(rtWidth, rtHeight);
  317. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  318. #ifdef USE_OPENGL
  319. if (renderTarget_)
  320. {
  321. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  322. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  323. }
  324. #endif
  325. drawShadows_ = renderer_->GetDrawShadows();
  326. materialQuality_ = renderer_->GetMaterialQuality();
  327. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  328. // Set possible quality overrides from the camera
  329. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  330. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  331. materialQuality_ = QUALITY_LOW;
  332. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  333. drawShadows_ = false;
  334. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  335. maxOccluderTriangles_ = 0;
  336. return true;
  337. }
  338. void View::Update(const FrameInfo& frame)
  339. {
  340. if (!camera_ || !octree_)
  341. return;
  342. frame_.camera_ = camera_;
  343. frame_.timeStep_ = frame.timeStep_;
  344. frame_.frameNumber_ = frame.frameNumber_;
  345. frame_.viewSize_ = viewSize_;
  346. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  347. // Clear screen buffers, geometry, light, occluder & batch lists
  348. screenBuffers_.Clear();
  349. geometries_.Clear();
  350. shadowGeometries_.Clear();
  351. lights_.Clear();
  352. zones_.Clear();
  353. occluders_.Clear();
  354. baseQueue_.Clear(maxSortedInstances);
  355. preAlphaQueue_.Clear(maxSortedInstances);
  356. gbufferQueue_.Clear(maxSortedInstances);
  357. alphaQueue_.Clear(maxSortedInstances);
  358. postAlphaQueue_.Clear(maxSortedInstances);
  359. vertexLightQueues_.Clear();
  360. // Set automatic aspect ratio if required
  361. if (camera_->GetAutoAspectRatio())
  362. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  363. GetDrawables();
  364. GetBatches();
  365. UpdateGeometries();
  366. }
  367. void View::Render()
  368. {
  369. if (!octree_ || !camera_)
  370. return;
  371. // Allocate screen buffers for post-processing and blitting as necessary
  372. AllocateScreenBuffers();
  373. // Forget parameter sources from the previous view
  374. graphics_->ClearParameterSources();
  375. // If stream offset is supported, write all instance transforms to a single large buffer
  376. // Else we must lock the instance buffer for each batch group
  377. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  378. PrepareInstancingBuffer();
  379. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  380. // again to ensure correct projection will be used
  381. if (camera_->GetAutoAspectRatio())
  382. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  383. graphics_->SetColorWrite(true);
  384. // Bind the face selection and indirection cube maps for point light shadows
  385. if (renderer_->GetDrawShadows())
  386. {
  387. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  388. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  389. }
  390. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  391. // ie. when using deferred rendering and/or doing post-processing
  392. if (renderTarget_)
  393. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  394. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  395. // as a render texture produced on Direct3D9
  396. #ifdef USE_OPENGL
  397. if (renderTarget_)
  398. camera_->SetFlipVertical(true);
  399. #endif
  400. // Render
  401. if (renderMode_ == RENDER_FORWARD)
  402. RenderBatchesForward();
  403. else
  404. RenderBatchesDeferred();
  405. #ifdef USE_OPENGL
  406. camera_->SetFlipVertical(false);
  407. #endif
  408. graphics_->SetDepthBias(0.0f, 0.0f);
  409. graphics_->SetScissorTest(false);
  410. graphics_->SetStencilTest(false);
  411. graphics_->SetViewTexture(0);
  412. graphics_->ResetStreamFrequencies();
  413. // Run post-processes or framebuffer blitting now
  414. if (screenBuffers_.Size())
  415. {
  416. if (postProcesses_.Size())
  417. RunPostProcesses();
  418. else
  419. BlitFramebuffer();
  420. }
  421. // If this is a main view, draw the associated debug geometry now
  422. if (!renderTarget_)
  423. {
  424. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  425. if (debug)
  426. {
  427. debug->SetView(camera_);
  428. debug->Render();
  429. }
  430. }
  431. // "Forget" the camera, octree and zone after rendering
  432. camera_ = 0;
  433. octree_ = 0;
  434. cameraZone_ = 0;
  435. farClipZone_ = 0;
  436. occlusionBuffer_ = 0;
  437. frame_.camera_ = 0;
  438. }
  439. void View::GetDrawables()
  440. {
  441. PROFILE(GetDrawables);
  442. WorkQueue* queue = GetSubsystem<WorkQueue>();
  443. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  444. // Get zones and occluders first
  445. {
  446. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE);
  447. octree_->GetDrawables(query);
  448. }
  449. highestZonePriority_ = M_MIN_INT;
  450. int bestPriority = M_MIN_INT;
  451. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  452. // Get default zone first in case we do not have zones defined
  453. Zone* defaultZone = renderer_->GetDefaultZone();
  454. cameraZone_ = farClipZone_ = defaultZone;
  455. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  456. {
  457. Drawable* drawable = *i;
  458. unsigned char flags = drawable->GetDrawableFlags();
  459. if (flags & DRAWABLE_ZONE)
  460. {
  461. Zone* zone = static_cast<Zone*>(drawable);
  462. zones_.Push(zone);
  463. int priority = zone->GetPriority();
  464. if (priority > highestZonePriority_)
  465. highestZonePriority_ = priority;
  466. if (zone->IsInside(cameraPos) && priority > bestPriority)
  467. {
  468. cameraZone_ = zone;
  469. bestPriority = priority;
  470. }
  471. }
  472. else
  473. occluders_.Push(drawable);
  474. }
  475. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  476. cameraZoneOverride_ = cameraZone_->GetOverride();
  477. if (!cameraZoneOverride_)
  478. {
  479. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  480. bestPriority = M_MIN_INT;
  481. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  482. {
  483. int priority = (*i)->GetPriority();
  484. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  485. {
  486. farClipZone_ = *i;
  487. bestPriority = priority;
  488. }
  489. }
  490. }
  491. if (farClipZone_ == defaultZone)
  492. farClipZone_ = cameraZone_;
  493. // If occlusion in use, get & render the occluders
  494. occlusionBuffer_ = 0;
  495. if (maxOccluderTriangles_ > 0)
  496. {
  497. UpdateOccluders(occluders_, camera_);
  498. if (occluders_.Size())
  499. {
  500. PROFILE(DrawOcclusion);
  501. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  502. DrawOccluders(occlusionBuffer_, occluders_);
  503. }
  504. }
  505. // Get lights and geometries. Coarse occlusion for octants is used at this point
  506. if (occlusionBuffer_)
  507. {
  508. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  509. DRAWABLE_LIGHT);
  510. octree_->GetDrawables(query);
  511. }
  512. else
  513. {
  514. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  515. octree_->GetDrawables(query);
  516. }
  517. // Check drawable occlusion and find zones for moved drawables in worker threads
  518. {
  519. WorkItem item;
  520. item.workFunction_ = CheckVisibilityWork;
  521. item.aux_ = this;
  522. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  523. while (start != tempDrawables.End())
  524. {
  525. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  526. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  527. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  528. item.start_ = &(*start);
  529. item.end_ = &(*end);
  530. queue->AddWorkItem(item);
  531. start = end;
  532. }
  533. queue->Complete();
  534. }
  535. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  536. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  537. sceneBox_.defined_ = false;
  538. minZ_ = M_INFINITY;
  539. maxZ_ = 0.0f;
  540. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  541. {
  542. Drawable* drawable = tempDrawables[i];
  543. if (!drawable->IsInView(frame_))
  544. continue;
  545. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  546. {
  547. // Find zone for the drawable if necessary
  548. if (!drawable->GetZone() && !cameraZoneOverride_)
  549. FindZone(drawable);
  550. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  551. if (drawable->GetType() != Skybox::GetTypeStatic())
  552. {
  553. sceneBox_.Merge(drawable->GetWorldBoundingBox());
  554. minZ_ = Min(minZ_, drawable->GetMinZ());
  555. maxZ_ = Max(maxZ_, drawable->GetMaxZ());
  556. }
  557. geometries_.Push(drawable);
  558. }
  559. else
  560. {
  561. Light* light = static_cast<Light*>(drawable);
  562. // Skip lights which are so dim that they can not contribute to a rendertarget
  563. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  564. lights_.Push(light);
  565. }
  566. }
  567. if (minZ_ == M_INFINITY)
  568. minZ_ = 0.0f;
  569. // Sort the lights to brightest/closest first
  570. for (unsigned i = 0; i < lights_.Size(); ++i)
  571. {
  572. Light* light = lights_[i];
  573. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  574. light->SetLightQueue(0);
  575. }
  576. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  577. }
  578. void View::GetBatches()
  579. {
  580. WorkQueue* queue = GetSubsystem<WorkQueue>();
  581. PODVector<Light*> vertexLights;
  582. // Process lit geometries and shadow casters for each light
  583. {
  584. PROFILE(ProcessLights);
  585. lightQueryResults_.Resize(lights_.Size());
  586. WorkItem item;
  587. item.workFunction_ = ProcessLightWork;
  588. item.aux_ = this;
  589. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  590. {
  591. LightQueryResult& query = lightQueryResults_[i];
  592. query.light_ = lights_[i];
  593. item.start_ = &query;
  594. queue->AddWorkItem(item);
  595. }
  596. // Ensure all lights have been processed before proceeding
  597. queue->Complete();
  598. }
  599. // Build light queues and lit batches
  600. {
  601. PROFILE(GetLightBatches);
  602. // Preallocate light queues: per-pixel lights which have lit geometries
  603. unsigned numLightQueues = 0;
  604. unsigned usedLightQueues = 0;
  605. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  606. {
  607. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  608. ++numLightQueues;
  609. }
  610. lightQueues_.Resize(numLightQueues);
  611. maxLightsDrawables_.Clear();
  612. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  613. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  614. {
  615. LightQueryResult& query = *i;
  616. // If light has no affected geometries, no need to process further
  617. if (query.litGeometries_.Empty())
  618. continue;
  619. Light* light = query.light_;
  620. // Per-pixel light
  621. if (!light->GetPerVertex())
  622. {
  623. unsigned shadowSplits = query.numSplits_;
  624. // Initialize light queue and store it to the light so that it can be found later
  625. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  626. light->SetLightQueue(&lightQueue);
  627. lightQueue.light_ = light;
  628. lightQueue.shadowMap_ = 0;
  629. lightQueue.litBatches_.Clear(maxSortedInstances);
  630. lightQueue.volumeBatches_.Clear();
  631. // Allocate shadow map now
  632. if (shadowSplits > 0)
  633. {
  634. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  635. // If did not manage to get a shadow map, convert the light to unshadowed
  636. if (!lightQueue.shadowMap_)
  637. shadowSplits = 0;
  638. }
  639. // Setup shadow batch queues
  640. lightQueue.shadowSplits_.Resize(shadowSplits);
  641. for (unsigned j = 0; j < shadowSplits; ++j)
  642. {
  643. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  644. Camera* shadowCamera = query.shadowCameras_[j];
  645. shadowQueue.shadowCamera_ = shadowCamera;
  646. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  647. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  648. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  649. // Setup the shadow split viewport and finalize shadow camera parameters
  650. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  651. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  652. // Loop through shadow casters
  653. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  654. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  655. {
  656. Drawable* drawable = *k;
  657. if (!drawable->IsInView(frame_, false))
  658. {
  659. drawable->MarkInView(frame_, false);
  660. shadowGeometries_.Push(drawable);
  661. }
  662. Zone* zone = GetZone(drawable);
  663. const Vector<SourceBatch>& batches = drawable->GetBatches();
  664. for (unsigned l = 0; l < batches.Size(); ++l)
  665. {
  666. const SourceBatch& srcBatch = batches[l];
  667. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  668. if (!srcBatch.geometry_ || !tech)
  669. continue;
  670. Pass* pass = tech->GetPass(PASS_SHADOW);
  671. // Skip if material has no shadow pass
  672. if (!pass)
  673. continue;
  674. Batch destBatch(srcBatch);
  675. destBatch.pass_ = pass;
  676. destBatch.camera_ = shadowCamera;
  677. destBatch.zone_ = zone;
  678. destBatch.lightQueue_ = &lightQueue;
  679. AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech);
  680. }
  681. }
  682. }
  683. // Process lit geometries
  684. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  685. {
  686. Drawable* drawable = *j;
  687. drawable->AddLight(light);
  688. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  689. if (!drawable->GetMaxLights())
  690. GetLitBatches(drawable, lightQueue);
  691. else
  692. maxLightsDrawables_.Insert(drawable);
  693. }
  694. // In deferred modes, store the light volume batch now
  695. if (renderMode_ != RENDER_FORWARD)
  696. {
  697. Batch volumeBatch;
  698. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  699. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  700. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  701. volumeBatch.camera_ = camera_;
  702. volumeBatch.lightQueue_ = &lightQueue;
  703. volumeBatch.distance_ = light->GetDistance();
  704. volumeBatch.material_ = 0;
  705. volumeBatch.pass_ = 0;
  706. volumeBatch.zone_ = 0;
  707. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  708. lightQueue.volumeBatches_.Push(volumeBatch);
  709. }
  710. }
  711. // Per-vertex light
  712. else
  713. {
  714. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  715. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  716. {
  717. Drawable* drawable = *j;
  718. drawable->AddVertexLight(light);
  719. }
  720. }
  721. }
  722. }
  723. // Process drawables with limited per-pixel light count
  724. if (maxLightsDrawables_.Size())
  725. {
  726. PROFILE(GetMaxLightsBatches);
  727. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  728. {
  729. Drawable* drawable = *i;
  730. drawable->LimitLights();
  731. const PODVector<Light*>& lights = drawable->GetLights();
  732. for (unsigned i = 0; i < lights.Size(); ++i)
  733. {
  734. Light* light = lights[i];
  735. // Find the correct light queue again
  736. LightBatchQueue* queue = light->GetLightQueue();
  737. if (queue)
  738. GetLitBatches(drawable, *queue);
  739. }
  740. }
  741. }
  742. // Build base pass batches
  743. {
  744. PROFILE(GetBaseBatches);
  745. hasZeroLightMask_ = false;
  746. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  747. {
  748. Drawable* drawable = *i;
  749. Zone* zone = GetZone(drawable);
  750. const Vector<SourceBatch>& batches = drawable->GetBatches();
  751. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  752. if (!drawableVertexLights.Empty())
  753. drawable->LimitVertexLights();
  754. for (unsigned j = 0; j < batches.Size(); ++j)
  755. {
  756. const SourceBatch& srcBatch = batches[j];
  757. // Check here if the material refers to a rendertarget texture with camera(s) attached
  758. // Only check this for the main view (null rendertarget)
  759. if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  760. CheckMaterialForAuxView(srcBatch.material_);
  761. // If already has a lit base pass, skip (forward rendering only)
  762. if (j < 32 && drawable->HasBasePass(j))
  763. continue;
  764. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  765. if (!srcBatch.geometry_ || !tech)
  766. continue;
  767. Batch destBatch(srcBatch);
  768. destBatch.camera_ = camera_;
  769. destBatch.zone_ = zone;
  770. destBatch.isBase_ = true;
  771. destBatch.pass_ = 0;
  772. destBatch.lightMask_ = GetLightMask(drawable);
  773. // In deferred modes check for G-buffer and material passes first
  774. if (renderMode_ == RENDER_PREPASS)
  775. {
  776. destBatch.pass_ = tech->GetPass(PASS_PREPASS);
  777. if (destBatch.pass_)
  778. {
  779. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  780. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  781. hasZeroLightMask_ = true;
  782. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  783. AddBatchToQueue(gbufferQueue_, destBatch, tech, destBatch.lightMask_ == (zone->GetLightMask() & 0xff));
  784. destBatch.pass_ = tech->GetPass(PASS_MATERIAL);
  785. }
  786. }
  787. if (renderMode_ == RENDER_DEFERRED)
  788. destBatch.pass_ = tech->GetPass(PASS_DEFERRED);
  789. // Next check for forward unlit base pass
  790. if (!destBatch.pass_)
  791. destBatch.pass_ = tech->GetPass(PASS_BASE);
  792. if (destBatch.pass_)
  793. {
  794. // Check for vertex lights (both forward unlit, light pre-pass material pass, and deferred G-buffer)
  795. if (!drawableVertexLights.Empty())
  796. {
  797. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  798. // them to prevent double-lighting
  799. if (renderMode_ != RENDER_FORWARD && destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  800. {
  801. vertexLights.Clear();
  802. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  803. {
  804. if (drawableVertexLights[i]->GetPerVertex())
  805. vertexLights.Push(drawableVertexLights[i]);
  806. }
  807. }
  808. else
  809. vertexLights = drawableVertexLights;
  810. if (!vertexLights.Empty())
  811. {
  812. // Find a vertex light queue. If not found, create new
  813. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  814. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  815. if (i == vertexLightQueues_.End())
  816. {
  817. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  818. i->second_.light_ = 0;
  819. i->second_.shadowMap_ = 0;
  820. i->second_.vertexLights_ = vertexLights;
  821. }
  822. destBatch.lightQueue_ = &(i->second_);
  823. }
  824. }
  825. // Check whether batch is opaque or transparent
  826. if (destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  827. {
  828. if (destBatch.pass_->GetType() != PASS_DEFERRED)
  829. AddBatchToQueue(baseQueue_, destBatch, tech);
  830. else
  831. {
  832. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  833. AddBatchToQueue(gbufferQueue_, destBatch, tech, destBatch.lightMask_ == (destBatch.zone_->GetLightMask() & 0xff));
  834. }
  835. }
  836. else
  837. {
  838. // Transparent batches can not be instanced
  839. AddBatchToQueue(alphaQueue_, destBatch, tech, false);
  840. }
  841. continue;
  842. }
  843. // If no pass found so far, finally check for pre-alpha / post-alpha custom passes
  844. destBatch.pass_ = tech->GetPass(PASS_PREALPHA);
  845. if (destBatch.pass_)
  846. {
  847. AddBatchToQueue(preAlphaQueue_, destBatch, tech);
  848. continue;
  849. }
  850. destBatch.pass_ = tech->GetPass(PASS_POSTALPHA);
  851. if (destBatch.pass_)
  852. {
  853. // Post-alpha pass is treated similarly as alpha, and is not instanced
  854. AddBatchToQueue(postAlphaQueue_, destBatch, tech, false);
  855. continue;
  856. }
  857. }
  858. }
  859. }
  860. }
  861. void View::UpdateGeometries()
  862. {
  863. PROFILE(SortAndUpdateGeometry);
  864. WorkQueue* queue = GetSubsystem<WorkQueue>();
  865. // Sort batches
  866. {
  867. WorkItem item;
  868. item.workFunction_ = SortBatchQueueFrontToBackWork;
  869. item.start_ = &baseQueue_;
  870. queue->AddWorkItem(item);
  871. item.start_ = &preAlphaQueue_;
  872. queue->AddWorkItem(item);
  873. if (renderMode_ != RENDER_FORWARD)
  874. {
  875. item.start_ = &gbufferQueue_;
  876. queue->AddWorkItem(item);
  877. }
  878. item.workFunction_ = SortBatchQueueBackToFrontWork;
  879. item.start_ = &alphaQueue_;
  880. queue->AddWorkItem(item);
  881. item.start_ = &postAlphaQueue_;
  882. queue->AddWorkItem(item);
  883. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  884. {
  885. item.workFunction_ = SortLightQueueWork;
  886. item.start_ = &(*i);
  887. queue->AddWorkItem(item);
  888. if (i->shadowSplits_.Size())
  889. {
  890. item.workFunction_ = SortShadowQueueWork;
  891. queue->AddWorkItem(item);
  892. }
  893. }
  894. }
  895. // Update geometries. Split into threaded and non-threaded updates.
  896. {
  897. nonThreadedGeometries_.Clear();
  898. threadedGeometries_.Clear();
  899. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  900. {
  901. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  902. if (type == UPDATE_MAIN_THREAD)
  903. nonThreadedGeometries_.Push(*i);
  904. else if (type == UPDATE_WORKER_THREAD)
  905. threadedGeometries_.Push(*i);
  906. }
  907. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  908. {
  909. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  910. if (type == UPDATE_MAIN_THREAD)
  911. nonThreadedGeometries_.Push(*i);
  912. else if (type == UPDATE_WORKER_THREAD)
  913. threadedGeometries_.Push(*i);
  914. }
  915. if (threadedGeometries_.Size())
  916. {
  917. WorkItem item;
  918. item.workFunction_ = UpdateDrawableGeometriesWork;
  919. item.aux_ = const_cast<FrameInfo*>(&frame_);
  920. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  921. while (start != threadedGeometries_.End())
  922. {
  923. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  924. if (end - start > DRAWABLES_PER_WORK_ITEM)
  925. end = start + DRAWABLES_PER_WORK_ITEM;
  926. item.start_ = &(*start);
  927. item.end_ = &(*end);
  928. queue->AddWorkItem(item);
  929. start = end;
  930. }
  931. }
  932. // While the work queue is processed, update non-threaded geometries
  933. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  934. (*i)->UpdateGeometry(frame_);
  935. }
  936. // Finally ensure all threaded work has completed
  937. queue->Complete();
  938. }
  939. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  940. {
  941. Light* light = lightQueue.light_;
  942. Zone* zone = GetZone(drawable);
  943. const Vector<SourceBatch>& batches = drawable->GetBatches();
  944. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  945. // Shadows on transparencies can only be rendered if shadow maps are not reused
  946. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  947. bool allowLitBase = light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  948. for (unsigned i = 0; i < batches.Size(); ++i)
  949. {
  950. const SourceBatch& srcBatch = batches[i];
  951. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  952. if (!srcBatch.geometry_ || !tech)
  953. continue;
  954. // Do not create pixel lit forward passes for materials that render into the G-buffer
  955. if ((renderMode_ == RENDER_PREPASS && tech->HasPass(PASS_PREPASS)) || (renderMode_ == RENDER_DEFERRED &&
  956. tech->HasPass(PASS_DEFERRED)))
  957. continue;
  958. Batch destBatch(srcBatch);
  959. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  960. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  961. if (i < 32 && allowLitBase)
  962. {
  963. destBatch.pass_ = tech->GetPass(PASS_LITBASE);
  964. if (destBatch.pass_)
  965. {
  966. destBatch.isBase_ = true;
  967. drawable->SetBasePass(i);
  968. }
  969. else
  970. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  971. }
  972. else
  973. destBatch.pass_ = tech->GetPass(PASS_LIGHT);
  974. // Skip if material does not receive light at all
  975. if (!destBatch.pass_)
  976. continue;
  977. destBatch.camera_ = camera_;
  978. destBatch.lightQueue_ = &lightQueue;
  979. destBatch.zone_ = zone;
  980. // Check from the ambient pass whether the object is opaque or transparent
  981. Pass* ambientPass = tech->GetPass(PASS_BASE);
  982. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  983. AddBatchToQueue(lightQueue.litBatches_, destBatch, tech);
  984. else
  985. {
  986. // Transparent batches can not be instanced
  987. AddBatchToQueue(alphaQueue_, destBatch, tech, false, allowTransparentShadows);
  988. }
  989. }
  990. }
  991. void View::RenderBatchesForward()
  992. {
  993. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  994. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  995. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  996. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  997. // If not reusing shadowmaps, render all of them first
  998. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  999. {
  1000. PROFILE(RenderShadowMaps);
  1001. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1002. {
  1003. if (i->shadowMap_)
  1004. RenderShadowMap(*i);
  1005. }
  1006. }
  1007. graphics_->SetRenderTarget(0, renderTarget);
  1008. graphics_->SetDepthStencil(depthStencil);
  1009. graphics_->SetViewport(viewRect_);
  1010. #ifndef GL_ES_VERSION_2_0
  1011. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1012. #else
  1013. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH, farClipZone_->GetFogColor());
  1014. #endif
  1015. graphics_->SetFillMode(camera_->GetFillMode());
  1016. // Render opaque object unlit base pass
  1017. if (!baseQueue_.IsEmpty())
  1018. {
  1019. PROFILE(RenderBase);
  1020. baseQueue_.Draw(graphics_, renderer_);
  1021. }
  1022. // Render shadow maps + opaque objects' additive lighting
  1023. if (!lightQueues_.Empty())
  1024. {
  1025. PROFILE(RenderLights);
  1026. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1027. {
  1028. // If reusing shadowmaps, render each of them before the lit batches
  1029. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1030. {
  1031. RenderShadowMap(*i);
  1032. graphics_->SetRenderTarget(0, renderTarget);
  1033. graphics_->SetDepthStencil(depthStencil);
  1034. graphics_->SetViewport(viewRect_);
  1035. graphics_->SetFillMode(camera_->GetFillMode());
  1036. }
  1037. i->litBatches_.Draw(i->light_, graphics_, renderer_);
  1038. }
  1039. }
  1040. graphics_->SetScissorTest(false);
  1041. graphics_->SetStencilTest(false);
  1042. #ifndef GL_ES_VERSION_2_0
  1043. // At this point clear the parts of viewport not occupied by opaque geometry with fog color.
  1044. // On OpenGL ES an ordinary color clear has been performed beforehand instead
  1045. graphics_->SetBlendMode(BLEND_REPLACE);
  1046. graphics_->SetColorWrite(true);
  1047. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1048. graphics_->SetDepthWrite(false);
  1049. graphics_->SetFillMode(FILL_SOLID);
  1050. graphics_->SetScissorTest(false);
  1051. graphics_->SetStencilTest(false);
  1052. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1053. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1054. graphics_->ClearParameterSource(SP_MATERIAL);
  1055. DrawFullscreenQuad(false);
  1056. #endif
  1057. graphics_->SetFillMode(camera_->GetFillMode());
  1058. // Render pre-alpha custom pass
  1059. if (!preAlphaQueue_.IsEmpty())
  1060. {
  1061. PROFILE(RenderPreAlpha);
  1062. preAlphaQueue_.Draw(graphics_, renderer_);
  1063. }
  1064. // Render transparent objects (both base passes & additive lighting)
  1065. if (!alphaQueue_.IsEmpty())
  1066. {
  1067. PROFILE(RenderAlpha);
  1068. alphaQueue_.Draw(graphics_, renderer_, true);
  1069. }
  1070. // Render post-alpha custom pass
  1071. if (!postAlphaQueue_.IsEmpty())
  1072. {
  1073. PROFILE(RenderPostAlpha);
  1074. postAlphaQueue_.Draw(graphics_, renderer_);
  1075. }
  1076. graphics_->SetFillMode(FILL_SOLID);
  1077. // Resolve multisampled backbuffer now if necessary
  1078. if (resolve)
  1079. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  1080. }
  1081. void View::RenderBatchesDeferred()
  1082. {
  1083. // If not reusing shadowmaps, render all of them first
  1084. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1085. {
  1086. PROFILE(RenderShadowMaps);
  1087. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1088. {
  1089. if (i->shadowMap_)
  1090. RenderShadowMap(*i);
  1091. }
  1092. }
  1093. bool hwDepth = graphics_->GetHardwareDepthSupport();
  1094. // In light prepass mode the albedo buffer is used for light accumulation instead
  1095. Texture2D* albedoBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1096. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1097. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  1098. Graphics::GetLinearDepthFormat());
  1099. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  1100. RenderSurface* depthStencil = hwDepth ? depthBuffer->GetRenderSurface() : renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  1101. if (renderMode_ == RENDER_PREPASS)
  1102. {
  1103. graphics_->SetRenderTarget(0, normalBuffer);
  1104. if (!hwDepth)
  1105. graphics_->SetRenderTarget(1, depthBuffer);
  1106. }
  1107. else
  1108. {
  1109. graphics_->SetRenderTarget(0, renderTarget);
  1110. graphics_->SetRenderTarget(1, albedoBuffer);
  1111. graphics_->SetRenderTarget(2, normalBuffer);
  1112. if (!hwDepth)
  1113. graphics_->SetRenderTarget(3, depthBuffer);
  1114. }
  1115. graphics_->SetDepthStencil(depthStencil);
  1116. graphics_->SetViewport(viewRect_);
  1117. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1118. graphics_->SetFillMode(camera_->GetFillMode());
  1119. // Render G-buffer batches
  1120. if (!gbufferQueue_.IsEmpty())
  1121. {
  1122. PROFILE(RenderGBuffer);
  1123. gbufferQueue_.Draw(graphics_, renderer_, false, true);
  1124. }
  1125. graphics_->SetFillMode(FILL_SOLID);
  1126. // Clear the light accumulation buffer (light pre-pass only.) However, skip the clear if the first light is a directional
  1127. // light with full mask
  1128. RenderSurface* lightRenderTarget = renderMode_ == RENDER_PREPASS ? albedoBuffer->GetRenderSurface() : renderTarget;
  1129. if (renderMode_ == RENDER_PREPASS)
  1130. {
  1131. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  1132. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  1133. graphics_->SetRenderTarget(0, lightRenderTarget);
  1134. graphics_->ResetRenderTarget(1);
  1135. graphics_->SetDepthStencil(depthStencil);
  1136. graphics_->SetViewport(viewRect_);
  1137. if (!optimizeLightBuffer)
  1138. graphics_->Clear(CLEAR_COLOR);
  1139. }
  1140. else
  1141. {
  1142. graphics_->ResetRenderTarget(1);
  1143. graphics_->ResetRenderTarget(2);
  1144. graphics_->ResetRenderTarget(3);
  1145. }
  1146. // Render shadow maps + light volumes
  1147. if (!lightQueues_.Empty())
  1148. {
  1149. PROFILE(RenderLights);
  1150. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1151. {
  1152. // If reusing shadowmaps, render each of them before the lit batches
  1153. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1154. {
  1155. RenderShadowMap(*i);
  1156. graphics_->SetRenderTarget(0, lightRenderTarget);
  1157. graphics_->SetDepthStencil(depthStencil);
  1158. graphics_->SetViewport(viewRect_);
  1159. }
  1160. if (renderMode_ == RENDER_DEFERRED)
  1161. graphics_->SetTexture(TU_ALBEDOBUFFER, albedoBuffer);
  1162. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  1163. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  1164. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1165. {
  1166. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1167. i->volumeBatches_[j].Draw(graphics_, renderer_);
  1168. }
  1169. }
  1170. }
  1171. graphics_->SetTexture(TU_ALBEDOBUFFER, 0);
  1172. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  1173. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  1174. if (renderMode_ == RENDER_PREPASS)
  1175. {
  1176. graphics_->SetRenderTarget(0, renderTarget);
  1177. graphics_->SetDepthStencil(depthStencil);
  1178. graphics_->SetViewport(viewRect_);
  1179. }
  1180. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1181. graphics_->SetBlendMode(BLEND_REPLACE);
  1182. graphics_->SetColorWrite(true);
  1183. graphics_->SetDepthTest(CMP_ALWAYS);
  1184. graphics_->SetDepthWrite(false);
  1185. graphics_->SetScissorTest(false);
  1186. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  1187. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1188. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1189. graphics_->ClearParameterSource(SP_MATERIAL);
  1190. DrawFullscreenQuad(false);
  1191. graphics_->SetFillMode(camera_->GetFillMode());
  1192. // Render opaque objects with deferred lighting result (light pre-pass only)
  1193. if (!baseQueue_.IsEmpty())
  1194. {
  1195. PROFILE(RenderBase);
  1196. graphics_->SetTexture(TU_LIGHTBUFFER, renderMode_ == RENDER_PREPASS ? albedoBuffer : 0);
  1197. baseQueue_.Draw(graphics_, renderer_);
  1198. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1199. }
  1200. // Render pre-alpha custom pass
  1201. if (!preAlphaQueue_.IsEmpty())
  1202. {
  1203. PROFILE(RenderPreAlpha);
  1204. preAlphaQueue_.Draw(graphics_, renderer_);
  1205. }
  1206. // Render transparent objects (both base passes & additive lighting)
  1207. if (!alphaQueue_.IsEmpty())
  1208. {
  1209. PROFILE(RenderAlpha);
  1210. alphaQueue_.Draw(graphics_, renderer_, true);
  1211. }
  1212. // Render post-alpha custom pass
  1213. if (!postAlphaQueue_.IsEmpty())
  1214. {
  1215. PROFILE(RenderPostAlpha);
  1216. postAlphaQueue_.Draw(graphics_, renderer_);
  1217. }
  1218. graphics_->SetFillMode(FILL_SOLID);
  1219. }
  1220. void View::AllocateScreenBuffers()
  1221. {
  1222. unsigned neededBuffers = 0;
  1223. #ifdef USE_OPENGL
  1224. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1225. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1226. if (renderMode_ != RENDER_FORWARD && (!renderTarget_ || (renderMode_ == RENDER_DEFERRED &&
  1227. renderTarget_->GetParentTexture()->GetFormat() != Graphics::GetRGBAFormat())))
  1228. neededBuffers = 1;
  1229. #endif
  1230. unsigned postProcessPasses = 0;
  1231. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1232. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1233. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1234. if (postProcessPasses)
  1235. neededBuffers = Min((int)postProcessPasses, 2);
  1236. unsigned format = Graphics::GetRGBFormat();
  1237. #ifdef USE_OPENGL
  1238. if (renderMode_ == RENDER_DEFERRED)
  1239. format = Graphics::GetRGBAFormat();
  1240. #endif
  1241. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1242. for (unsigned i = 0; i < neededBuffers; ++i)
  1243. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true));
  1244. }
  1245. void View::BlitFramebuffer()
  1246. {
  1247. // Blit the final image to destination rendertarget
  1248. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1249. graphics_->SetBlendMode(BLEND_REPLACE);
  1250. graphics_->SetDepthTest(CMP_ALWAYS);
  1251. graphics_->SetDepthWrite(true);
  1252. graphics_->SetScissorTest(false);
  1253. graphics_->SetStencilTest(false);
  1254. graphics_->SetRenderTarget(0, renderTarget_);
  1255. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1256. graphics_->SetViewport(viewRect_);
  1257. String shaderName = "CopyFramebuffer";
  1258. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1259. float rtWidth = (float)rtSize_.x_;
  1260. float rtHeight = (float)rtSize_.y_;
  1261. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1262. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1263. #ifdef USE_OPENGL
  1264. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1265. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1266. #else
  1267. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1268. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1269. #endif
  1270. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1271. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1272. DrawFullscreenQuad(false);
  1273. }
  1274. void View::RunPostProcesses()
  1275. {
  1276. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1277. // Ping-pong buffer indices for read and write
  1278. unsigned readRtIndex = 0;
  1279. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1280. graphics_->SetBlendMode(BLEND_REPLACE);
  1281. graphics_->SetDepthTest(CMP_ALWAYS);
  1282. graphics_->SetScissorTest(false);
  1283. graphics_->SetStencilTest(false);
  1284. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1285. {
  1286. PostProcess* effect = postProcesses_[i];
  1287. // For each effect, rendertargets can be re-used. Allocate them now
  1288. renderer_->SaveScreenBufferAllocations();
  1289. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1290. HashMap<StringHash, Texture2D*> renderTargets;
  1291. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1292. renderTargetInfos.End(); ++j)
  1293. {
  1294. unsigned width = j->second_.size_.x_;
  1295. unsigned height = j->second_.size_.y_;
  1296. if (j->second_.sizeDivisor_)
  1297. {
  1298. width = viewSize_.x_ / width;
  1299. height = viewSize_.y_ / height;
  1300. }
  1301. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1302. }
  1303. // Run each effect pass
  1304. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1305. {
  1306. PostProcessPass* pass = effect->GetPass(j);
  1307. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1308. bool swapBuffers = false;
  1309. // Write depth on the last pass only
  1310. graphics_->SetDepthWrite(lastPass);
  1311. // Set output rendertarget
  1312. RenderSurface* rt = 0;
  1313. String output = pass->GetOutput().ToLower();
  1314. if (output == "viewport")
  1315. {
  1316. if (!lastPass)
  1317. {
  1318. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1319. swapBuffers = true;
  1320. }
  1321. else
  1322. rt = renderTarget_;
  1323. graphics_->SetRenderTarget(0, rt);
  1324. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1325. graphics_->SetViewport(viewRect_);
  1326. }
  1327. else
  1328. {
  1329. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1330. if (k != renderTargets.End())
  1331. rt = k->second_->GetRenderSurface();
  1332. else
  1333. continue; // Skip pass if rendertarget can not be found
  1334. graphics_->SetRenderTarget(0, rt);
  1335. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1336. graphics_->SetViewport(IntRect(0, 0, rt->GetWidth(), rt->GetHeight()));
  1337. }
  1338. // Set shaders, shader parameters and textures
  1339. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1340. renderer_->GetPixelShader(pass->GetPixelShader()));
  1341. const HashMap<StringHash, Vector4>& globalParameters = effect->GetShaderParameters();
  1342. for (HashMap<StringHash, Vector4>::ConstIterator k = globalParameters.Begin(); k != globalParameters.End(); ++k)
  1343. graphics_->SetShaderParameter(k->first_, k->second_);
  1344. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1345. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1346. graphics_->SetShaderParameter(k->first_, k->second_);
  1347. float rtWidth = (float)rtSize_.x_;
  1348. float rtHeight = (float)rtSize_.y_;
  1349. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1350. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1351. #ifdef USE_OPENGL
  1352. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1353. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1354. #else
  1355. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1356. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1357. #endif
  1358. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1359. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1360. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1361. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator k = renderTargetInfos.Begin(); k !=
  1362. renderTargetInfos.End(); ++k)
  1363. {
  1364. String invSizeName = k->second_.name_ + "InvSize";
  1365. String offsetsName = k->second_.name_ + "Offsets";
  1366. float width = (float)renderTargets[k->first_]->GetWidth();
  1367. float height = (float)renderTargets[k->first_]->GetHeight();
  1368. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1369. #ifdef USE_OPENGL
  1370. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1371. #else
  1372. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1373. #endif
  1374. }
  1375. const String* textureNames = pass->GetTextures();
  1376. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1377. {
  1378. if (!textureNames[k].Empty())
  1379. {
  1380. // Texture may either refer to a rendertarget or to a texture resource
  1381. if (!textureNames[k].Compare("viewport", false))
  1382. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1383. else
  1384. {
  1385. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1386. if (l != renderTargets.End())
  1387. graphics_->SetTexture(k, l->second_);
  1388. else
  1389. {
  1390. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1391. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1392. if (texture)
  1393. graphics_->SetTexture(k, texture);
  1394. else
  1395. pass->SetTexture((TextureUnit)k, String());
  1396. }
  1397. }
  1398. }
  1399. }
  1400. /// \todo Draw a near plane quad optionally
  1401. DrawFullscreenQuad(false);
  1402. // Swap the ping-pong buffer sides now if necessary
  1403. if (swapBuffers)
  1404. Swap(readRtIndex, writeRtIndex);
  1405. }
  1406. // Forget the rendertargets allocated during this effect
  1407. renderer_->RestoreScreenBufferAllocations();
  1408. }
  1409. }
  1410. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1411. {
  1412. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1413. float halfViewSize = camera->GetHalfViewSize();
  1414. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1415. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1416. {
  1417. Drawable* occluder = *i;
  1418. bool erase = false;
  1419. if (!occluder->IsInView(frame_, false))
  1420. occluder->UpdateBatches(frame_);
  1421. // Check occluder's draw distance (in main camera view)
  1422. float maxDistance = occluder->GetDrawDistance();
  1423. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1424. {
  1425. // Check that occluder is big enough on the screen
  1426. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1427. float diagonal = box.Size().Length();
  1428. float compare;
  1429. if (!camera->IsOrthographic())
  1430. compare = diagonal * halfViewSize / occluder->GetDistance();
  1431. else
  1432. compare = diagonal * invOrthoSize;
  1433. if (compare < occluderSizeThreshold_)
  1434. erase = true;
  1435. else
  1436. {
  1437. // Store amount of triangles divided by screen size as a sorting key
  1438. // (best occluders are big and have few triangles)
  1439. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1440. }
  1441. }
  1442. else
  1443. erase = true;
  1444. if (erase)
  1445. i = occluders.Erase(i);
  1446. else
  1447. ++i;
  1448. }
  1449. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1450. if (occluders.Size())
  1451. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1452. }
  1453. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1454. {
  1455. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1456. buffer->Clear();
  1457. for (unsigned i = 0; i < occluders.Size(); ++i)
  1458. {
  1459. Drawable* occluder = occluders[i];
  1460. if (i > 0)
  1461. {
  1462. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1463. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1464. continue;
  1465. }
  1466. // Check for running out of triangles
  1467. if (!occluder->DrawOcclusion(buffer))
  1468. break;
  1469. }
  1470. buffer->BuildDepthHierarchy();
  1471. }
  1472. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1473. {
  1474. Light* light = query.light_;
  1475. LightType type = light->GetLightType();
  1476. const Frustum& frustum = camera_->GetFrustum();
  1477. // Check if light should be shadowed
  1478. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1479. // If shadow distance non-zero, check it
  1480. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1481. isShadowed = false;
  1482. // OpenGL ES can not support point light shadows
  1483. #ifdef GL_ES_VERSION_2_0
  1484. if (isShadowed && type == LIGHT_POINT)
  1485. isShadowed = false;
  1486. #endif
  1487. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1488. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1489. query.litGeometries_.Clear();
  1490. switch (type)
  1491. {
  1492. case LIGHT_DIRECTIONAL:
  1493. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1494. {
  1495. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1496. query.litGeometries_.Push(geometries_[i]);
  1497. }
  1498. break;
  1499. case LIGHT_SPOT:
  1500. {
  1501. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1502. octree_->GetDrawables(octreeQuery);
  1503. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1504. {
  1505. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1506. query.litGeometries_.Push(tempDrawables[i]);
  1507. }
  1508. }
  1509. break;
  1510. case LIGHT_POINT:
  1511. {
  1512. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1513. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1514. octree_->GetDrawables(octreeQuery);
  1515. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1516. {
  1517. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1518. query.litGeometries_.Push(tempDrawables[i]);
  1519. }
  1520. }
  1521. break;
  1522. }
  1523. // If no lit geometries or not shadowed, no need to process shadow cameras
  1524. if (query.litGeometries_.Empty() || !isShadowed)
  1525. {
  1526. query.numSplits_ = 0;
  1527. return;
  1528. }
  1529. // Determine number of shadow cameras and setup their initial positions
  1530. SetupShadowCameras(query);
  1531. // Process each split for shadow casters
  1532. query.shadowCasters_.Clear();
  1533. for (unsigned i = 0; i < query.numSplits_; ++i)
  1534. {
  1535. Camera* shadowCamera = query.shadowCameras_[i];
  1536. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1537. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1538. // For point light check that the face is visible: if not, can skip the split
  1539. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1540. continue;
  1541. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1542. if (type == LIGHT_DIRECTIONAL)
  1543. {
  1544. if (minZ_ > query.shadowFarSplits_[i])
  1545. continue;
  1546. if (maxZ_ < query.shadowNearSplits_[i])
  1547. continue;
  1548. }
  1549. // Reuse lit geometry query for all except directional lights
  1550. if (type == LIGHT_DIRECTIONAL)
  1551. {
  1552. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1553. camera_->GetViewMask());
  1554. octree_->GetDrawables(query);
  1555. }
  1556. // Check which shadow casters actually contribute to the shadowing
  1557. ProcessShadowCasters(query, tempDrawables, i);
  1558. }
  1559. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1560. // only cost has been the shadow camera setup & queries
  1561. if (query.shadowCasters_.Empty())
  1562. query.numSplits_ = 0;
  1563. }
  1564. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1565. {
  1566. Light* light = query.light_;
  1567. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1568. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1569. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1570. const Matrix4& lightProj = shadowCamera->GetProjection();
  1571. LightType type = light->GetLightType();
  1572. query.shadowCasterBox_[splitIndex].defined_ = false;
  1573. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1574. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1575. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1576. Frustum lightViewFrustum;
  1577. if (type != LIGHT_DIRECTIONAL)
  1578. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1579. else
  1580. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1581. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1582. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1583. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1584. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1585. return;
  1586. BoundingBox lightViewBox;
  1587. BoundingBox lightProjBox;
  1588. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1589. {
  1590. Drawable* drawable = *i;
  1591. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1592. // Check for that first
  1593. if (!drawable->GetCastShadows())
  1594. continue;
  1595. // For point light, check that this drawable is inside the split shadow camera frustum
  1596. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1597. continue;
  1598. // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several
  1599. // times. However, this should not cause problems as no scene modification happens at this point.
  1600. if (!drawable->IsInView(frame_, false))
  1601. drawable->UpdateBatches(frame_);
  1602. // Check shadow distance
  1603. float maxShadowDistance = drawable->GetShadowDistance();
  1604. float drawDistance = drawable->GetDrawDistance();
  1605. if (drawDistance > 0.0f && (maxShadowDistance <= 0.0f || drawDistance < maxShadowDistance))
  1606. maxShadowDistance = drawDistance;
  1607. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1608. continue;
  1609. // Check shadow mask
  1610. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1611. continue;
  1612. // Project shadow caster bounding box to light view space for visibility check
  1613. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1614. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1615. {
  1616. // Merge to shadow caster bounding box and add to the list
  1617. if (type == LIGHT_DIRECTIONAL)
  1618. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1619. else
  1620. {
  1621. lightProjBox = lightViewBox.Projected(lightProj);
  1622. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1623. }
  1624. query.shadowCasters_.Push(drawable);
  1625. }
  1626. }
  1627. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1628. }
  1629. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1630. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1631. {
  1632. if (shadowCamera->IsOrthographic())
  1633. {
  1634. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1635. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1636. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1637. }
  1638. else
  1639. {
  1640. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1641. if (drawable->IsInView(frame_))
  1642. return true;
  1643. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1644. Vector3 center = lightViewBox.Center();
  1645. Ray extrusionRay(center, center.Normalized());
  1646. float extrusionDistance = shadowCamera->GetFarClip();
  1647. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1648. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1649. float sizeFactor = extrusionDistance / originalDistance;
  1650. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1651. // than necessary, so the test will be conservative
  1652. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1653. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1654. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1655. lightViewBox.Merge(extrudedBox);
  1656. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1657. }
  1658. }
  1659. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1660. {
  1661. unsigned width = shadowMap->GetWidth();
  1662. unsigned height = shadowMap->GetHeight();
  1663. int maxCascades = renderer_->GetMaxShadowCascades();
  1664. switch (light->GetLightType())
  1665. {
  1666. case LIGHT_DIRECTIONAL:
  1667. if (maxCascades == 1)
  1668. return IntRect(0, 0, width, height);
  1669. else if (maxCascades == 2)
  1670. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1671. else
  1672. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1673. (splitIndex / 2 + 1) * height / 2);
  1674. case LIGHT_SPOT:
  1675. return IntRect(0, 0, width, height);
  1676. case LIGHT_POINT:
  1677. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1678. (splitIndex / 2 + 1) * height / 3);
  1679. }
  1680. return IntRect();
  1681. }
  1682. void View::SetupShadowCameras(LightQueryResult& query)
  1683. {
  1684. Light* light = query.light_;
  1685. LightType type = light->GetLightType();
  1686. int splits = 0;
  1687. if (type == LIGHT_DIRECTIONAL)
  1688. {
  1689. const CascadeParameters& cascade = light->GetShadowCascade();
  1690. float nearSplit = camera_->GetNearClip();
  1691. float farSplit;
  1692. while (splits < renderer_->GetMaxShadowCascades())
  1693. {
  1694. // If split is completely beyond camera far clip, we are done
  1695. if (nearSplit > camera_->GetFarClip())
  1696. break;
  1697. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1698. if (farSplit <= nearSplit)
  1699. break;
  1700. // Setup the shadow camera for the split
  1701. Camera* shadowCamera = renderer_->GetShadowCamera();
  1702. query.shadowCameras_[splits] = shadowCamera;
  1703. query.shadowNearSplits_[splits] = nearSplit;
  1704. query.shadowFarSplits_[splits] = farSplit;
  1705. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1706. nearSplit = farSplit;
  1707. ++splits;
  1708. }
  1709. }
  1710. if (type == LIGHT_SPOT)
  1711. {
  1712. Camera* shadowCamera = renderer_->GetShadowCamera();
  1713. query.shadowCameras_[0] = shadowCamera;
  1714. Node* cameraNode = shadowCamera->GetNode();
  1715. Node* lightNode = light->GetNode();
  1716. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1717. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1718. shadowCamera->SetFarClip(light->GetRange());
  1719. shadowCamera->SetFov(light->GetFov());
  1720. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1721. splits = 1;
  1722. }
  1723. if (type == LIGHT_POINT)
  1724. {
  1725. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1726. {
  1727. Camera* shadowCamera = renderer_->GetShadowCamera();
  1728. query.shadowCameras_[i] = shadowCamera;
  1729. Node* cameraNode = shadowCamera->GetNode();
  1730. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1731. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1732. cameraNode->SetDirection(directions[i]);
  1733. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1734. shadowCamera->SetFarClip(light->GetRange());
  1735. shadowCamera->SetFov(90.0f);
  1736. shadowCamera->SetAspectRatio(1.0f);
  1737. }
  1738. splits = MAX_CUBEMAP_FACES;
  1739. }
  1740. query.numSplits_ = splits;
  1741. }
  1742. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1743. {
  1744. Node* shadowCameraNode = shadowCamera->GetNode();
  1745. Node* lightNode = light->GetNode();
  1746. float extrusionDistance = camera_->GetFarClip();
  1747. const FocusParameters& parameters = light->GetShadowFocus();
  1748. // Calculate initial position & rotation
  1749. Vector3 lightWorldDirection = lightNode->GetWorldRotation() * Vector3::FORWARD;
  1750. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1751. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1752. // Calculate main camera shadowed frustum in light's view space
  1753. farSplit = Min(farSplit, camera_->GetFarClip());
  1754. // Use the scene Z bounds to limit frustum size if applicable
  1755. if (parameters.focus_)
  1756. {
  1757. nearSplit = Max(minZ_, nearSplit);
  1758. farSplit = Min(maxZ_, farSplit);
  1759. }
  1760. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1761. Polyhedron frustumVolume;
  1762. frustumVolume.Define(splitFrustum);
  1763. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1764. if (parameters.focus_)
  1765. {
  1766. BoundingBox litGeometriesBox;
  1767. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1768. {
  1769. Drawable* drawable = geometries_[i];
  1770. // Skip skyboxes as they have undefinedly large bounding box size
  1771. if (drawable->GetType() == Skybox::GetTypeStatic())
  1772. continue;
  1773. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1774. (GetLightMask(drawable) & light->GetLightMask()))
  1775. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1776. }
  1777. if (litGeometriesBox.defined_)
  1778. {
  1779. frustumVolume.Clip(litGeometriesBox);
  1780. // If volume became empty, restore it to avoid zero size
  1781. if (frustumVolume.Empty())
  1782. frustumVolume.Define(splitFrustum);
  1783. }
  1784. }
  1785. // Transform frustum volume to light space
  1786. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1787. frustumVolume.Transform(lightView);
  1788. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1789. BoundingBox shadowBox;
  1790. if (!parameters.nonUniform_)
  1791. shadowBox.Define(Sphere(frustumVolume));
  1792. else
  1793. shadowBox.Define(frustumVolume);
  1794. shadowCamera->SetOrthographic(true);
  1795. shadowCamera->SetAspectRatio(1.0f);
  1796. shadowCamera->SetNearClip(0.0f);
  1797. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1798. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1799. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1800. }
  1801. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1802. const BoundingBox& shadowCasterBox)
  1803. {
  1804. const FocusParameters& parameters = light->GetShadowFocus();
  1805. float shadowMapWidth = (float)(shadowViewport.Width());
  1806. LightType type = light->GetLightType();
  1807. if (type == LIGHT_DIRECTIONAL)
  1808. {
  1809. BoundingBox shadowBox;
  1810. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1811. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1812. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1813. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1814. // Requantize and snap to shadow map texels
  1815. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1816. }
  1817. if (type == LIGHT_SPOT)
  1818. {
  1819. if (parameters.focus_)
  1820. {
  1821. float viewSizeX = Max(Abs(shadowCasterBox.min_.x_), Abs(shadowCasterBox.max_.x_));
  1822. float viewSizeY = Max(Abs(shadowCasterBox.min_.y_), Abs(shadowCasterBox.max_.y_));
  1823. float viewSize = Max(viewSizeX, viewSizeY);
  1824. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1825. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1826. float quantize = parameters.quantize_ * invOrthoSize;
  1827. float minView = parameters.minView_ * invOrthoSize;
  1828. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1829. if (viewSize < 1.0f)
  1830. shadowCamera->SetZoom(1.0f / viewSize);
  1831. }
  1832. }
  1833. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1834. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1835. if (shadowCamera->GetZoom() >= 1.0f)
  1836. {
  1837. if (light->GetLightType() != LIGHT_POINT)
  1838. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1839. else
  1840. {
  1841. #ifdef USE_OPENGL
  1842. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1843. #else
  1844. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1845. #endif
  1846. }
  1847. }
  1848. }
  1849. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1850. const BoundingBox& viewBox)
  1851. {
  1852. Node* shadowCameraNode = shadowCamera->GetNode();
  1853. const FocusParameters& parameters = light->GetShadowFocus();
  1854. float shadowMapWidth = (float)(shadowViewport.Width());
  1855. float minX = viewBox.min_.x_;
  1856. float minY = viewBox.min_.y_;
  1857. float maxX = viewBox.max_.x_;
  1858. float maxY = viewBox.max_.y_;
  1859. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1860. Vector2 viewSize(maxX - minX, maxY - minY);
  1861. // Quantize size to reduce swimming
  1862. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1863. if (parameters.nonUniform_)
  1864. {
  1865. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1866. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1867. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1868. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1869. }
  1870. else if (parameters.focus_)
  1871. {
  1872. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1873. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1874. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1875. viewSize.y_ = viewSize.x_;
  1876. }
  1877. shadowCamera->SetOrthoSize(viewSize);
  1878. // Center shadow camera to the view space bounding box
  1879. Quaternion rot(shadowCameraNode->GetWorldRotation());
  1880. Vector3 adjust(center.x_, center.y_, 0.0f);
  1881. shadowCameraNode->Translate(rot * adjust);
  1882. // If the shadow map viewport is known, snap to whole texels
  1883. if (shadowMapWidth > 0.0f)
  1884. {
  1885. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  1886. // Take into account that shadow map border will not be used
  1887. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1888. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1889. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1890. shadowCameraNode->Translate(rot * snap);
  1891. }
  1892. }
  1893. void View::FindZone(Drawable* drawable)
  1894. {
  1895. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1896. int bestPriority = M_MIN_INT;
  1897. Zone* newZone = 0;
  1898. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  1899. // (possibly incorrect) and must be re-evaluated on the next frame
  1900. bool temporary = !camera_->GetFrustum().IsInside(center);
  1901. // First check if the last zone remains a conclusive result
  1902. Zone* lastZone = drawable->GetLastZone();
  1903. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1904. lastZone->GetPriority() >= highestZonePriority_)
  1905. newZone = lastZone;
  1906. else
  1907. {
  1908. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1909. {
  1910. Zone* zone = *i;
  1911. int priority = zone->GetPriority();
  1912. if (zone->IsInside(center) && (drawable->GetZoneMask() & zone->GetZoneMask()) && priority > bestPriority)
  1913. {
  1914. newZone = zone;
  1915. bestPriority = priority;
  1916. }
  1917. }
  1918. }
  1919. drawable->SetZone(newZone, temporary);
  1920. }
  1921. Zone* View::GetZone(Drawable* drawable)
  1922. {
  1923. if (cameraZoneOverride_)
  1924. return cameraZone_;
  1925. Zone* drawableZone = drawable->GetZone();
  1926. return drawableZone ? drawableZone : cameraZone_;
  1927. }
  1928. unsigned View::GetLightMask(Drawable* drawable)
  1929. {
  1930. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1931. }
  1932. unsigned View::GetShadowMask(Drawable* drawable)
  1933. {
  1934. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1935. }
  1936. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1937. {
  1938. unsigned long long hash = 0;
  1939. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1940. hash += (unsigned long long)(*i);
  1941. return hash;
  1942. }
  1943. Technique* View::GetTechnique(Drawable* drawable, Material* material)
  1944. {
  1945. if (!material)
  1946. {
  1947. const Vector<TechniqueEntry>& techniques = renderer_->GetDefaultMaterial()->GetTechniques();
  1948. return techniques.Size() ? techniques[0].technique_ : (Technique*)0;
  1949. }
  1950. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1951. // If only one technique, no choice
  1952. if (techniques.Size() == 1)
  1953. return techniques[0].technique_;
  1954. else
  1955. {
  1956. float lodDistance = drawable->GetLodDistance();
  1957. // Check for suitable technique. Techniques should be ordered like this:
  1958. // Most distant & highest quality
  1959. // Most distant & lowest quality
  1960. // Second most distant & highest quality
  1961. // ...
  1962. for (unsigned i = 0; i < techniques.Size(); ++i)
  1963. {
  1964. const TechniqueEntry& entry = techniques[i];
  1965. Technique* tech = entry.technique_;
  1966. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1967. continue;
  1968. if (lodDistance >= entry.lodDistance_)
  1969. return tech;
  1970. }
  1971. // If no suitable technique found, fallback to the last
  1972. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  1973. }
  1974. }
  1975. void View::CheckMaterialForAuxView(Material* material)
  1976. {
  1977. const SharedPtr<Texture>* textures = material->GetTextures();
  1978. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1979. {
  1980. // Have to check cube & 2D textures separately
  1981. Texture* texture = textures[i];
  1982. if (texture)
  1983. {
  1984. if (texture->GetType() == Texture2D::GetTypeStatic())
  1985. {
  1986. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1987. RenderSurface* target = tex2D->GetRenderSurface();
  1988. if (target)
  1989. {
  1990. Viewport* viewport = target->GetViewport();
  1991. if (viewport->GetScene() && viewport->GetCamera())
  1992. renderer_->AddView(target, viewport);
  1993. }
  1994. }
  1995. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1996. {
  1997. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1998. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1999. {
  2000. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  2001. if (target)
  2002. {
  2003. Viewport* viewport = target->GetViewport();
  2004. if (viewport->GetScene() && viewport->GetCamera())
  2005. renderer_->AddView(target, viewport);
  2006. }
  2007. }
  2008. }
  2009. }
  2010. }
  2011. // Set frame number so that we can early-out next time we come across this material on the same frame
  2012. material->MarkForAuxView(frame_.frameNumber_);
  2013. }
  2014. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  2015. {
  2016. if (!batch.material_)
  2017. batch.material_ = renderer_->GetDefaultMaterial();
  2018. // Convert to instanced if possible
  2019. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && batch.geometry_->GetIndexBuffer() && !batch.shaderData_ &&
  2020. !batch.overrideView_)
  2021. batch.geometryType_ = GEOM_INSTANCED;
  2022. if (batch.geometryType_ == GEOM_INSTANCED)
  2023. {
  2024. HashMap<BatchGroupKey, BatchGroup>* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_;
  2025. BatchGroupKey key(batch);
  2026. HashMap<BatchGroupKey, BatchGroup>::Iterator i = groups->Find(key);
  2027. if (i == groups->End())
  2028. {
  2029. // Create a new group based on the batch
  2030. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2031. BatchGroup newGroup(batch);
  2032. newGroup.CalculateSortKey();
  2033. newGroup.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2034. groups->Insert(MakePair(key, newGroup));
  2035. }
  2036. else
  2037. i->second_.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2038. }
  2039. else
  2040. {
  2041. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2042. batch.CalculateSortKey();
  2043. batchQueue.batches_.Push(batch);
  2044. }
  2045. }
  2046. void View::PrepareInstancingBuffer()
  2047. {
  2048. PROFILE(PrepareInstancingBuffer);
  2049. unsigned totalInstances = 0;
  2050. totalInstances += baseQueue_.GetNumInstances(renderer_);
  2051. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  2052. if (renderMode_ != RENDER_FORWARD)
  2053. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  2054. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2055. {
  2056. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2057. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  2058. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  2059. }
  2060. // If fail to set buffer size, fall back to per-group locking
  2061. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2062. {
  2063. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2064. unsigned freeIndex = 0;
  2065. void* dest = instancingBuffer->Lock(0, totalInstances, true);
  2066. if (!dest)
  2067. return;
  2068. baseQueue_.SetTransforms(renderer_, dest, freeIndex);
  2069. preAlphaQueue_.SetTransforms(renderer_, dest, freeIndex);
  2070. if (renderMode_ != RENDER_FORWARD)
  2071. gbufferQueue_.SetTransforms(renderer_, dest, freeIndex);
  2072. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2073. {
  2074. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2075. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, dest, freeIndex);
  2076. i->litBatches_.SetTransforms(renderer_, dest, freeIndex);
  2077. }
  2078. instancingBuffer->Unlock();
  2079. }
  2080. }
  2081. void View::SetupLightVolumeBatch(Batch& batch)
  2082. {
  2083. Light* light = batch.lightQueue_->light_;
  2084. LightType type = light->GetLightType();
  2085. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2086. float lightDist;
  2087. // Use replace blend mode for the first pre-pass light volume, and additive for the rest
  2088. graphics_->SetBlendMode(renderMode_ == RENDER_PREPASS && light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  2089. graphics_->SetDepthBias(0.0f, 0.0f);
  2090. graphics_->SetDepthWrite(false);
  2091. if (type != LIGHT_DIRECTIONAL)
  2092. {
  2093. if (type == LIGHT_POINT)
  2094. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2095. else
  2096. lightDist = light->GetFrustum().Distance(cameraPos);
  2097. // Draw front faces if not inside light volume
  2098. if (lightDist < camera_->GetNearClip() * 2.0f)
  2099. {
  2100. renderer_->SetCullMode(CULL_CW, camera_);
  2101. graphics_->SetDepthTest(CMP_GREATER);
  2102. }
  2103. else
  2104. {
  2105. renderer_->SetCullMode(CULL_CCW, camera_);
  2106. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2107. }
  2108. }
  2109. else
  2110. {
  2111. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2112. // refresh the directional light's model transform before rendering
  2113. light->GetVolumeTransform(camera_);
  2114. graphics_->SetCullMode(CULL_NONE);
  2115. graphics_->SetDepthTest(CMP_ALWAYS);
  2116. }
  2117. graphics_->SetScissorTest(false);
  2118. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2119. }
  2120. void View::DrawFullscreenQuad(bool nearQuad)
  2121. {
  2122. Light* quadDirLight = renderer_->GetQuadDirLight();
  2123. Geometry* geometry = renderer_->GetLightGeometry(quadDirLight);
  2124. Matrix3x4 model = Matrix3x4::IDENTITY;
  2125. Matrix4 projection = Matrix4::IDENTITY;
  2126. #ifdef USE_OPENGL
  2127. model.m23_ = nearQuad ? -1.0f : 1.0f;
  2128. #else
  2129. model.m23_ = nearQuad ? 0.0f : 1.0f;
  2130. #endif
  2131. graphics_->SetCullMode(CULL_NONE);
  2132. graphics_->SetShaderParameter(VSP_MODEL, model);
  2133. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  2134. graphics_->ClearTransformSources();
  2135. geometry->Draw(graphics_);
  2136. }
  2137. void View::RenderShadowMap(const LightBatchQueue& queue)
  2138. {
  2139. PROFILE(RenderShadowMap);
  2140. Texture2D* shadowMap = queue.shadowMap_;
  2141. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2142. graphics_->SetColorWrite(false);
  2143. graphics_->SetFillMode(FILL_SOLID);
  2144. graphics_->SetStencilTest(false);
  2145. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2146. graphics_->SetDepthStencil(shadowMap);
  2147. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2148. graphics_->Clear(CLEAR_DEPTH);
  2149. // Set shadow depth bias
  2150. BiasParameters parameters = queue.light_->GetShadowBias();
  2151. // Adjust the light's constant depth bias according to global shadow map resolution
  2152. /// \todo Should remove this adjustment and find a more flexible solution
  2153. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2154. if (shadowMapSize <= 512)
  2155. parameters.constantBias_ *= 2.0f;
  2156. else if (shadowMapSize >= 2048)
  2157. parameters.constantBias_ *= 0.5f;
  2158. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2159. // Render each of the splits
  2160. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2161. {
  2162. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2163. if (!shadowQueue.shadowBatches_.IsEmpty())
  2164. {
  2165. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2166. shadowQueue.shadowBatches_.Draw(graphics_, renderer_);
  2167. }
  2168. }
  2169. graphics_->SetColorWrite(true);
  2170. graphics_->SetDepthBias(0.0f, 0.0f);
  2171. }
  2172. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2173. {
  2174. // If using the backbuffer, return the backbuffer depth-stencil
  2175. if (!renderTarget)
  2176. return 0;
  2177. // Then check for linked depth-stencil
  2178. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2179. // Finally get one from Renderer
  2180. if (!depthStencil)
  2181. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2182. return depthStencil;
  2183. }
  2184. }