Batch.cpp 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "Geometry.h"
  25. #include "Graphics.h"
  26. #include "GraphicsImpl.h"
  27. #include "Material.h"
  28. #include "Node.h"
  29. #include "Renderer.h"
  30. #include "Profiler.h"
  31. #include "Scene.h"
  32. #include "ShaderVariation.h"
  33. #include "Sort.h"
  34. #include "Technique.h"
  35. #include "Texture2D.h"
  36. #include "VertexBuffer.h"
  37. #include "View.h"
  38. #include "Zone.h"
  39. #include "DebugNew.h"
  40. namespace Urho3D
  41. {
  42. inline bool CompareBatchesState(Batch* lhs, Batch* rhs)
  43. {
  44. if (lhs->sortKey_ != rhs->sortKey_)
  45. return lhs->sortKey_ < rhs->sortKey_;
  46. else
  47. return lhs->distance_ < rhs->distance_;
  48. }
  49. inline bool CompareBatchesFrontToBack(Batch* lhs, Batch* rhs)
  50. {
  51. if (lhs->distance_ != rhs->distance_)
  52. return lhs->distance_ < rhs->distance_;
  53. else
  54. return lhs->sortKey_ < rhs->sortKey_;
  55. }
  56. inline bool CompareBatchesBackToFront(Batch* lhs, Batch* rhs)
  57. {
  58. if (lhs->distance_ != rhs->distance_)
  59. return lhs->distance_ > rhs->distance_;
  60. else
  61. return lhs->sortKey_ < rhs->sortKey_;
  62. }
  63. inline bool CompareInstancesFrontToBack(const InstanceData& lhs, const InstanceData& rhs)
  64. {
  65. return lhs.distance_ < rhs.distance_;
  66. }
  67. void CalculateShadowMatrix(Matrix4& dest, LightBatchQueue* queue, unsigned split, Renderer* renderer, const Vector3& translation)
  68. {
  69. Camera* shadowCamera = queue->shadowSplits_[split].shadowCamera_;
  70. const IntRect& viewport = queue->shadowSplits_[split].shadowViewport_;
  71. Matrix3x4 posAdjust(translation, Quaternion::IDENTITY, 1.0f);
  72. Matrix3x4 shadowView(shadowCamera->GetView());
  73. Matrix4 shadowProj(shadowCamera->GetProjection());
  74. Matrix4 texAdjust(Matrix4::IDENTITY);
  75. Texture2D* shadowMap = queue->shadowMap_;
  76. if (!shadowMap)
  77. return;
  78. float width = (float)shadowMap->GetWidth();
  79. float height = (float)shadowMap->GetHeight();
  80. Vector2 offset(
  81. (float)viewport.left_ / width,
  82. (float)viewport.top_ / height
  83. );
  84. Vector2 scale(
  85. 0.5f * (float)viewport.Width() / width,
  86. 0.5f * (float)viewport.Height() / height
  87. );
  88. #ifdef USE_OPENGL
  89. offset.x_ += scale.x_;
  90. offset.y_ += scale.y_;
  91. offset.y_ = 1.0f - offset.y_;
  92. // If using 4 shadow samples, offset the position diagonally by half pixel
  93. if (renderer->GetShadowQuality() & SHADOWQUALITY_HIGH_16BIT)
  94. {
  95. offset.x_ -= 0.5f / width;
  96. offset.y_ -= 0.5f / height;
  97. }
  98. texAdjust.SetTranslation(Vector3(offset.x_, offset.y_, 0.5f));
  99. texAdjust.SetScale(Vector3(scale.x_, scale.y_, 0.5f));
  100. #else
  101. offset.x_ += scale.x_ + 0.5f / width;
  102. offset.y_ += scale.y_ + 0.5f / height;
  103. if (renderer->GetShadowQuality() & SHADOWQUALITY_HIGH_16BIT)
  104. {
  105. offset.x_ -= 0.5f / width;
  106. offset.y_ -= 0.5f / height;
  107. }
  108. scale.y_ = -scale.y_;
  109. texAdjust.SetTranslation(Vector3(offset.x_, offset.y_, 0.0f));
  110. texAdjust.SetScale(Vector3(scale.x_, scale.y_, 1.0f));
  111. #endif
  112. dest = texAdjust * shadowProj * shadowView * posAdjust;
  113. }
  114. void CalculateSpotMatrix(Matrix4& dest, Light* light, const Vector3& translation)
  115. {
  116. Node* lightNode = light->GetNode();
  117. Matrix3x4 posAdjust(translation, Quaternion::IDENTITY, 1.0f);
  118. Matrix3x4 spotView = Matrix3x4(lightNode->GetWorldPosition(), lightNode->GetWorldRotation(), 1.0f).Inverse();
  119. Matrix4 spotProj(Matrix4::ZERO);
  120. Matrix4 texAdjust(Matrix4::IDENTITY);
  121. // Make the projected light slightly smaller than the shadow map to prevent light spill
  122. float h = 1.005f / tanf(light->GetFov() * M_DEGTORAD * 0.5f);
  123. float w = h / light->GetAspectRatio();
  124. spotProj.m00_ = w;
  125. spotProj.m11_ = h;
  126. spotProj.m22_ = 1.0f / Max(light->GetRange(), M_EPSILON);
  127. spotProj.m32_ = 1.0f;
  128. #ifdef USE_OPENGL
  129. texAdjust.SetTranslation(Vector3(0.5f, 0.5f, 0.5f));
  130. texAdjust.SetScale(Vector3(0.5f, -0.5f, 0.5f));
  131. #else
  132. texAdjust.SetTranslation(Vector3(0.5f, 0.5f, 0.0f));
  133. texAdjust.SetScale(Vector3(0.5f, -0.5f, 1.0f));
  134. #endif
  135. dest = texAdjust * spotProj * spotView * posAdjust;
  136. }
  137. void Batch::CalculateSortKey()
  138. {
  139. unsigned shaderID = ((*((unsigned*)&vertexShader_) / sizeof(ShaderVariation)) + (*((unsigned*)&pixelShader_) / sizeof(ShaderVariation))) & 0x3fff;
  140. if (!isBase_)
  141. shaderID |= 0x8000;
  142. if (pass_ && pass_->GetAlphaMask())
  143. shaderID |= 0x4000;
  144. unsigned lightQueueID = (*((unsigned*)&lightQueue_) / sizeof(LightBatchQueue)) & 0xffff;
  145. unsigned materialID = (*((unsigned*)&material_) / sizeof(Material)) & 0xffff;
  146. unsigned geometryID = (*((unsigned*)&geometry_) / sizeof(Geometry)) & 0xffff;
  147. sortKey_ = (((unsigned long long)shaderID) << 48) | (((unsigned long long)lightQueueID) << 32) |
  148. (((unsigned long long)materialID) << 16) | geometryID;
  149. }
  150. void Batch::Prepare(View* view, bool setModelTransform) const
  151. {
  152. if (!vertexShader_ || !pixelShader_)
  153. return;
  154. Graphics* graphics = view->GetGraphics();
  155. Renderer* renderer = view->GetRenderer();
  156. Node* cameraNode = camera_ ? camera_->GetNode() : 0;
  157. Light* light = lightQueue_ ? lightQueue_->light_ : 0;
  158. Texture2D* shadowMap = lightQueue_ ? lightQueue_->shadowMap_ : 0;
  159. // Set pass / material-specific renderstates
  160. if (pass_ && material_)
  161. {
  162. bool isShadowPass = pass_->GetType() == PASS_SHADOW;
  163. BlendMode blend = pass_->GetBlendMode();
  164. // Turn additive blending into subtract if the light is negative
  165. if (light && light->IsNegative())
  166. {
  167. if (blend == BLEND_ADD)
  168. blend = BLEND_SUBTRACT;
  169. else if (blend == BLEND_ADDALPHA)
  170. blend = BLEND_SUBTRACTALPHA;
  171. }
  172. graphics->SetBlendMode(blend);
  173. renderer->SetCullMode(isShadowPass ? material_->GetShadowCullMode() : material_->GetCullMode(), camera_);
  174. if (!isShadowPass)
  175. {
  176. const BiasParameters& depthBias = material_->GetDepthBias();
  177. graphics->SetDepthBias(depthBias.constantBias_, depthBias.slopeScaledBias_);
  178. }
  179. graphics->SetDepthTest(pass_->GetDepthTestMode());
  180. graphics->SetDepthWrite(pass_->GetDepthWrite());
  181. }
  182. // Set shaders
  183. graphics->SetShaders(vertexShader_, pixelShader_);
  184. // Set global frame parameters
  185. if (graphics->NeedParameterUpdate(SP_FRAME, (void*)0))
  186. {
  187. const FrameInfo& frame = view->GetFrameInfo();
  188. graphics->SetShaderParameter(VSP_DELTATIME, frame.timeStep_);
  189. graphics->SetShaderParameter(PSP_DELTATIME, frame.timeStep_);
  190. Scene* scene = view->GetScene();
  191. if (scene)
  192. {
  193. float elapsedTime = scene->GetElapsedTime();
  194. graphics->SetShaderParameter(VSP_ELAPSEDTIME, elapsedTime);
  195. graphics->SetShaderParameter(PSP_ELAPSEDTIME, elapsedTime);
  196. }
  197. }
  198. // Set camera shader parameters
  199. unsigned cameraHash = overrideView_ ? (unsigned)(size_t)camera_ + 4 : (unsigned)(size_t)camera_;
  200. if (graphics->NeedParameterUpdate(SP_CAMERA, reinterpret_cast<void*>(cameraHash)))
  201. {
  202. Matrix3x4 cameraEffectiveTransform = camera_->GetEffectiveWorldTransform();
  203. graphics->SetShaderParameter(VSP_CAMERAPOS, cameraEffectiveTransform.Translation());
  204. graphics->SetShaderParameter(VSP_CAMERAROT, cameraEffectiveTransform.RotationMatrix());
  205. float nearClip = camera_->GetNearClip();
  206. float farClip = camera_->GetFarClip();
  207. graphics->SetShaderParameter(VSP_NEARCLIP, nearClip);
  208. graphics->SetShaderParameter(VSP_FARCLIP, farClip);
  209. graphics->SetShaderParameter(PSP_NEARCLIP, nearClip);
  210. graphics->SetShaderParameter(PSP_FARCLIP, farClip);
  211. Vector4 depthMode = Vector4::ZERO;
  212. if (camera_->IsOrthographic())
  213. {
  214. depthMode.x_ = 1.0f;
  215. #ifdef USE_OPENGL
  216. depthMode.z_ = 0.5f;
  217. depthMode.w_ = 0.5f;
  218. #else
  219. depthMode.z_ = 1.0f;
  220. #endif
  221. }
  222. else
  223. depthMode.w_ = 1.0f / camera_->GetFarClip();
  224. graphics->SetShaderParameter(VSP_DEPTHMODE, depthMode);
  225. Vector3 nearVector, farVector;
  226. camera_->GetFrustumSize(nearVector, farVector);
  227. Vector4 viewportParams(farVector.x_, farVector.y_, farVector.z_, 0.0f);
  228. graphics->SetShaderParameter(VSP_FRUSTUMSIZE, viewportParams);
  229. Matrix4 projection = camera_->GetProjection();
  230. #ifdef USE_OPENGL
  231. // Add constant depth bias manually to the projection matrix due to glPolygonOffset() inconsistency
  232. float constantBias = 2.0f * graphics->GetDepthConstantBias();
  233. // On OpenGL ES slope-scaled bias can not be guaranteed to be available, and the shadow filtering is more coarse,
  234. // so use a higher constant bias
  235. #ifdef GL_ES_VERSION_2_0
  236. constantBias *= 2.0f;
  237. #endif
  238. projection.m22_ += projection.m32_ * constantBias;
  239. projection.m23_ += projection.m33_ * constantBias;
  240. #endif
  241. if (overrideView_)
  242. graphics->SetShaderParameter(VSP_VIEWPROJ, projection);
  243. else
  244. graphics->SetShaderParameter(VSP_VIEWPROJ, projection * camera_->GetView());
  245. }
  246. // Set viewport shader parameters
  247. IntVector2 rtSize = graphics->GetRenderTargetDimensions();
  248. IntRect viewport = graphics->GetViewport();
  249. unsigned viewportHash = (viewport.left_) | (viewport.top_ << 8) | (viewport.right_ << 16) | (viewport.bottom_ << 24);
  250. if (graphics->NeedParameterUpdate(SP_VIEWPORT, reinterpret_cast<void*>(viewportHash)))
  251. {
  252. float rtWidth = (float)rtSize.x_;
  253. float rtHeight = (float)rtSize.y_;
  254. float widthRange = 0.5f * viewport.Width() / rtWidth;
  255. float heightRange = 0.5f * viewport.Height() / rtHeight;
  256. #ifdef USE_OPENGL
  257. Vector4 bufferUVOffset(((float)viewport.left_) / rtWidth + widthRange,
  258. 1.0f - (((float)viewport.top_) / rtHeight + heightRange), widthRange, heightRange);
  259. #else
  260. Vector4 bufferUVOffset((0.5f + (float)viewport.left_) / rtWidth + widthRange,
  261. (0.5f + (float)viewport.top_) / rtHeight + heightRange, widthRange, heightRange);
  262. #endif
  263. graphics->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  264. float sizeX = 1.0f / rtWidth;
  265. float sizeY = 1.0f / rtHeight;
  266. graphics->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(sizeX, sizeY, 0.0f, 0.0f));
  267. }
  268. // Set model or skinning transforms
  269. if (setModelTransform && graphics->NeedParameterUpdate(SP_OBJECTTRANSFORM, worldTransform_))
  270. {
  271. if (geometryType_ == GEOM_SKINNED)
  272. {
  273. graphics->SetShaderParameter(VSP_SKINMATRICES, reinterpret_cast<const float*>(worldTransform_),
  274. 12 * numWorldTransforms_);
  275. }
  276. else
  277. graphics->SetShaderParameter(VSP_MODEL, *worldTransform_);
  278. // Set the orientation for billboards, either from the object itself or from the camera
  279. if (geometryType_ == GEOM_BILLBOARD)
  280. {
  281. if (numWorldTransforms_ > 1)
  282. graphics->SetShaderParameter(VSP_BILLBOARDROT, worldTransform_[1].RotationMatrix());
  283. else
  284. graphics->SetShaderParameter(VSP_BILLBOARDROT, cameraNode->GetWorldRotation().RotationMatrix());
  285. }
  286. }
  287. // Set zone-related shader parameters
  288. BlendMode blend = graphics->GetBlendMode();
  289. // If the pass is additive, override fog color to black so that shaders do not need a separate additive path
  290. bool overrideFogColorToBlack = blend == BLEND_ADD || blend == BLEND_ADDALPHA;
  291. unsigned zoneHash = (unsigned)(size_t)zone_;
  292. if (overrideFogColorToBlack)
  293. zoneHash += 0x80000000;
  294. if (zone_ && graphics->NeedParameterUpdate(SP_ZONE, reinterpret_cast<void*>(zoneHash)))
  295. {
  296. graphics->SetShaderParameter(VSP_AMBIENTSTARTCOLOR, zone_->GetAmbientStartColor());
  297. graphics->SetShaderParameter(VSP_AMBIENTENDCOLOR, zone_->GetAmbientEndColor().ToVector4() - zone_->GetAmbientStartColor().ToVector4());
  298. const BoundingBox& box = zone_->GetBoundingBox();
  299. Vector3 boxSize = box.Size();
  300. Matrix3x4 adjust(Matrix3x4::IDENTITY);
  301. adjust.SetScale(Vector3(1.0f / boxSize.x_, 1.0f / boxSize.y_, 1.0f / boxSize.z_));
  302. adjust.SetTranslation(Vector3(0.5f, 0.5f, 0.5f));
  303. Matrix3x4 zoneTransform = adjust * zone_->GetInverseWorldTransform();
  304. graphics->SetShaderParameter(VSP_ZONE, zoneTransform);
  305. graphics->SetShaderParameter(PSP_AMBIENTCOLOR, zone_->GetAmbientColor());
  306. graphics->SetShaderParameter(PSP_FOGCOLOR, overrideFogColorToBlack ? Color::BLACK : zone_->GetFogColor());
  307. float farClip = camera_->GetFarClip();
  308. float fogStart = Min(zone_->GetFogStart(), farClip);
  309. float fogEnd = Min(zone_->GetFogEnd(), farClip);
  310. if (fogStart >= fogEnd * (1.0f - M_LARGE_EPSILON))
  311. fogStart = fogEnd * (1.0f - M_LARGE_EPSILON);
  312. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  313. Vector4 fogParams(fogEnd / farClip, farClip / fogRange, 0.0f, 0.0f);
  314. Node* zoneNode = zone_->GetNode();
  315. if (zone_->GetHeightFog() && zoneNode)
  316. {
  317. Vector3 worldFogHeightVec = zoneNode->GetWorldTransform() * Vector3(0.0f, zone_->GetFogHeight(), 0.0f);
  318. fogParams.z_ = worldFogHeightVec.y_;
  319. fogParams.w_ = zone_->GetFogHeightScale() / Max(zoneNode->GetWorldScale().y_, M_EPSILON);
  320. }
  321. graphics->SetShaderParameter(PSP_FOGPARAMS, fogParams);
  322. }
  323. // Set light-related shader parameters
  324. if (lightQueue_)
  325. {
  326. if (graphics->NeedParameterUpdate(SP_VERTEXLIGHTS, lightQueue_) && graphics->HasShaderParameter(VS, VSP_VERTEXLIGHTS))
  327. {
  328. Vector4 vertexLights[MAX_VERTEX_LIGHTS * 3];
  329. const PODVector<Light*>& lights = lightQueue_->vertexLights_;
  330. for (unsigned i = 0; i < lights.Size(); ++i)
  331. {
  332. Light* vertexLight = lights[i];
  333. Node* vertexLightNode = vertexLight->GetNode();
  334. LightType type = vertexLight->GetLightType();
  335. // Attenuation
  336. float invRange, cutoff, invCutoff;
  337. if (type == LIGHT_DIRECTIONAL)
  338. invRange = 0.0f;
  339. else
  340. invRange = 1.0f / Max(vertexLight->GetRange(), M_EPSILON);
  341. if (type == LIGHT_SPOT)
  342. {
  343. cutoff = Cos(vertexLight->GetFov() * 0.5f);
  344. invCutoff = 1.0f / (1.0f - cutoff);
  345. }
  346. else
  347. {
  348. cutoff = -1.0f;
  349. invCutoff = 1.0f;
  350. }
  351. // Color
  352. float fade = 1.0f;
  353. float fadeEnd = vertexLight->GetDrawDistance();
  354. float fadeStart = vertexLight->GetFadeDistance();
  355. // Do fade calculation for light if both fade & draw distance defined
  356. if (vertexLight->GetLightType() != LIGHT_DIRECTIONAL && fadeEnd > 0.0f && fadeStart > 0.0f && fadeStart < fadeEnd)
  357. fade = Min(1.0f - (vertexLight->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 1.0f);
  358. Color color = vertexLight->GetEffectiveColor() * fade;
  359. vertexLights[i * 3] = Vector4(color.r_, color.g_, color.b_, invRange);
  360. // Direction
  361. vertexLights[i * 3 + 1] = Vector4(-(vertexLightNode->GetWorldDirection()), cutoff);
  362. // Position
  363. vertexLights[i * 3 + 2] = Vector4(vertexLightNode->GetWorldPosition(), invCutoff);
  364. }
  365. if (lights.Size())
  366. graphics->SetShaderParameter(VSP_VERTEXLIGHTS, vertexLights[0].Data(), lights.Size() * 3 * 4);
  367. }
  368. }
  369. if (light && graphics->NeedParameterUpdate(SP_LIGHT, light))
  370. {
  371. // Deferred light volume batches operate in a camera-centered space. Detect from material, zone & pass all being null
  372. bool isLightVolume = !material_ && !pass_ && !zone_;
  373. Matrix3x4 cameraEffectiveTransform = camera_->GetEffectiveWorldTransform();
  374. Vector3 cameraEffectivePos = cameraEffectiveTransform.Translation();
  375. Node* lightNode = light->GetNode();
  376. Matrix3 lightWorldRotation = lightNode->GetWorldRotation().RotationMatrix();
  377. graphics->SetShaderParameter(VSP_LIGHTDIR, lightWorldRotation * Vector3::BACK);
  378. float atten = 1.0f / Max(light->GetRange(), M_EPSILON);
  379. graphics->SetShaderParameter(VSP_LIGHTPOS, Vector4(lightNode->GetWorldPosition(), atten));
  380. if (graphics->HasShaderParameter(VS, VSP_LIGHTMATRICES))
  381. {
  382. switch (light->GetLightType())
  383. {
  384. case LIGHT_DIRECTIONAL:
  385. {
  386. Matrix4 shadowMatrices[MAX_CASCADE_SPLITS];
  387. unsigned numSplits = lightQueue_->shadowSplits_.Size();
  388. for (unsigned i = 0; i < numSplits; ++i)
  389. CalculateShadowMatrix(shadowMatrices[i], lightQueue_, i, renderer, Vector3::ZERO);
  390. graphics->SetShaderParameter(VSP_LIGHTMATRICES, shadowMatrices[0].Data(), 16 * numSplits);
  391. }
  392. break;
  393. case LIGHT_SPOT:
  394. {
  395. Matrix4 shadowMatrices[2];
  396. CalculateSpotMatrix(shadowMatrices[0], light, Vector3::ZERO);
  397. bool isShadowed = shadowMap && graphics->HasTextureUnit(TU_SHADOWMAP);
  398. if (isShadowed)
  399. CalculateShadowMatrix(shadowMatrices[1], lightQueue_, 0, renderer, Vector3::ZERO);
  400. graphics->SetShaderParameter(VSP_LIGHTMATRICES, shadowMatrices[0].Data(), isShadowed ? 32 : 16);
  401. }
  402. break;
  403. case LIGHT_POINT:
  404. {
  405. Matrix4 lightVecRot(lightNode->GetWorldRotation().RotationMatrix());
  406. // HLSL compiler will pack the parameters as if the matrix is only 3x4, so must be careful to not overwrite
  407. // the next parameter
  408. #ifdef USE_OPENGL
  409. graphics->SetShaderParameter(VSP_LIGHTMATRICES, lightVecRot.Data(), 16);
  410. #else
  411. graphics->SetShaderParameter(VSP_LIGHTMATRICES, lightVecRot.Data(), 12);
  412. #endif
  413. }
  414. break;
  415. }
  416. }
  417. float fade = 1.0f;
  418. float fadeEnd = light->GetDrawDistance();
  419. float fadeStart = light->GetFadeDistance();
  420. // Do fade calculation for light if both fade & draw distance defined
  421. if (light->GetLightType() != LIGHT_DIRECTIONAL && fadeEnd > 0.0f && fadeStart > 0.0f && fadeStart < fadeEnd)
  422. fade = Min(1.0f - (light->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 1.0f);
  423. // Negative lights will use subtract blending, so write absolute RGB values to the shader parameter
  424. graphics->SetShaderParameter(PSP_LIGHTCOLOR, Color(light->GetEffectiveColor().Abs(),
  425. light->GetEffectiveSpecularIntensity()) * fade);
  426. graphics->SetShaderParameter(PSP_LIGHTDIR, lightWorldRotation * Vector3::BACK);
  427. graphics->SetShaderParameter(PSP_LIGHTPOS, Vector4((isLightVolume ? (lightNode->GetWorldPosition() -
  428. cameraEffectivePos) : lightNode->GetWorldPosition()), atten));
  429. if (graphics->HasShaderParameter(PS, PSP_LIGHTMATRICES))
  430. {
  431. switch (light->GetLightType())
  432. {
  433. case LIGHT_DIRECTIONAL:
  434. {
  435. Matrix4 shadowMatrices[MAX_CASCADE_SPLITS];
  436. unsigned numSplits = lightQueue_->shadowSplits_.Size();
  437. for (unsigned i = 0; i < numSplits; ++i)
  438. {
  439. CalculateShadowMatrix(shadowMatrices[i], lightQueue_, i, renderer, isLightVolume ? cameraEffectivePos :
  440. Vector3::ZERO);
  441. }
  442. graphics->SetShaderParameter(PSP_LIGHTMATRICES, shadowMatrices[0].Data(), 16 * numSplits);
  443. }
  444. break;
  445. case LIGHT_SPOT:
  446. {
  447. Matrix4 shadowMatrices[2];
  448. CalculateSpotMatrix(shadowMatrices[0], light, cameraEffectivePos);
  449. bool isShadowed = lightQueue_->shadowMap_ != 0;
  450. if (isShadowed)
  451. {
  452. CalculateShadowMatrix(shadowMatrices[1], lightQueue_, 0, renderer, isLightVolume ? cameraEffectivePos :
  453. Vector3::ZERO);
  454. }
  455. graphics->SetShaderParameter(PSP_LIGHTMATRICES, shadowMatrices[0].Data(), isShadowed ? 32 : 16);
  456. }
  457. break;
  458. case LIGHT_POINT:
  459. {
  460. Matrix4 lightVecRot(lightNode->GetWorldRotation().RotationMatrix());
  461. // HLSL compiler will pack the parameters as if the matrix is only 3x4, so must be careful to not overwrite
  462. // the next parameter
  463. #ifdef USE_OPENGL
  464. graphics->SetShaderParameter(PSP_LIGHTMATRICES, lightVecRot.Data(), 16);
  465. #else
  466. graphics->SetShaderParameter(PSP_LIGHTMATRICES, lightVecRot.Data(), 12);
  467. #endif
  468. }
  469. break;
  470. }
  471. }
  472. // Set shadow mapping shader parameters
  473. if (shadowMap)
  474. {
  475. {
  476. unsigned faceWidth = shadowMap->GetWidth() / 2;
  477. unsigned faceHeight = shadowMap->GetHeight() / 3;
  478. float width = (float)shadowMap->GetWidth();
  479. float height = (float)shadowMap->GetHeight();
  480. #ifdef USE_OPENGL
  481. float mulX = (float)(faceWidth - 3) / width;
  482. float mulY = (float)(faceHeight - 3) / height;
  483. float addX = 1.5f / width;
  484. float addY = 1.5f / height;
  485. #else
  486. float mulX = (float)(faceWidth - 4) / width;
  487. float mulY = (float)(faceHeight - 4) / height;
  488. float addX = 2.5f / width;
  489. float addY = 2.5f / height;
  490. #endif
  491. // If using 4 shadow samples, offset the position diagonally by half pixel
  492. if (renderer->GetShadowQuality() & SHADOWQUALITY_HIGH_16BIT)
  493. {
  494. addX -= 0.5f / width;
  495. addY -= 0.5f / height;
  496. }
  497. graphics->SetShaderParameter(PSP_SHADOWCUBEADJUST, Vector4(mulX, mulY, addX, addY));
  498. }
  499. {
  500. Camera* shadowCamera = lightQueue_->shadowSplits_[0].shadowCamera_;
  501. float nearClip = shadowCamera->GetNearClip();
  502. float farClip = shadowCamera->GetFarClip();
  503. float q = farClip / (farClip - nearClip);
  504. float r = -q * nearClip;
  505. const CascadeParameters& parameters = light->GetShadowCascade();
  506. float viewFarClip = camera_->GetFarClip();
  507. float shadowRange = parameters.GetShadowRange();
  508. float fadeStart = parameters.fadeStart_ * shadowRange / viewFarClip;
  509. float fadeEnd = shadowRange / viewFarClip;
  510. float fadeRange = fadeEnd - fadeStart;
  511. graphics->SetShaderParameter(PSP_SHADOWDEPTHFADE, Vector4(q, r, fadeStart, 1.0f / fadeRange));
  512. }
  513. {
  514. float intensity = light->GetShadowIntensity();
  515. float fadeStart = light->GetShadowFadeDistance();
  516. float fadeEnd = light->GetShadowDistance();
  517. if (fadeStart > 0.0f && fadeEnd > 0.0f && fadeEnd > fadeStart)
  518. intensity = Lerp(intensity, 1.0f, Clamp((light->GetDistance() - fadeStart) / (fadeEnd - fadeStart), 0.0f, 1.0f));
  519. float pcfValues = (1.0f - intensity);
  520. float samples = renderer->GetShadowQuality() >= SHADOWQUALITY_HIGH_16BIT ? 4.0f : 1.0f;
  521. graphics->SetShaderParameter(PSP_SHADOWINTENSITY, Vector4(pcfValues / samples, intensity, 0.0f, 0.0f));
  522. }
  523. float sizeX = 1.0f / (float)shadowMap->GetWidth();
  524. float sizeY = 1.0f / (float)shadowMap->GetHeight();
  525. graphics->SetShaderParameter(PSP_SHADOWMAPINVSIZE, Vector4(sizeX, sizeY, 0.0f, 0.0f));
  526. Vector4 lightSplits(M_LARGE_VALUE, M_LARGE_VALUE, M_LARGE_VALUE, M_LARGE_VALUE);
  527. if (lightQueue_->shadowSplits_.Size() > 1)
  528. lightSplits.x_ = lightQueue_->shadowSplits_[0].farSplit_ / camera_->GetFarClip();
  529. if (lightQueue_->shadowSplits_.Size() > 2)
  530. lightSplits.y_ = lightQueue_->shadowSplits_[1].farSplit_ / camera_->GetFarClip();
  531. if (lightQueue_->shadowSplits_.Size() > 3)
  532. lightSplits.z_ = lightQueue_->shadowSplits_[2].farSplit_ / camera_->GetFarClip();
  533. graphics->SetShaderParameter(PSP_SHADOWSPLITS, lightSplits);
  534. }
  535. }
  536. // Set material-specific shader parameters and textures
  537. if (material_)
  538. {
  539. if (graphics->NeedParameterUpdate(SP_MATERIAL, material_))
  540. {
  541. const HashMap<StringHash, MaterialShaderParameter>& parameters = material_->GetShaderParameters();
  542. for (HashMap<StringHash, MaterialShaderParameter>::ConstIterator i = parameters.Begin(); i != parameters.End(); ++i)
  543. graphics->SetShaderParameter(i->first_, i->second_.value_);
  544. }
  545. const SharedPtr<Texture>* textures = material_->GetTextures();
  546. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  547. {
  548. TextureUnit unit = (TextureUnit)i;
  549. if (textures[i] && graphics->HasTextureUnit(unit))
  550. graphics->SetTexture(i, textures[i]);
  551. }
  552. }
  553. // Set light-related textures
  554. if (light)
  555. {
  556. if (shadowMap && graphics->HasTextureUnit(TU_SHADOWMAP))
  557. graphics->SetTexture(TU_SHADOWMAP, shadowMap);
  558. if (graphics->HasTextureUnit(TU_LIGHTRAMP))
  559. {
  560. Texture* rampTexture = light->GetRampTexture();
  561. if (!rampTexture)
  562. rampTexture = renderer->GetDefaultLightRamp();
  563. graphics->SetTexture(TU_LIGHTRAMP, rampTexture);
  564. }
  565. if (graphics->HasTextureUnit(TU_LIGHTSHAPE))
  566. {
  567. Texture* shapeTexture = light->GetShapeTexture();
  568. if (!shapeTexture && light->GetLightType() == LIGHT_SPOT)
  569. shapeTexture = renderer->GetDefaultLightSpot();
  570. graphics->SetTexture(TU_LIGHTSHAPE, shapeTexture);
  571. }
  572. }
  573. }
  574. void Batch::Draw(View* view) const
  575. {
  576. if (!geometry_->IsEmpty())
  577. {
  578. Prepare(view);
  579. geometry_->Draw(view->GetGraphics());
  580. }
  581. }
  582. void BatchGroup::SetTransforms(void* lockedData, unsigned& freeIndex)
  583. {
  584. // Do not use up buffer space if not going to draw as instanced
  585. if (geometryType_ != GEOM_INSTANCED)
  586. return;
  587. startIndex_ = freeIndex;
  588. Matrix3x4* dest = (Matrix3x4*)lockedData;
  589. dest += freeIndex;
  590. for (unsigned i = 0; i < instances_.Size(); ++i)
  591. *dest++ = *instances_[i].worldTransform_;
  592. freeIndex += instances_.Size();
  593. }
  594. void BatchGroup::Draw(View* view) const
  595. {
  596. Graphics* graphics = view->GetGraphics();
  597. Renderer* renderer = view->GetRenderer();
  598. if (instances_.Size() && !geometry_->IsEmpty())
  599. {
  600. // Draw as individual objects if instancing not supported
  601. VertexBuffer* instanceBuffer = renderer->GetInstancingBuffer();
  602. if (!instanceBuffer || geometryType_ != GEOM_INSTANCED)
  603. {
  604. Batch::Prepare(view, false);
  605. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  606. graphics->SetVertexBuffers(geometry_->GetVertexBuffers(), geometry_->GetVertexElementMasks());
  607. for (unsigned i = 0; i < instances_.Size(); ++i)
  608. {
  609. if (graphics->NeedParameterUpdate(SP_OBJECTTRANSFORM, instances_[i].worldTransform_))
  610. graphics->SetShaderParameter(VSP_MODEL, *instances_[i].worldTransform_);
  611. graphics->Draw(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(), geometry_->GetIndexCount(),
  612. geometry_->GetVertexStart(), geometry_->GetVertexCount());
  613. }
  614. }
  615. else
  616. {
  617. Batch::Prepare(view, false);
  618. // Get the geometry vertex buffers, then add the instancing stream buffer
  619. // Hack: use a const_cast to avoid dynamic allocation of new temp vectors
  620. Vector<SharedPtr<VertexBuffer> >& vertexBuffers = const_cast<Vector<SharedPtr<VertexBuffer> >&>
  621. (geometry_->GetVertexBuffers());
  622. PODVector<unsigned>& elementMasks = const_cast<PODVector<unsigned>&>(geometry_->GetVertexElementMasks());
  623. vertexBuffers.Push(SharedPtr<VertexBuffer>(instanceBuffer));
  624. elementMasks.Push(instanceBuffer->GetElementMask());
  625. // No stream offset support, instancing buffer not pre-filled with transforms: have to fill now
  626. if (startIndex_ == M_MAX_UNSIGNED)
  627. {
  628. unsigned startIndex = 0;
  629. while (startIndex < instances_.Size())
  630. {
  631. unsigned instances = instances_.Size() - startIndex;
  632. if (instances > instanceBuffer->GetVertexCount())
  633. instances = instanceBuffer->GetVertexCount();
  634. // Copy the transforms
  635. Matrix3x4* dest = (Matrix3x4*)instanceBuffer->Lock(0, instances, true);
  636. if (dest)
  637. {
  638. for (unsigned i = 0; i < instances; ++i)
  639. dest[i] = *instances_[i + startIndex].worldTransform_;
  640. instanceBuffer->Unlock();
  641. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  642. graphics->SetVertexBuffers(vertexBuffers, elementMasks);
  643. graphics->DrawInstanced(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(),
  644. geometry_->GetIndexCount(), geometry_->GetVertexStart(), geometry_->GetVertexCount(), instances);
  645. }
  646. startIndex += instances;
  647. }
  648. }
  649. // Stream offset supported and instancing buffer has been already filled, so just draw
  650. else
  651. {
  652. graphics->SetIndexBuffer(geometry_->GetIndexBuffer());
  653. graphics->SetVertexBuffers(vertexBuffers, elementMasks, startIndex_);
  654. graphics->DrawInstanced(geometry_->GetPrimitiveType(), geometry_->GetIndexStart(), geometry_->GetIndexCount(),
  655. geometry_->GetVertexStart(), geometry_->GetVertexCount(), instances_.Size());
  656. }
  657. // Remove the instancing buffer & element mask now
  658. vertexBuffers.Pop();
  659. elementMasks.Pop();
  660. }
  661. }
  662. }
  663. unsigned BatchGroupKey::ToHash() const
  664. {
  665. return ((unsigned)(size_t)zone_) / sizeof(Zone) +
  666. ((unsigned)(size_t)lightQueue_) / sizeof(LightBatchQueue) +
  667. ((unsigned)(size_t)pass_) / sizeof(Pass) +
  668. ((unsigned)(size_t)material_) / sizeof(Material) +
  669. ((unsigned)(size_t)geometry_) / sizeof(Geometry);
  670. }
  671. void BatchQueue::Clear(int maxSortedInstances)
  672. {
  673. batches_.Clear();
  674. sortedBatches_.Clear();
  675. batchGroups_.Clear();
  676. maxSortedInstances_ = maxSortedInstances;
  677. }
  678. void BatchQueue::SortBackToFront()
  679. {
  680. sortedBatches_.Resize(batches_.Size());
  681. for (unsigned i = 0; i < batches_.Size(); ++i)
  682. sortedBatches_[i] = &batches_[i];
  683. Sort(sortedBatches_.Begin(), sortedBatches_.End(), CompareBatchesBackToFront);
  684. // Do not actually sort batch groups, just list them
  685. sortedBatchGroups_.Resize(batchGroups_.Size());
  686. unsigned index = 0;
  687. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  688. sortedBatchGroups_[index++] = &i->second_;
  689. }
  690. void BatchQueue::SortFrontToBack()
  691. {
  692. sortedBatches_.Clear();
  693. for (unsigned i = 0; i < batches_.Size(); ++i)
  694. sortedBatches_.Push(&batches_[i]);
  695. SortFrontToBack2Pass(sortedBatches_);
  696. // Sort each group front to back
  697. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  698. {
  699. if (i->second_.instances_.Size() <= maxSortedInstances_)
  700. {
  701. Sort(i->second_.instances_.Begin(), i->second_.instances_.End(), CompareInstancesFrontToBack);
  702. if (i->second_.instances_.Size())
  703. i->second_.distance_ = i->second_.instances_[0].distance_;
  704. }
  705. else
  706. {
  707. float minDistance = M_INFINITY;
  708. for (PODVector<InstanceData>::ConstIterator j = i->second_.instances_.Begin(); j != i->second_.instances_.End(); ++j)
  709. minDistance = Min(minDistance, j->distance_);
  710. i->second_.distance_ = minDistance;
  711. }
  712. }
  713. sortedBatchGroups_.Resize(batchGroups_.Size());
  714. unsigned index = 0;
  715. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  716. sortedBatchGroups_[index++] = &i->second_;
  717. SortFrontToBack2Pass(reinterpret_cast<PODVector<Batch*>& >(sortedBatchGroups_));
  718. }
  719. void BatchQueue::SortFrontToBack2Pass(PODVector<Batch*>& batches)
  720. {
  721. // Mobile devices likely use a tiled deferred approach, with which front-to-back sorting is irrelevant. The 2-pass
  722. // method is also time consuming, so just sort with state having priority
  723. #ifdef GL_ES_VERSION_2_0
  724. Sort(batches.Begin(), batches.End(), CompareBatchesState);
  725. #else
  726. // For desktop, first sort by distance and remap shader/material/geometry IDs in the sort key
  727. Sort(batches.Begin(), batches.End(), CompareBatchesFrontToBack);
  728. unsigned freeShaderID = 0;
  729. unsigned short freeMaterialID = 0;
  730. unsigned short freeGeometryID = 0;
  731. for (PODVector<Batch*>::Iterator i = batches.Begin(); i != batches.End(); ++i)
  732. {
  733. Batch* batch = *i;
  734. unsigned shaderID = (batch->sortKey_ >> 32);
  735. HashMap<unsigned, unsigned>::ConstIterator j = shaderRemapping_.Find(shaderID);
  736. if (j != shaderRemapping_.End())
  737. shaderID = j->second_;
  738. else
  739. {
  740. shaderID = shaderRemapping_[shaderID] = freeShaderID | (shaderID & 0xc0000000);
  741. ++freeShaderID;
  742. }
  743. unsigned short materialID = (unsigned short)(batch->sortKey_ & 0xffff0000);
  744. HashMap<unsigned short, unsigned short>::ConstIterator k = materialRemapping_.Find(materialID);
  745. if (k != materialRemapping_.End())
  746. materialID = k->second_;
  747. else
  748. {
  749. materialID = materialRemapping_[materialID] = freeMaterialID;
  750. ++freeMaterialID;
  751. }
  752. unsigned short geometryID = (unsigned short)(batch->sortKey_ & 0xffff);
  753. HashMap<unsigned short, unsigned short>::ConstIterator l = geometryRemapping_.Find(geometryID);
  754. if (l != geometryRemapping_.End())
  755. geometryID = l->second_;
  756. else
  757. {
  758. geometryID = geometryRemapping_[geometryID] = freeGeometryID;
  759. ++freeGeometryID;
  760. }
  761. batch->sortKey_ = (((unsigned long long)shaderID) << 32) || (((unsigned long long)materialID) << 16) | geometryID;
  762. }
  763. shaderRemapping_.Clear();
  764. materialRemapping_.Clear();
  765. geometryRemapping_.Clear();
  766. // Finally sort again with the rewritten ID's
  767. Sort(batches.Begin(), batches.End(), CompareBatchesState);
  768. #endif
  769. }
  770. void BatchQueue::SetTransforms(void* lockedData, unsigned& freeIndex)
  771. {
  772. for (HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  773. i->second_.SetTransforms(lockedData, freeIndex);
  774. }
  775. void BatchQueue::Draw(View* view, bool markToStencil, bool usingLightOptimization) const
  776. {
  777. Graphics* graphics = view->GetGraphics();
  778. Renderer* renderer = view->GetRenderer();
  779. // If View has set up its own light optimizations, do not disturb the stencil/scissor test settings
  780. if (!usingLightOptimization)
  781. {
  782. graphics->SetScissorTest(false);
  783. // During G-buffer rendering, mark opaque pixels' lightmask to stencil buffer if requested
  784. if (!markToStencil)
  785. graphics->SetStencilTest(false);
  786. }
  787. // Instanced
  788. for (PODVector<BatchGroup*>::ConstIterator i = sortedBatchGroups_.Begin(); i != sortedBatchGroups_.End(); ++i)
  789. {
  790. BatchGroup* group = *i;
  791. if (markToStencil)
  792. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  793. group->Draw(view);
  794. }
  795. // Non-instanced
  796. for (PODVector<Batch*>::ConstIterator i = sortedBatches_.Begin(); i != sortedBatches_.End(); ++i)
  797. {
  798. Batch* batch = *i;
  799. if (markToStencil)
  800. graphics->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  801. if (!usingLightOptimization)
  802. {
  803. // If drawing an alpha batch, we can optimize fillrate by scissor test
  804. if (!batch->isBase_ && batch->lightQueue_)
  805. renderer->OptimizeLightByScissor(batch->lightQueue_->light_, batch->camera_);
  806. else
  807. graphics->SetScissorTest(false);
  808. }
  809. batch->Draw(view);
  810. }
  811. }
  812. unsigned BatchQueue::GetNumInstances() const
  813. {
  814. unsigned total = 0;
  815. for (HashMap<BatchGroupKey, BatchGroup>::ConstIterator i = batchGroups_.Begin(); i != batchGroups_.End(); ++i)
  816. {
  817. if (i->second_.geometryType_ == GEOM_INSTANCED)
  818. total += i->second_.instances_.Size();
  819. }
  820. return total;
  821. }
  822. }