View.cpp 109 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746
  1. //
  2. // Copyright (c) 2008-2014 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "DebugRenderer.h"
  25. #include "FileSystem.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "GraphicsImpl.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "RenderPath.h"
  35. #include "ResourceCache.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Technique.h"
  41. #include "Texture2D.h"
  42. #include "Texture3D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "DebugNew.h"
  48. namespace Urho3D
  49. {
  50. static const Vector3* directions[] =
  51. {
  52. &Vector3::RIGHT,
  53. &Vector3::LEFT,
  54. &Vector3::UP,
  55. &Vector3::DOWN,
  56. &Vector3::FORWARD,
  57. &Vector3::BACK
  58. };
  59. /// %Frustum octree query for shadowcasters.
  60. class ShadowCasterOctreeQuery : public FrustumOctreeQuery
  61. {
  62. public:
  63. /// Construct with frustum and query parameters.
  64. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  65. unsigned viewMask = DEFAULT_VIEWMASK) :
  66. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  67. {
  68. }
  69. /// Intersection test for drawables.
  70. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  71. {
  72. while (start != end)
  73. {
  74. Drawable* drawable = *start++;
  75. if (drawable->GetCastShadows() && (drawable->GetDrawableFlags() & drawableFlags_) &&
  76. (drawable->GetViewMask() & viewMask_))
  77. {
  78. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  79. result_.Push(drawable);
  80. }
  81. }
  82. }
  83. };
  84. /// %Frustum octree query for zones and occluders.
  85. class ZoneOccluderOctreeQuery : public FrustumOctreeQuery
  86. {
  87. public:
  88. /// Construct with frustum and query parameters.
  89. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  90. unsigned viewMask = DEFAULT_VIEWMASK) :
  91. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  92. {
  93. }
  94. /// Intersection test for drawables.
  95. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  96. {
  97. while (start != end)
  98. {
  99. Drawable* drawable = *start++;
  100. unsigned char flags = drawable->GetDrawableFlags();
  101. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && (drawable->GetViewMask() &
  102. viewMask_))
  103. {
  104. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  105. result_.Push(drawable);
  106. }
  107. }
  108. }
  109. };
  110. /// %Frustum octree query with occlusion.
  111. class OccludedFrustumOctreeQuery : public FrustumOctreeQuery
  112. {
  113. public:
  114. /// Construct with frustum, occlusion buffer and query parameters.
  115. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  116. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  117. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask),
  118. buffer_(buffer)
  119. {
  120. }
  121. /// Intersection test for an octant.
  122. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  123. {
  124. if (inside)
  125. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  126. else
  127. {
  128. Intersection result = frustum_.IsInside(box);
  129. if (result != OUTSIDE && !buffer_->IsVisible(box))
  130. result = OUTSIDE;
  131. return result;
  132. }
  133. }
  134. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  135. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  136. {
  137. while (start != end)
  138. {
  139. Drawable* drawable = *start++;
  140. if ((drawable->GetDrawableFlags() & drawableFlags_) && (drawable->GetViewMask() & viewMask_))
  141. {
  142. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  143. result_.Push(drawable);
  144. }
  145. }
  146. }
  147. /// Occlusion buffer.
  148. OcclusionBuffer* buffer_;
  149. };
  150. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  151. {
  152. View* view = reinterpret_cast<View*>(item->aux_);
  153. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  154. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  155. OcclusionBuffer* buffer = view->occlusionBuffer_;
  156. const Matrix3x4& viewMatrix = view->camera_->GetView();
  157. Vector3 viewZ = Vector3(viewMatrix.m20_, viewMatrix.m21_, viewMatrix.m22_);
  158. Vector3 absViewZ = viewZ.Abs();
  159. unsigned cameraViewMask = view->camera_->GetViewMask();
  160. bool cameraZoneOverride = view->cameraZoneOverride_;
  161. PerThreadSceneResult& result = view->sceneResults_[threadIndex];
  162. while (start != end)
  163. {
  164. Drawable* drawable = *start++;
  165. bool batchesUpdated = false;
  166. // If draw distance non-zero, update and check it
  167. float maxDistance = drawable->GetDrawDistance();
  168. if (maxDistance > 0.0f)
  169. {
  170. drawable->UpdateBatches(view->frame_);
  171. batchesUpdated = true;
  172. if (drawable->GetDistance() > maxDistance)
  173. continue;
  174. }
  175. if (!buffer || !drawable->IsOccludee() || buffer->IsVisible(drawable->GetWorldBoundingBox()))
  176. {
  177. if (!batchesUpdated)
  178. drawable->UpdateBatches(view->frame_);
  179. drawable->MarkInView(view->frame_);
  180. // For geometries, find zone, clear lights and calculate view space Z range
  181. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  182. {
  183. Zone* drawableZone = drawable->GetZone();
  184. if (!cameraZoneOverride && (drawable->IsZoneDirty() || !drawableZone || (drawableZone->GetViewMask() &
  185. cameraViewMask) == 0))
  186. view->FindZone(drawable);
  187. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  188. Vector3 center = geomBox.Center();
  189. float viewCenterZ = viewZ.DotProduct(center) + viewMatrix.m23_;
  190. Vector3 edge = geomBox.Size() * 0.5f;
  191. float viewEdgeZ = absViewZ.DotProduct(edge);
  192. float minZ = viewCenterZ - viewEdgeZ;
  193. float maxZ = viewCenterZ + viewEdgeZ;
  194. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  195. drawable->ClearLights();
  196. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  197. if (drawable->GetType() != Skybox::GetTypeStatic())
  198. {
  199. result.minZ_ = Min(result.minZ_, minZ);
  200. result.maxZ_ = Max(result.maxZ_, maxZ);
  201. }
  202. result.geometries_.Push(drawable);
  203. }
  204. else if (drawable->GetDrawableFlags() & DRAWABLE_LIGHT)
  205. {
  206. Light* light = static_cast<Light*>(drawable);
  207. // Skip lights with zero brightness or black color
  208. if (!light->GetEffectiveColor().Equals(Color::BLACK))
  209. result.lights_.Push(light);
  210. }
  211. }
  212. }
  213. }
  214. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  215. {
  216. View* view = reinterpret_cast<View*>(item->aux_);
  217. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  218. view->ProcessLight(*query, threadIndex);
  219. }
  220. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  221. {
  222. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  223. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  224. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  225. while (start != end)
  226. {
  227. Drawable* drawable = *start++;
  228. drawable->UpdateGeometry(frame);
  229. }
  230. }
  231. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  232. {
  233. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  234. queue->SortFrontToBack();
  235. }
  236. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  237. {
  238. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  239. queue->SortBackToFront();
  240. }
  241. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  242. {
  243. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  244. start->litBaseBatches_.SortFrontToBack();
  245. start->litBatches_.SortFrontToBack();
  246. }
  247. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  248. {
  249. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  250. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  251. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  252. }
  253. View::View(Context* context) :
  254. Object(context),
  255. graphics_(GetSubsystem<Graphics>()),
  256. renderer_(GetSubsystem<Renderer>()),
  257. scene_(0),
  258. octree_(0),
  259. camera_(0),
  260. cameraZone_(0),
  261. farClipZone_(0),
  262. renderTarget_(0),
  263. substituteRenderTarget_(0)
  264. {
  265. // Create octree query and scene results vector for each thread
  266. unsigned numThreads = GetSubsystem<WorkQueue>()->GetNumThreads() + 1; // Worker threads + main thread
  267. tempDrawables_.Resize(numThreads);
  268. sceneResults_.Resize(numThreads);
  269. frame_.camera_ = 0;
  270. }
  271. View::~View()
  272. {
  273. }
  274. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  275. {
  276. Scene* scene = viewport->GetScene();
  277. Camera* camera = viewport->GetCamera();
  278. if (!scene || !camera || !camera->IsEnabledEffective())
  279. return false;
  280. // If scene is loading asynchronously, it is incomplete and should not be rendered
  281. if (scene->IsAsyncLoading())
  282. return false;
  283. Octree* octree = scene->GetComponent<Octree>();
  284. if (!octree)
  285. return false;
  286. // Do not accept view if camera projection is illegal
  287. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  288. if (!camera->IsProjectionValid())
  289. return false;
  290. scene_ = scene;
  291. octree_ = octree;
  292. camera_ = camera;
  293. cameraNode_ = camera->GetNode();
  294. renderTarget_ = renderTarget;
  295. renderPath_ = viewport->GetRenderPath();
  296. gBufferPassName_ = StringHash();
  297. basePassName_ = PASS_BASE;
  298. alphaPassName_ = PASS_ALPHA;
  299. lightPassName_ = PASS_LIGHT;
  300. litBasePassName_ = PASS_LITBASE;
  301. litAlphaPassName_ = PASS_LITALPHA;
  302. // Make sure that all necessary batch queues exist
  303. scenePasses_.Clear();
  304. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  305. {
  306. const RenderPathCommand& command = renderPath_->commands_[i];
  307. if (!command.enabled_)
  308. continue;
  309. if (command.type_ == CMD_SCENEPASS)
  310. {
  311. ScenePassInfo info;
  312. info.pass_ = command.pass_;
  313. info.allowInstancing_ = command.sortMode_ != SORT_BACKTOFRONT;
  314. info.markToStencil_ = command.markToStencil_;
  315. info.vertexLights_ = command.vertexLights_;
  316. // Check scenepass metadata for defining custom passes which interact with lighting
  317. if (!command.metadata_.Empty())
  318. {
  319. if (command.metadata_ == "gbuffer")
  320. gBufferPassName_ = command.pass_;
  321. else if (command.metadata_ == "base" && command.pass_ != "base")
  322. {
  323. basePassName_ = command.pass_;
  324. litBasePassName_ = "lit" + command.pass_;
  325. }
  326. else if (command.metadata_ == "alpha" && command.pass_ != "alpha")
  327. {
  328. alphaPassName_ = command.pass_;
  329. litAlphaPassName_ = "lit" + command.pass_;
  330. }
  331. }
  332. HashMap<StringHash, BatchQueue>::Iterator j = batchQueues_.Find(command.pass_);
  333. if (j == batchQueues_.End())
  334. j = batchQueues_.Insert(Pair<StringHash, BatchQueue>(command.pass_, BatchQueue()));
  335. info.batchQueue_ = &j->second_;
  336. scenePasses_.Push(info);
  337. }
  338. // Allow a custom forward light pass
  339. else if (command.type_ == CMD_FORWARDLIGHTS && !command.pass_.Empty())
  340. lightPassName_ = command.pass_;
  341. }
  342. // Go through commands to check for deferred rendering and other flags
  343. deferred_ = false;
  344. deferredAmbient_ = false;
  345. useLitBase_ = false;
  346. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  347. {
  348. const RenderPathCommand& command = renderPath_->commands_[i];
  349. if (!command.enabled_)
  350. continue;
  351. // Check if ambient pass and G-buffer rendering happens at the same time
  352. if (command.type_ == CMD_SCENEPASS && command.outputNames_.Size() > 1)
  353. {
  354. if (CheckViewportWrite(command))
  355. deferredAmbient_ = true;
  356. }
  357. else if (command.type_ == CMD_LIGHTVOLUMES)
  358. {
  359. lightVolumeVSName_ = command.vertexShaderName_;
  360. lightVolumePSName_ = command.pixelShaderName_;
  361. deferred_ = true;
  362. }
  363. else if (command.type_ == CMD_FORWARDLIGHTS)
  364. useLitBase_ = command.useLitBase_;
  365. }
  366. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  367. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  368. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  369. const IntRect& rect = viewport->GetRect();
  370. if (rect != IntRect::ZERO)
  371. {
  372. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  373. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  374. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  375. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  376. }
  377. else
  378. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  379. viewSize_ = viewRect_.Size();
  380. rtSize_ = IntVector2(rtWidth, rtHeight);
  381. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  382. #ifdef USE_OPENGL
  383. if (renderTarget_)
  384. {
  385. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  386. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  387. }
  388. #endif
  389. drawShadows_ = renderer_->GetDrawShadows();
  390. materialQuality_ = renderer_->GetMaterialQuality();
  391. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  392. minInstances_ = renderer_->GetMinInstances();
  393. // Set possible quality overrides from the camera
  394. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  395. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  396. materialQuality_ = QUALITY_LOW;
  397. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  398. drawShadows_ = false;
  399. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  400. maxOccluderTriangles_ = 0;
  401. // Occlusion buffer has constant width. If resulting height would be too large due to aspect ratio, disable occlusion
  402. if (viewSize_.y_ > viewSize_.x_ * 4)
  403. maxOccluderTriangles_ = 0;
  404. return true;
  405. }
  406. void View::Update(const FrameInfo& frame)
  407. {
  408. if (!camera_ || !octree_)
  409. return;
  410. frame_.camera_ = camera_;
  411. frame_.timeStep_ = frame.timeStep_;
  412. frame_.frameNumber_ = frame.frameNumber_;
  413. frame_.viewSize_ = viewSize_;
  414. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  415. // Clear buffers, geometry, light, occluder & batch list
  416. renderTargets_.Clear();
  417. geometries_.Clear();
  418. shadowGeometries_.Clear();
  419. lights_.Clear();
  420. zones_.Clear();
  421. occluders_.Clear();
  422. vertexLightQueues_.Clear();
  423. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  424. i->second_.Clear(maxSortedInstances);
  425. // Set automatic aspect ratio if required
  426. if (camera_->GetAutoAspectRatio())
  427. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  428. GetDrawables();
  429. GetBatches();
  430. }
  431. void View::Render()
  432. {
  433. if (!octree_ || !camera_)
  434. return;
  435. // Actually update geometry data now
  436. UpdateGeometries();
  437. // Allocate screen buffers as necessary
  438. AllocateScreenBuffers();
  439. // Forget parameter sources from the previous view
  440. graphics_->ClearParameterSources();
  441. // If stream offset is supported, write all instance transforms to a single large buffer
  442. // Else we must lock the instance buffer for each batch group
  443. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  444. PrepareInstancingBuffer();
  445. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  446. // again to ensure correct projection will be used
  447. if (camera_->GetAutoAspectRatio())
  448. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  449. // Bind the face selection and indirection cube maps for point light shadows
  450. if (renderer_->GetDrawShadows())
  451. {
  452. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  453. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  454. }
  455. if (renderTarget_)
  456. {
  457. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  458. // as a render texture produced on Direct3D9
  459. #ifdef USE_OPENGL
  460. camera_->SetFlipVertical(true);
  461. #endif
  462. }
  463. // Render
  464. ExecuteRenderPathCommands();
  465. #ifdef USE_OPENGL
  466. camera_->SetFlipVertical(false);
  467. #endif
  468. graphics_->SetDepthBias(0.0f, 0.0f);
  469. graphics_->SetScissorTest(false);
  470. graphics_->SetStencilTest(false);
  471. graphics_->ResetStreamFrequencies();
  472. // Run framebuffer blitting if necessary
  473. if (currentRenderTarget_ != renderTarget_)
  474. BlitFramebuffer(static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture()), renderTarget_, true);
  475. // If this is a main view, draw the associated debug geometry now
  476. if (!renderTarget_)
  477. {
  478. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  479. if (debug && debug->IsEnabledEffective())
  480. {
  481. debug->SetView(camera_);
  482. debug->Render();
  483. }
  484. }
  485. // "Forget" the scene, camera, octree and zone after rendering
  486. scene_ = 0;
  487. camera_ = 0;
  488. octree_ = 0;
  489. cameraZone_ = 0;
  490. farClipZone_ = 0;
  491. occlusionBuffer_ = 0;
  492. frame_.camera_ = 0;
  493. }
  494. Graphics* View::GetGraphics() const
  495. {
  496. return graphics_;
  497. }
  498. Renderer* View::GetRenderer() const
  499. {
  500. return renderer_;
  501. }
  502. void View::GetDrawables()
  503. {
  504. PROFILE(GetDrawables);
  505. WorkQueue* queue = GetSubsystem<WorkQueue>();
  506. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  507. // Get zones and occluders first
  508. {
  509. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE, camera_->GetViewMask());
  510. octree_->GetDrawables(query);
  511. }
  512. highestZonePriority_ = M_MIN_INT;
  513. int bestPriority = M_MIN_INT;
  514. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  515. // Get default zone first in case we do not have zones defined
  516. Zone* defaultZone = renderer_->GetDefaultZone();
  517. cameraZone_ = farClipZone_ = defaultZone;
  518. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  519. {
  520. Drawable* drawable = *i;
  521. unsigned char flags = drawable->GetDrawableFlags();
  522. if (flags & DRAWABLE_ZONE)
  523. {
  524. Zone* zone = static_cast<Zone*>(drawable);
  525. zones_.Push(zone);
  526. int priority = zone->GetPriority();
  527. if (priority > highestZonePriority_)
  528. highestZonePriority_ = priority;
  529. if (priority > bestPriority && zone->IsInside(cameraPos))
  530. {
  531. cameraZone_ = zone;
  532. bestPriority = priority;
  533. }
  534. }
  535. else
  536. occluders_.Push(drawable);
  537. }
  538. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  539. cameraZoneOverride_ = cameraZone_->GetOverride();
  540. if (!cameraZoneOverride_)
  541. {
  542. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  543. bestPriority = M_MIN_INT;
  544. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  545. {
  546. int priority = (*i)->GetPriority();
  547. if (priority > bestPriority && (*i)->IsInside(farClipPos))
  548. {
  549. farClipZone_ = *i;
  550. bestPriority = priority;
  551. }
  552. }
  553. }
  554. if (farClipZone_ == defaultZone)
  555. farClipZone_ = cameraZone_;
  556. // If occlusion in use, get & render the occluders
  557. occlusionBuffer_ = 0;
  558. if (maxOccluderTriangles_ > 0)
  559. {
  560. UpdateOccluders(occluders_, camera_);
  561. if (occluders_.Size())
  562. {
  563. PROFILE(DrawOcclusion);
  564. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  565. DrawOccluders(occlusionBuffer_, occluders_);
  566. }
  567. }
  568. // Get lights and geometries. Coarse occlusion for octants is used at this point
  569. if (occlusionBuffer_)
  570. {
  571. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  572. DRAWABLE_LIGHT, camera_->GetViewMask());
  573. octree_->GetDrawables(query);
  574. }
  575. else
  576. {
  577. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT,
  578. camera_->GetViewMask());
  579. octree_->GetDrawables(query);
  580. }
  581. // Check drawable occlusion, find zones for moved drawables and collect geometries & lights in worker threads
  582. {
  583. for (unsigned i = 0; i < sceneResults_.Size(); ++i)
  584. {
  585. PerThreadSceneResult& result = sceneResults_[i];
  586. result.geometries_.Clear();
  587. result.lights_.Clear();
  588. result.minZ_ = M_INFINITY;
  589. result.maxZ_ = 0.0f;
  590. }
  591. int numWorkItems = queue->GetNumThreads() + 1; // Worker threads + main thread
  592. int drawablesPerItem = tempDrawables.Size() / numWorkItems;
  593. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  594. // Create a work item for each thread
  595. for (int i = 0; i < numWorkItems; ++i)
  596. {
  597. SharedPtr<WorkItem> item = queue->GetFreeItem();
  598. item->priority_ = M_MAX_UNSIGNED;
  599. item->workFunction_ = CheckVisibilityWork;
  600. item->aux_ = this;
  601. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  602. if (i < numWorkItems - 1 && end - start > drawablesPerItem)
  603. end = start + drawablesPerItem;
  604. item->start_ = &(*start);
  605. item->end_ = &(*end);
  606. queue->AddWorkItem(item);
  607. start = end;
  608. }
  609. queue->Complete(M_MAX_UNSIGNED);
  610. }
  611. // Combine lights, geometries & scene Z range from the threads
  612. geometries_.Clear();
  613. lights_.Clear();
  614. minZ_ = M_INFINITY;
  615. maxZ_ = 0.0f;
  616. if (sceneResults_.Size() > 1)
  617. {
  618. for (unsigned i = 0; i < sceneResults_.Size(); ++i)
  619. {
  620. PerThreadSceneResult& result = sceneResults_[i];
  621. geometries_.Push(result.geometries_);
  622. lights_.Push(result.lights_);
  623. minZ_ = Min(minZ_, result.minZ_);
  624. maxZ_ = Max(maxZ_, result.maxZ_);
  625. }
  626. }
  627. else
  628. {
  629. // If just 1 thread, copy the results directly
  630. PerThreadSceneResult& result = sceneResults_[0];
  631. minZ_ = result.minZ_;
  632. maxZ_ = result.maxZ_;
  633. Swap(geometries_, result.geometries_);
  634. Swap(lights_, result.lights_);
  635. }
  636. if (minZ_ == M_INFINITY)
  637. minZ_ = 0.0f;
  638. // Sort the lights to brightest/closest first, and per-vertex lights first so that per-vertex base pass can be evaluated first
  639. for (unsigned i = 0; i < lights_.Size(); ++i)
  640. {
  641. Light* light = lights_[i];
  642. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  643. light->SetLightQueue(0);
  644. }
  645. Sort(lights_.Begin(), lights_.End(), CompareLights);
  646. }
  647. void View::GetBatches()
  648. {
  649. WorkQueue* queue = GetSubsystem<WorkQueue>();
  650. PODVector<Light*> vertexLights;
  651. BatchQueue* alphaQueue = batchQueues_.Contains(alphaPassName_) ? &batchQueues_[alphaPassName_] : (BatchQueue*)0;
  652. // Process lit geometries and shadow casters for each light
  653. {
  654. PROFILE(ProcessLights);
  655. lightQueryResults_.Resize(lights_.Size());
  656. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  657. {
  658. SharedPtr<WorkItem> item = queue->GetFreeItem();
  659. item->priority_ = M_MAX_UNSIGNED;
  660. item->workFunction_ = ProcessLightWork;
  661. item->aux_ = this;
  662. LightQueryResult& query = lightQueryResults_[i];
  663. query.light_ = lights_[i];
  664. item->start_ = &query;
  665. queue->AddWorkItem(item);
  666. }
  667. // Ensure all lights have been processed before proceeding
  668. queue->Complete(M_MAX_UNSIGNED);
  669. }
  670. // Build light queues and lit batches
  671. {
  672. PROFILE(GetLightBatches);
  673. // Preallocate light queues: per-pixel lights which have lit geometries
  674. unsigned numLightQueues = 0;
  675. unsigned usedLightQueues = 0;
  676. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  677. {
  678. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  679. ++numLightQueues;
  680. }
  681. lightQueues_.Resize(numLightQueues);
  682. maxLightsDrawables_.Clear();
  683. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  684. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  685. {
  686. LightQueryResult& query = *i;
  687. // If light has no affected geometries, no need to process further
  688. if (query.litGeometries_.Empty())
  689. continue;
  690. Light* light = query.light_;
  691. // Per-pixel light
  692. if (!light->GetPerVertex())
  693. {
  694. unsigned shadowSplits = query.numSplits_;
  695. // Initialize light queue and store it to the light so that it can be found later
  696. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  697. light->SetLightQueue(&lightQueue);
  698. lightQueue.light_ = light;
  699. lightQueue.shadowMap_ = 0;
  700. lightQueue.litBaseBatches_.Clear(maxSortedInstances);
  701. lightQueue.litBatches_.Clear(maxSortedInstances);
  702. lightQueue.volumeBatches_.Clear();
  703. // Allocate shadow map now
  704. if (shadowSplits > 0)
  705. {
  706. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  707. // If did not manage to get a shadow map, convert the light to unshadowed
  708. if (!lightQueue.shadowMap_)
  709. shadowSplits = 0;
  710. }
  711. // Setup shadow batch queues
  712. lightQueue.shadowSplits_.Resize(shadowSplits);
  713. for (unsigned j = 0; j < shadowSplits; ++j)
  714. {
  715. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  716. Camera* shadowCamera = query.shadowCameras_[j];
  717. shadowQueue.shadowCamera_ = shadowCamera;
  718. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  719. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  720. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  721. // Setup the shadow split viewport and finalize shadow camera parameters
  722. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  723. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  724. // Loop through shadow casters
  725. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  726. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  727. {
  728. Drawable* drawable = *k;
  729. if (!drawable->IsInView(frame_, true))
  730. {
  731. drawable->MarkInView(frame_.frameNumber_, 0);
  732. shadowGeometries_.Push(drawable);
  733. }
  734. Zone* zone = GetZone(drawable);
  735. const Vector<SourceBatch>& batches = drawable->GetBatches();
  736. for (unsigned l = 0; l < batches.Size(); ++l)
  737. {
  738. const SourceBatch& srcBatch = batches[l];
  739. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  740. if (!srcBatch.geometry_ || !srcBatch.numWorldTransforms_ || !tech)
  741. continue;
  742. Pass* pass = tech->GetPass(PASS_SHADOW);
  743. // Skip if material has no shadow pass
  744. if (!pass)
  745. continue;
  746. Batch destBatch(srcBatch);
  747. destBatch.pass_ = pass;
  748. destBatch.camera_ = shadowCamera;
  749. destBatch.zone_ = zone;
  750. destBatch.lightQueue_ = &lightQueue;
  751. AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech);
  752. }
  753. }
  754. }
  755. // Process lit geometries
  756. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  757. {
  758. Drawable* drawable = *j;
  759. drawable->AddLight(light);
  760. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  761. if (!drawable->GetMaxLights())
  762. GetLitBatches(drawable, lightQueue, alphaQueue);
  763. else
  764. maxLightsDrawables_.Insert(drawable);
  765. }
  766. // In deferred modes, store the light volume batch now
  767. if (deferred_)
  768. {
  769. Batch volumeBatch;
  770. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  771. volumeBatch.geometryType_ = GEOM_STATIC;
  772. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  773. volumeBatch.numWorldTransforms_ = 1;
  774. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  775. volumeBatch.camera_ = camera_;
  776. volumeBatch.lightQueue_ = &lightQueue;
  777. volumeBatch.distance_ = light->GetDistance();
  778. volumeBatch.material_ = 0;
  779. volumeBatch.pass_ = 0;
  780. volumeBatch.zone_ = 0;
  781. renderer_->SetLightVolumeBatchShaders(volumeBatch, lightVolumeVSName_, lightVolumePSName_);
  782. lightQueue.volumeBatches_.Push(volumeBatch);
  783. }
  784. }
  785. // Per-vertex light
  786. else
  787. {
  788. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  789. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  790. {
  791. Drawable* drawable = *j;
  792. drawable->AddVertexLight(light);
  793. }
  794. }
  795. }
  796. }
  797. // Process drawables with limited per-pixel light count
  798. if (maxLightsDrawables_.Size())
  799. {
  800. PROFILE(GetMaxLightsBatches);
  801. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  802. {
  803. Drawable* drawable = *i;
  804. drawable->LimitLights();
  805. const PODVector<Light*>& lights = drawable->GetLights();
  806. for (unsigned i = 0; i < lights.Size(); ++i)
  807. {
  808. Light* light = lights[i];
  809. // Find the correct light queue again
  810. LightBatchQueue* queue = light->GetLightQueue();
  811. if (queue)
  812. GetLitBatches(drawable, *queue, alphaQueue);
  813. }
  814. }
  815. }
  816. // Build base pass batches
  817. {
  818. PROFILE(GetBaseBatches);
  819. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  820. {
  821. Drawable* drawable = *i;
  822. Zone* zone = GetZone(drawable);
  823. const Vector<SourceBatch>& batches = drawable->GetBatches();
  824. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  825. if (!drawableVertexLights.Empty())
  826. drawable->LimitVertexLights();
  827. for (unsigned j = 0; j < batches.Size(); ++j)
  828. {
  829. const SourceBatch& srcBatch = batches[j];
  830. // Check here if the material refers to a rendertarget texture with camera(s) attached
  831. // Only check this for backbuffer views (null rendertarget)
  832. if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  833. CheckMaterialForAuxView(srcBatch.material_);
  834. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  835. if (!srcBatch.geometry_ || !srcBatch.numWorldTransforms_ || !tech)
  836. continue;
  837. Batch destBatch(srcBatch);
  838. destBatch.camera_ = camera_;
  839. destBatch.zone_ = zone;
  840. destBatch.isBase_ = true;
  841. destBatch.pass_ = 0;
  842. destBatch.lightMask_ = GetLightMask(drawable);
  843. // Check each of the scene passes
  844. for (unsigned k = 0; k < scenePasses_.Size(); ++k)
  845. {
  846. ScenePassInfo& info = scenePasses_[k];
  847. destBatch.pass_ = tech->GetPass(info.pass_);
  848. if (!destBatch.pass_)
  849. continue;
  850. // Skip forward base pass if the corresponding litbase pass already exists
  851. if (info.pass_ == basePassName_ && j < 32 && drawable->HasBasePass(j))
  852. continue;
  853. if (info.vertexLights_ && !drawableVertexLights.Empty())
  854. {
  855. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  856. // them to prevent double-lighting
  857. if (deferred_ && destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  858. {
  859. vertexLights.Clear();
  860. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  861. {
  862. if (drawableVertexLights[i]->GetPerVertex())
  863. vertexLights.Push(drawableVertexLights[i]);
  864. }
  865. }
  866. else
  867. vertexLights = drawableVertexLights;
  868. if (!vertexLights.Empty())
  869. {
  870. // Find a vertex light queue. If not found, create new
  871. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  872. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  873. if (i == vertexLightQueues_.End())
  874. {
  875. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  876. i->second_.light_ = 0;
  877. i->second_.shadowMap_ = 0;
  878. i->second_.vertexLights_ = vertexLights;
  879. }
  880. destBatch.lightQueue_ = &(i->second_);
  881. }
  882. }
  883. else
  884. destBatch.lightQueue_ = 0;
  885. bool allowInstancing = info.allowInstancing_;
  886. if (allowInstancing && info.markToStencil_ && destBatch.lightMask_ != (zone->GetLightMask() & 0xff))
  887. allowInstancing = false;
  888. AddBatchToQueue(*info.batchQueue_, destBatch, tech, allowInstancing);
  889. }
  890. }
  891. }
  892. }
  893. }
  894. void View::UpdateGeometries()
  895. {
  896. PROFILE(SortAndUpdateGeometry);
  897. WorkQueue* queue = GetSubsystem<WorkQueue>();
  898. // Sort batches
  899. {
  900. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  901. {
  902. const RenderPathCommand& command = renderPath_->commands_[i];
  903. if (!IsNecessary(command))
  904. continue;
  905. if (command.type_ == CMD_SCENEPASS)
  906. {
  907. BatchQueue* passQueue = &batchQueues_[command.pass_];
  908. SharedPtr<WorkItem> item = queue->GetFreeItem();
  909. item->priority_ = M_MAX_UNSIGNED;
  910. item->workFunction_ = command.sortMode_ == SORT_FRONTTOBACK ? SortBatchQueueFrontToBackWork : SortBatchQueueBackToFrontWork;
  911. item->start_ = &batchQueues_[command.pass_];
  912. queue->AddWorkItem(item);
  913. }
  914. }
  915. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  916. {
  917. SharedPtr<WorkItem> lightItem = queue->GetFreeItem();
  918. lightItem->priority_ = M_MAX_UNSIGNED;
  919. lightItem->workFunction_ = SortLightQueueWork;
  920. lightItem->start_ = &(*i);
  921. queue->AddWorkItem(lightItem);
  922. if (i->shadowSplits_.Size())
  923. {
  924. SharedPtr<WorkItem> shadowItem = queue->GetFreeItem();
  925. shadowItem->priority_ = M_MAX_UNSIGNED;
  926. shadowItem->workFunction_ = SortShadowQueueWork;
  927. shadowItem->start_ = &(*i);
  928. queue->AddWorkItem(shadowItem);
  929. }
  930. }
  931. }
  932. // Update geometries. Split into threaded and non-threaded updates.
  933. {
  934. nonThreadedGeometries_.Clear();
  935. threadedGeometries_.Clear();
  936. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  937. {
  938. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  939. if (type == UPDATE_MAIN_THREAD)
  940. nonThreadedGeometries_.Push(*i);
  941. else if (type == UPDATE_WORKER_THREAD)
  942. threadedGeometries_.Push(*i);
  943. }
  944. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  945. {
  946. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  947. if (type == UPDATE_MAIN_THREAD)
  948. nonThreadedGeometries_.Push(*i);
  949. else if (type == UPDATE_WORKER_THREAD)
  950. threadedGeometries_.Push(*i);
  951. }
  952. if (threadedGeometries_.Size())
  953. {
  954. int numWorkItems = queue->GetNumThreads() + 1; // Worker threads + main thread
  955. int drawablesPerItem = threadedGeometries_.Size() / numWorkItems;
  956. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  957. for (int i = 0; i < numWorkItems; ++i)
  958. {
  959. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  960. if (i < numWorkItems - 1 && end - start > drawablesPerItem)
  961. end = start + drawablesPerItem;
  962. SharedPtr<WorkItem> item = queue->GetFreeItem();
  963. item->priority_ = M_MAX_UNSIGNED;
  964. item->workFunction_ = UpdateDrawableGeometriesWork;
  965. item->aux_ = const_cast<FrameInfo*>(&frame_);
  966. item->start_ = &(*start);
  967. item->end_ = &(*end);
  968. queue->AddWorkItem(item);
  969. start = end;
  970. }
  971. }
  972. // While the work queue is processed, update non-threaded geometries
  973. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  974. (*i)->UpdateGeometry(frame_);
  975. }
  976. // Finally ensure all threaded work has completed
  977. queue->Complete(M_MAX_UNSIGNED);
  978. }
  979. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue, BatchQueue* alphaQueue)
  980. {
  981. Light* light = lightQueue.light_;
  982. Zone* zone = GetZone(drawable);
  983. const Vector<SourceBatch>& batches = drawable->GetBatches();
  984. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  985. // Shadows on transparencies can only be rendered if shadow maps are not reused
  986. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  987. bool allowLitBase = useLitBase_ && !light->IsNegative() && light == drawable->GetFirstLight() &&
  988. drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  989. for (unsigned i = 0; i < batches.Size(); ++i)
  990. {
  991. const SourceBatch& srcBatch = batches[i];
  992. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  993. if (!srcBatch.geometry_ || !srcBatch.numWorldTransforms_ || !tech)
  994. continue;
  995. // Do not create pixel lit forward passes for materials that render into the G-buffer
  996. if (gBufferPassName_.Value() && tech->HasPass(gBufferPassName_))
  997. continue;
  998. Batch destBatch(srcBatch);
  999. bool isLitAlpha = false;
  1000. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  1001. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  1002. if (i < 32 && allowLitBase)
  1003. {
  1004. destBatch.pass_ = tech->GetPass(litBasePassName_);
  1005. if (destBatch.pass_)
  1006. {
  1007. destBatch.isBase_ = true;
  1008. drawable->SetBasePass(i);
  1009. }
  1010. else
  1011. destBatch.pass_ = tech->GetPass(lightPassName_);
  1012. }
  1013. else
  1014. destBatch.pass_ = tech->GetPass(lightPassName_);
  1015. // If no lit pass, check for lit alpha
  1016. if (!destBatch.pass_)
  1017. {
  1018. destBatch.pass_ = tech->GetPass(litAlphaPassName_);
  1019. isLitAlpha = true;
  1020. }
  1021. // Skip if material does not receive light at all
  1022. if (!destBatch.pass_)
  1023. continue;
  1024. destBatch.camera_ = camera_;
  1025. destBatch.lightQueue_ = &lightQueue;
  1026. destBatch.zone_ = zone;
  1027. if (!isLitAlpha)
  1028. {
  1029. if (destBatch.isBase_)
  1030. AddBatchToQueue(lightQueue.litBaseBatches_, destBatch, tech);
  1031. else
  1032. AddBatchToQueue(lightQueue.litBatches_, destBatch, tech);
  1033. }
  1034. else if (alphaQueue)
  1035. {
  1036. // Transparent batches can not be instanced
  1037. AddBatchToQueue(*alphaQueue, destBatch, tech, false, allowTransparentShadows);
  1038. }
  1039. }
  1040. }
  1041. void View::ExecuteRenderPathCommands()
  1042. {
  1043. // If not reusing shadowmaps, render all of them first
  1044. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1045. {
  1046. PROFILE(RenderShadowMaps);
  1047. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1048. {
  1049. if (i->shadowMap_)
  1050. RenderShadowMap(*i);
  1051. }
  1052. }
  1053. {
  1054. PROFILE(ExecuteRenderPath);
  1055. // Set for safety in case of empty renderpath
  1056. currentRenderTarget_ = substituteRenderTarget_ ? substituteRenderTarget_ : renderTarget_;
  1057. currentViewportTexture_ = 0;
  1058. bool viewportModified = false;
  1059. bool isPingponging = false;
  1060. unsigned lastCommandIndex = 0;
  1061. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1062. {
  1063. RenderPathCommand& command = renderPath_->commands_[i];
  1064. if (IsNecessary(command))
  1065. lastCommandIndex = i;
  1066. }
  1067. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1068. {
  1069. RenderPathCommand& command = renderPath_->commands_[i];
  1070. if (!IsNecessary(command))
  1071. continue;
  1072. bool viewportRead = CheckViewportRead(command);
  1073. bool viewportWrite = CheckViewportWrite(command);
  1074. bool beginPingpong = CheckPingpong(i);
  1075. // Has the viewport been modified and will be read as a texture by the current command?
  1076. if (viewportRead && viewportModified)
  1077. {
  1078. // Start pingponging without a blit if already rendering to the substitute render target
  1079. if (currentRenderTarget_ && currentRenderTarget_ == substituteRenderTarget_ && beginPingpong)
  1080. isPingponging = true;
  1081. // If not using pingponging, simply resolve/copy to the first viewport texture
  1082. if (!isPingponging)
  1083. {
  1084. if (!currentRenderTarget_)
  1085. {
  1086. graphics_->ResolveToTexture(viewportTextures_[0], viewRect_);
  1087. currentViewportTexture_ = viewportTextures_[0];
  1088. viewportModified = false;
  1089. }
  1090. else
  1091. {
  1092. if (viewportWrite)
  1093. {
  1094. BlitFramebuffer(static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture()),
  1095. viewportTextures_[0]->GetRenderSurface(), false);
  1096. currentViewportTexture_ = viewportTextures_[0];
  1097. viewportModified = false;
  1098. }
  1099. else
  1100. {
  1101. // If the current render target is already a texture, and we are not writing to it, can read that
  1102. // texture directly instead of blitting. However keep the viewport dirty flag in case a later command
  1103. // will do both read and write, and then we need to blit / resolve
  1104. currentViewportTexture_ = static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture());
  1105. }
  1106. }
  1107. }
  1108. else
  1109. {
  1110. // Swap the pingpong double buffer sides. Texture 0 will be read next
  1111. viewportTextures_[1] = viewportTextures_[0];
  1112. viewportTextures_[0] = static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture());
  1113. currentViewportTexture_ = viewportTextures_[0];
  1114. viewportModified = false;
  1115. }
  1116. }
  1117. if (beginPingpong)
  1118. isPingponging = true;
  1119. // Determine viewport write target
  1120. if (viewportWrite)
  1121. {
  1122. if (isPingponging)
  1123. {
  1124. currentRenderTarget_ = viewportTextures_[1]->GetRenderSurface();
  1125. // If the render path ends into a quad, it can be redirected to the final render target
  1126. if (i == lastCommandIndex && command.type_ == CMD_QUAD)
  1127. currentRenderTarget_ = renderTarget_;
  1128. }
  1129. else
  1130. currentRenderTarget_ = substituteRenderTarget_ ? substituteRenderTarget_ : renderTarget_;
  1131. }
  1132. switch (command.type_)
  1133. {
  1134. case CMD_CLEAR:
  1135. {
  1136. PROFILE(ClearRenderTarget);
  1137. Color clearColor = command.clearColor_;
  1138. if (command.useFogColor_)
  1139. clearColor = farClipZone_->GetFogColor();
  1140. SetRenderTargets(command);
  1141. graphics_->Clear(command.clearFlags_, clearColor, command.clearDepth_, command.clearStencil_);
  1142. }
  1143. break;
  1144. case CMD_SCENEPASS:
  1145. if (!batchQueues_[command.pass_].IsEmpty())
  1146. {
  1147. PROFILE(RenderScenePass);
  1148. SetRenderTargets(command);
  1149. SetTextures(command);
  1150. graphics_->SetFillMode(camera_->GetFillMode());
  1151. graphics_->SetClipPlane(camera_->GetUseClipping(), camera_->GetClipPlane(), camera_->GetView(), camera_->GetProjection());
  1152. batchQueues_[command.pass_].Draw(this, command.markToStencil_, false);
  1153. }
  1154. break;
  1155. case CMD_QUAD:
  1156. {
  1157. PROFILE(RenderQuad);
  1158. SetRenderTargets(command);
  1159. SetTextures(command);
  1160. RenderQuad(command);
  1161. }
  1162. break;
  1163. case CMD_FORWARDLIGHTS:
  1164. // Render shadow maps + opaque objects' additive lighting
  1165. if (!lightQueues_.Empty())
  1166. {
  1167. PROFILE(RenderLights);
  1168. SetRenderTargets(command);
  1169. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1170. {
  1171. // If reusing shadowmaps, render each of them before the lit batches
  1172. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1173. {
  1174. RenderShadowMap(*i);
  1175. SetRenderTargets(command);
  1176. }
  1177. SetTextures(command);
  1178. graphics_->SetFillMode(camera_->GetFillMode());
  1179. graphics_->SetClipPlane(camera_->GetUseClipping(), camera_->GetClipPlane(), camera_->GetView(), camera_->GetProjection());
  1180. // Draw base (replace blend) batches first
  1181. i->litBaseBatches_.Draw(this);
  1182. // Then, if there are additive passes, optimize the light and draw them
  1183. if (!i->litBatches_.IsEmpty())
  1184. {
  1185. renderer_->OptimizeLightByScissor(i->light_, camera_);
  1186. renderer_->OptimizeLightByStencil(i->light_, camera_);
  1187. i->litBatches_.Draw(this, false, true);
  1188. }
  1189. }
  1190. graphics_->SetScissorTest(false);
  1191. graphics_->SetStencilTest(false);
  1192. }
  1193. break;
  1194. case CMD_LIGHTVOLUMES:
  1195. // Render shadow maps + light volumes
  1196. if (!lightQueues_.Empty())
  1197. {
  1198. PROFILE(RenderLightVolumes);
  1199. SetRenderTargets(command);
  1200. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1201. {
  1202. // If reusing shadowmaps, render each of them before the lit batches
  1203. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1204. {
  1205. RenderShadowMap(*i);
  1206. SetRenderTargets(command);
  1207. }
  1208. SetTextures(command);
  1209. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1210. {
  1211. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1212. i->volumeBatches_[j].Draw(this);
  1213. }
  1214. }
  1215. graphics_->SetScissorTest(false);
  1216. graphics_->SetStencilTest(false);
  1217. }
  1218. break;
  1219. default:
  1220. break;
  1221. }
  1222. // If current command output to the viewport, mark it modified
  1223. if (viewportWrite)
  1224. viewportModified = true;
  1225. }
  1226. }
  1227. // After executing all commands, reset rendertarget for debug geometry rendering
  1228. graphics_->SetRenderTarget(0, renderTarget_);
  1229. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1230. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1231. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1232. graphics_->SetViewport(viewRect_);
  1233. graphics_->SetFillMode(FILL_SOLID);
  1234. graphics_->SetClipPlane(false);
  1235. }
  1236. void View::SetRenderTargets(RenderPathCommand& command)
  1237. {
  1238. unsigned index = 0;
  1239. IntRect viewPort = viewRect_;
  1240. while (index < command.outputNames_.Size())
  1241. {
  1242. if (!command.outputNames_[index].Compare("viewport", false))
  1243. graphics_->SetRenderTarget(index, currentRenderTarget_);
  1244. else
  1245. {
  1246. StringHash nameHash(command.outputNames_[index]);
  1247. if (renderTargets_.Contains(nameHash))
  1248. {
  1249. Texture2D* texture = renderTargets_[nameHash];
  1250. graphics_->SetRenderTarget(index, texture);
  1251. if (!index)
  1252. {
  1253. // Determine viewport size from rendertarget info
  1254. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1255. {
  1256. const RenderTargetInfo& info = renderPath_->renderTargets_[i];
  1257. if (!info.name_.Compare(command.outputNames_[index], false))
  1258. {
  1259. switch (info.sizeMode_)
  1260. {
  1261. // If absolute or a divided viewport size, use the full texture
  1262. case SIZE_ABSOLUTE:
  1263. case SIZE_VIEWPORTDIVISOR:
  1264. viewPort = IntRect(0, 0, texture->GetWidth(), texture->GetHeight());
  1265. break;
  1266. // If a divided rendertarget size, retain the same viewport, but scaled
  1267. case SIZE_RENDERTARGETDIVISOR:
  1268. if (info.size_.x_ && info.size_.y_)
  1269. {
  1270. viewPort = IntRect(viewRect_.left_ / info.size_.x_, viewRect_.top_ / info.size_.y_,
  1271. viewRect_.right_ / info.size_.x_, viewRect_.bottom_ / info.size_.y_);
  1272. }
  1273. break;
  1274. }
  1275. break;
  1276. }
  1277. }
  1278. }
  1279. }
  1280. else
  1281. graphics_->SetRenderTarget(0, (RenderSurface*)0);
  1282. }
  1283. ++index;
  1284. }
  1285. while (index < MAX_RENDERTARGETS)
  1286. {
  1287. graphics_->SetRenderTarget(index, (RenderSurface*)0);
  1288. ++index;
  1289. }
  1290. graphics_->SetDepthStencil(GetDepthStencil(graphics_->GetRenderTarget(0)));
  1291. graphics_->SetViewport(viewPort);
  1292. graphics_->SetColorWrite(true);
  1293. }
  1294. void View::SetTextures(RenderPathCommand& command)
  1295. {
  1296. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1297. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1298. {
  1299. if (command.textureNames_[i].Empty())
  1300. continue;
  1301. // Bind the rendered output
  1302. if (!command.textureNames_[i].Compare("viewport", false))
  1303. {
  1304. graphics_->SetTexture(i, currentViewportTexture_);
  1305. continue;
  1306. }
  1307. // Bind a rendertarget
  1308. HashMap<StringHash, Texture2D*>::ConstIterator j = renderTargets_.Find(command.textureNames_[i]);
  1309. if (j != renderTargets_.End())
  1310. {
  1311. graphics_->SetTexture(i, j->second_);
  1312. continue;
  1313. }
  1314. // Bind a texture from the resource system
  1315. Texture* texture;
  1316. // Detect cube/3D textures by file extension: they are defined by an XML file
  1317. if (GetExtension(command.textureNames_[i]) == ".xml")
  1318. {
  1319. // Assume 3D textures are only bound to the volume map unit, otherwise it's a cube texture
  1320. if (i == TU_VOLUMEMAP)
  1321. texture = cache->GetResource<Texture3D>(command.textureNames_[i]);
  1322. else
  1323. texture = cache->GetResource<TextureCube>(command.textureNames_[i]);
  1324. }
  1325. else
  1326. texture = cache->GetResource<Texture2D>(command.textureNames_[i]);
  1327. if (texture)
  1328. graphics_->SetTexture(i, texture);
  1329. else
  1330. {
  1331. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1332. command.textureNames_[i] = String::EMPTY;
  1333. }
  1334. }
  1335. }
  1336. void View::RenderQuad(RenderPathCommand& command)
  1337. {
  1338. if (command.vertexShaderName_.Empty() || command.pixelShaderName_.Empty())
  1339. return;
  1340. // If shader can not be found, clear it from the command to prevent redundant attempts
  1341. ShaderVariation* vs = graphics_->GetShader(VS, command.vertexShaderName_, command.vertexShaderDefines_);
  1342. if (!vs)
  1343. command.vertexShaderName_ = String::EMPTY;
  1344. ShaderVariation* ps = graphics_->GetShader(PS, command.pixelShaderName_, command.pixelShaderDefines_);
  1345. if (!ps)
  1346. command.pixelShaderName_ = String::EMPTY;
  1347. // Set shaders & shader parameters and textures
  1348. graphics_->SetShaders(vs, ps);
  1349. const HashMap<StringHash, Variant>& parameters = command.shaderParameters_;
  1350. for (HashMap<StringHash, Variant>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1351. graphics_->SetShaderParameter(k->first_, k->second_);
  1352. graphics_->SetShaderParameter(VSP_DELTATIME, frame_.timeStep_);
  1353. graphics_->SetShaderParameter(PSP_DELTATIME, frame_.timeStep_);
  1354. if (scene_)
  1355. {
  1356. float elapsedTime = scene_->GetElapsedTime();
  1357. graphics_->SetShaderParameter(VSP_ELAPSEDTIME, elapsedTime);
  1358. graphics_->SetShaderParameter(PSP_ELAPSEDTIME, elapsedTime);
  1359. }
  1360. float nearClip = camera_->GetNearClip();
  1361. float farClip = camera_->GetFarClip();
  1362. graphics_->SetShaderParameter(VSP_NEARCLIP, nearClip);
  1363. graphics_->SetShaderParameter(VSP_FARCLIP, farClip);
  1364. graphics_->SetShaderParameter(PSP_NEARCLIP, nearClip);
  1365. graphics_->SetShaderParameter(PSP_FARCLIP, farClip);
  1366. float rtWidth = (float)rtSize_.x_;
  1367. float rtHeight = (float)rtSize_.y_;
  1368. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1369. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1370. #ifdef USE_OPENGL
  1371. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1372. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1373. #else
  1374. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1375. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1376. #endif
  1377. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1378. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1379. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1380. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1381. {
  1382. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1383. if (!rtInfo.enabled_)
  1384. continue;
  1385. StringHash nameHash(rtInfo.name_);
  1386. if (!renderTargets_.Contains(nameHash))
  1387. continue;
  1388. String invSizeName = rtInfo.name_ + "InvSize";
  1389. String offsetsName = rtInfo.name_ + "Offsets";
  1390. float width = (float)renderTargets_[nameHash]->GetWidth();
  1391. float height = (float)renderTargets_[nameHash]->GetHeight();
  1392. graphics_->SetShaderParameter(invSizeName, Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1393. #ifdef USE_OPENGL
  1394. graphics_->SetShaderParameter(offsetsName, Vector4::ZERO);
  1395. #else
  1396. graphics_->SetShaderParameter(offsetsName, Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1397. #endif
  1398. }
  1399. graphics_->SetBlendMode(BLEND_REPLACE);
  1400. graphics_->SetDepthTest(CMP_ALWAYS);
  1401. graphics_->SetDepthWrite(false);
  1402. graphics_->SetFillMode(FILL_SOLID);
  1403. graphics_->SetClipPlane(false);
  1404. graphics_->SetScissorTest(false);
  1405. graphics_->SetStencilTest(false);
  1406. DrawFullscreenQuad(false);
  1407. }
  1408. bool View::IsNecessary(const RenderPathCommand& command)
  1409. {
  1410. return command.enabled_ && command.outputNames_.Size() && (command.type_ != CMD_SCENEPASS ||
  1411. !batchQueues_[command.pass_].IsEmpty());
  1412. }
  1413. bool View::CheckViewportRead(const RenderPathCommand& command)
  1414. {
  1415. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1416. {
  1417. if (!command.textureNames_[i].Empty() && !command.textureNames_[i].Compare("viewport", false))
  1418. return true;
  1419. }
  1420. return false;
  1421. }
  1422. bool View::CheckViewportWrite(const RenderPathCommand& command)
  1423. {
  1424. for (unsigned i = 0; i < command.outputNames_.Size(); ++i)
  1425. {
  1426. if (!command.outputNames_[i].Compare("viewport", false))
  1427. return true;
  1428. }
  1429. return false;
  1430. }
  1431. bool View::CheckPingpong(unsigned index)
  1432. {
  1433. // Current command must be a viewport-reading & writing quad to begin the pingpong chain
  1434. RenderPathCommand& current = renderPath_->commands_[index];
  1435. if (current.type_ != CMD_QUAD || !CheckViewportRead(current) || !CheckViewportWrite(current))
  1436. return false;
  1437. // If there are commands other than quads that target the viewport, we must keep rendering to the final target and resolving
  1438. // to a viewport texture when necessary instead of pingponging, as a scene pass is not guaranteed to fill the entire viewport
  1439. for (unsigned i = index + 1; i < renderPath_->commands_.Size(); ++i)
  1440. {
  1441. RenderPathCommand& command = renderPath_->commands_[i];
  1442. if (!IsNecessary(command))
  1443. continue;
  1444. if (CheckViewportWrite(command))
  1445. {
  1446. if (command.type_ != CMD_QUAD)
  1447. return false;
  1448. }
  1449. }
  1450. return true;
  1451. }
  1452. void View::AllocateScreenBuffers()
  1453. {
  1454. bool needSubstitute = false;
  1455. unsigned numViewportTextures = 0;
  1456. #ifdef USE_OPENGL
  1457. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1458. // Also, if rendering to a texture with full deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1459. if ((deferred_ && !renderTarget_) || (deferredAmbient_ && renderTarget_ && renderTarget_->GetParentTexture()->GetFormat() !=
  1460. Graphics::GetRGBAFormat()))
  1461. needSubstitute = true;
  1462. #endif
  1463. // If backbuffer is antialiased when using deferred rendering, need to reserve a buffer
  1464. if (deferred_ && !renderTarget_ && graphics_->GetMultiSample() > 1)
  1465. needSubstitute = true;
  1466. // Follow final rendertarget format, or use RGB to match the backbuffer format
  1467. unsigned format = renderTarget_ ? renderTarget_->GetParentTexture()->GetFormat() : Graphics::GetRGBFormat();
  1468. // If HDR rendering is enabled use RGBA16f and reserve a buffer
  1469. bool hdrRendering = renderer_->GetHDRRendering();
  1470. if (renderer_->GetHDRRendering())
  1471. {
  1472. format = Graphics::GetRGBAFloat16Format();
  1473. needSubstitute = true;
  1474. }
  1475. #ifdef USE_OPENGL
  1476. if (deferred_ && !hdrRendering)
  1477. format = Graphics::GetRGBAFormat();
  1478. #endif
  1479. // Check for commands which read the viewport, or pingpong between viewport textures
  1480. bool hasViewportRead = false;
  1481. bool hasPingpong = false;
  1482. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1483. {
  1484. const RenderPathCommand& command = renderPath_->commands_[i];
  1485. if (!IsNecessary(command))
  1486. continue;
  1487. if (CheckViewportRead(command))
  1488. hasViewportRead = true;
  1489. if (!hasPingpong && CheckPingpong(i))
  1490. hasPingpong = true;
  1491. }
  1492. if (hasViewportRead)
  1493. {
  1494. ++numViewportTextures;
  1495. // If OpenGL ES, use substitute target to avoid resolve from the backbuffer, which may be slow. However if multisampling
  1496. // is specified, there is no choice
  1497. #ifdef GL_ES_VERSION_2_0
  1498. if (!renderTarget_ && graphics_->GetMultiSample() < 2)
  1499. needSubstitute = true;
  1500. #endif
  1501. // If we have viewport read and target is a cube map, must allocate a substitute target instead as BlitFramebuffer()
  1502. // does not support reading a cube map
  1503. if (renderTarget_ && renderTarget_->GetParentTexture()->GetType() == TextureCube::GetTypeStatic())
  1504. needSubstitute = true;
  1505. if (hasPingpong && !needSubstitute)
  1506. ++numViewportTextures;
  1507. }
  1508. // Allocate screen buffers with filtering active in case the quad commands need that
  1509. // Follow the sRGB mode of the destination render target
  1510. bool sRGB = renderTarget_ ? renderTarget_->GetParentTexture()->GetSRGB() : graphics_->GetSRGB();
  1511. substituteRenderTarget_ = needSubstitute ? renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true,
  1512. sRGB)->GetRenderSurface() : (RenderSurface*)0;
  1513. for (unsigned i = 0; i < MAX_VIEWPORT_TEXTURES; ++i)
  1514. {
  1515. viewportTextures_[i] = i < numViewportTextures ? renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true, sRGB) :
  1516. (Texture2D*)0;
  1517. }
  1518. // If using a substitute render target and pingponging, the substitute can act as the second viewport texture
  1519. if (numViewportTextures == 1 && substituteRenderTarget_)
  1520. viewportTextures_[1] = static_cast<Texture2D*>(substituteRenderTarget_->GetParentTexture());
  1521. // Allocate extra render targets defined by the rendering path
  1522. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1523. {
  1524. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1525. if (!rtInfo.enabled_)
  1526. continue;
  1527. unsigned width = rtInfo.size_.x_;
  1528. unsigned height = rtInfo.size_.y_;
  1529. if (rtInfo.sizeMode_ == SIZE_VIEWPORTDIVISOR)
  1530. {
  1531. width = viewSize_.x_ / (width ? width : 1);
  1532. height = viewSize_.y_ / (height ? height : 1);
  1533. }
  1534. if (rtInfo.sizeMode_ == SIZE_RENDERTARGETDIVISOR)
  1535. {
  1536. width = rtSize_.x_ / (width ? width : 1);
  1537. height = rtSize_.y_ / (height ? height : 1);
  1538. }
  1539. // If the rendertarget is persistent, key it with a hash derived from the RT name and the view's pointer
  1540. renderTargets_[rtInfo.name_] = renderer_->GetScreenBuffer(width, height, rtInfo.format_, rtInfo.filtered_, rtInfo.sRGB_,
  1541. rtInfo.persistent_ ? StringHash(rtInfo.name_).Value() + (unsigned)(size_t)this : 0);
  1542. }
  1543. }
  1544. void View::BlitFramebuffer(Texture2D* source, RenderSurface* destination, bool depthWrite)
  1545. {
  1546. if (!source)
  1547. return;
  1548. PROFILE(BlitFramebuffer);
  1549. graphics_->SetBlendMode(BLEND_REPLACE);
  1550. graphics_->SetDepthTest(CMP_ALWAYS);
  1551. graphics_->SetDepthWrite(depthWrite);
  1552. graphics_->SetFillMode(FILL_SOLID);
  1553. graphics_->SetClipPlane(false);
  1554. graphics_->SetScissorTest(false);
  1555. graphics_->SetStencilTest(false);
  1556. graphics_->SetRenderTarget(0, destination);
  1557. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1558. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1559. graphics_->SetDepthStencil(GetDepthStencil(destination));
  1560. graphics_->SetViewport(viewRect_);
  1561. String shaderName = "CopyFramebuffer";
  1562. graphics_->SetShaders(graphics_->GetShader(VS, shaderName), graphics_->GetShader(PS, shaderName));
  1563. float rtWidth = (float)rtSize_.x_;
  1564. float rtHeight = (float)rtSize_.y_;
  1565. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1566. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1567. #ifdef USE_OPENGL
  1568. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1569. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1570. #else
  1571. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1572. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1573. #endif
  1574. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1575. graphics_->SetTexture(TU_DIFFUSE, source);
  1576. DrawFullscreenQuad(false);
  1577. }
  1578. void View::DrawFullscreenQuad(bool nearQuad)
  1579. {
  1580. Light* quadDirLight = renderer_->GetQuadDirLight();
  1581. Geometry* geometry = renderer_->GetLightGeometry(quadDirLight);
  1582. Matrix3x4 model = Matrix3x4::IDENTITY;
  1583. Matrix4 projection = Matrix4::IDENTITY;
  1584. #ifdef USE_OPENGL
  1585. if (camera_->GetFlipVertical())
  1586. projection.m11_ = -1.0f;
  1587. model.m23_ = nearQuad ? -1.0f : 1.0f;
  1588. #else
  1589. model.m23_ = nearQuad ? 0.0f : 1.0f;
  1590. #endif
  1591. graphics_->SetCullMode(CULL_NONE);
  1592. graphics_->SetShaderParameter(VSP_MODEL, model);
  1593. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1594. graphics_->ClearTransformSources();
  1595. geometry->Draw(graphics_);
  1596. }
  1597. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1598. {
  1599. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1600. float halfViewSize = camera->GetHalfViewSize();
  1601. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1602. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1603. {
  1604. Drawable* occluder = *i;
  1605. bool erase = false;
  1606. if (!occluder->IsInView(frame_, true))
  1607. occluder->UpdateBatches(frame_);
  1608. // Check occluder's draw distance (in main camera view)
  1609. float maxDistance = occluder->GetDrawDistance();
  1610. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1611. {
  1612. // Check that occluder is big enough on the screen
  1613. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1614. float diagonal = box.Size().Length();
  1615. float compare;
  1616. if (!camera->IsOrthographic())
  1617. compare = diagonal * halfViewSize / occluder->GetDistance();
  1618. else
  1619. compare = diagonal * invOrthoSize;
  1620. if (compare < occluderSizeThreshold_)
  1621. erase = true;
  1622. else
  1623. {
  1624. // Store amount of triangles divided by screen size as a sorting key
  1625. // (best occluders are big and have few triangles)
  1626. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1627. }
  1628. }
  1629. else
  1630. erase = true;
  1631. if (erase)
  1632. i = occluders.Erase(i);
  1633. else
  1634. ++i;
  1635. }
  1636. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1637. if (occluders.Size())
  1638. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1639. }
  1640. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1641. {
  1642. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1643. buffer->Clear();
  1644. for (unsigned i = 0; i < occluders.Size(); ++i)
  1645. {
  1646. Drawable* occluder = occluders[i];
  1647. if (i > 0)
  1648. {
  1649. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1650. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1651. continue;
  1652. }
  1653. // Check for running out of triangles
  1654. if (!occluder->DrawOcclusion(buffer))
  1655. break;
  1656. }
  1657. buffer->BuildDepthHierarchy();
  1658. }
  1659. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1660. {
  1661. Light* light = query.light_;
  1662. LightType type = light->GetLightType();
  1663. const Frustum& frustum = camera_->GetFrustum();
  1664. // Check if light should be shadowed
  1665. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1666. // If shadow distance non-zero, check it
  1667. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1668. isShadowed = false;
  1669. // OpenGL ES can not support point light shadows
  1670. #ifdef GL_ES_VERSION_2_0
  1671. if (isShadowed && type == LIGHT_POINT)
  1672. isShadowed = false;
  1673. #endif
  1674. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1675. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1676. query.litGeometries_.Clear();
  1677. switch (type)
  1678. {
  1679. case LIGHT_DIRECTIONAL:
  1680. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1681. {
  1682. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1683. query.litGeometries_.Push(geometries_[i]);
  1684. }
  1685. break;
  1686. case LIGHT_SPOT:
  1687. {
  1688. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1689. octree_->GetDrawables(octreeQuery);
  1690. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1691. {
  1692. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1693. query.litGeometries_.Push(tempDrawables[i]);
  1694. }
  1695. }
  1696. break;
  1697. case LIGHT_POINT:
  1698. {
  1699. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1700. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1701. octree_->GetDrawables(octreeQuery);
  1702. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1703. {
  1704. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1705. query.litGeometries_.Push(tempDrawables[i]);
  1706. }
  1707. }
  1708. break;
  1709. }
  1710. // If no lit geometries or not shadowed, no need to process shadow cameras
  1711. if (query.litGeometries_.Empty() || !isShadowed)
  1712. {
  1713. query.numSplits_ = 0;
  1714. return;
  1715. }
  1716. // Determine number of shadow cameras and setup their initial positions
  1717. SetupShadowCameras(query);
  1718. // Process each split for shadow casters
  1719. query.shadowCasters_.Clear();
  1720. for (unsigned i = 0; i < query.numSplits_; ++i)
  1721. {
  1722. Camera* shadowCamera = query.shadowCameras_[i];
  1723. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1724. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1725. // For point light check that the face is visible: if not, can skip the split
  1726. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1727. continue;
  1728. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1729. if (type == LIGHT_DIRECTIONAL)
  1730. {
  1731. if (minZ_ > query.shadowFarSplits_[i])
  1732. continue;
  1733. if (maxZ_ < query.shadowNearSplits_[i])
  1734. continue;
  1735. // Reuse lit geometry query for all except directional lights
  1736. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1737. camera_->GetViewMask());
  1738. octree_->GetDrawables(query);
  1739. }
  1740. // Check which shadow casters actually contribute to the shadowing
  1741. ProcessShadowCasters(query, tempDrawables, i);
  1742. }
  1743. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1744. // only cost has been the shadow camera setup & queries
  1745. if (query.shadowCasters_.Empty())
  1746. query.numSplits_ = 0;
  1747. }
  1748. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1749. {
  1750. Light* light = query.light_;
  1751. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1752. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1753. const Matrix3x4& lightView = shadowCamera->GetView();
  1754. const Matrix4& lightProj = shadowCamera->GetProjection();
  1755. LightType type = light->GetLightType();
  1756. query.shadowCasterBox_[splitIndex].defined_ = false;
  1757. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1758. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1759. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1760. Frustum lightViewFrustum;
  1761. if (type != LIGHT_DIRECTIONAL)
  1762. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1763. else
  1764. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1765. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1766. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1767. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1768. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1769. return;
  1770. BoundingBox lightViewBox;
  1771. BoundingBox lightProjBox;
  1772. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1773. {
  1774. Drawable* drawable = *i;
  1775. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1776. // Check for that first
  1777. if (!drawable->GetCastShadows())
  1778. continue;
  1779. // Check shadow mask
  1780. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1781. continue;
  1782. // For point light, check that this drawable is inside the split shadow camera frustum
  1783. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1784. continue;
  1785. // Check shadow distance
  1786. float maxShadowDistance = drawable->GetShadowDistance();
  1787. float drawDistance = drawable->GetDrawDistance();
  1788. bool batchesUpdated = drawable->IsInView(frame_, true);
  1789. if (drawDistance > 0.0f && (maxShadowDistance <= 0.0f || drawDistance < maxShadowDistance))
  1790. maxShadowDistance = drawDistance;
  1791. if (maxShadowDistance > 0.0f)
  1792. {
  1793. if (!batchesUpdated)
  1794. {
  1795. drawable->UpdateBatches(frame_);
  1796. batchesUpdated = true;
  1797. }
  1798. if (drawable->GetDistance() > maxShadowDistance)
  1799. continue;
  1800. }
  1801. // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several
  1802. // times. However, this should not cause problems as no scene modification happens at this point.
  1803. if (!batchesUpdated)
  1804. drawable->UpdateBatches(frame_);
  1805. // Project shadow caster bounding box to light view space for visibility check
  1806. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1807. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1808. {
  1809. // Merge to shadow caster bounding box and add to the list
  1810. if (type == LIGHT_DIRECTIONAL)
  1811. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1812. else
  1813. {
  1814. lightProjBox = lightViewBox.Projected(lightProj);
  1815. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1816. }
  1817. query.shadowCasters_.Push(drawable);
  1818. }
  1819. }
  1820. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1821. }
  1822. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1823. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1824. {
  1825. if (shadowCamera->IsOrthographic())
  1826. {
  1827. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1828. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1829. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1830. }
  1831. else
  1832. {
  1833. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1834. if (drawable->IsInView(frame_))
  1835. return true;
  1836. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1837. Vector3 center = lightViewBox.Center();
  1838. Ray extrusionRay(center, center);
  1839. float extrusionDistance = shadowCamera->GetFarClip();
  1840. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1841. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1842. float sizeFactor = extrusionDistance / originalDistance;
  1843. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1844. // than necessary, so the test will be conservative
  1845. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1846. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1847. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1848. lightViewBox.Merge(extrudedBox);
  1849. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1850. }
  1851. }
  1852. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1853. {
  1854. unsigned width = shadowMap->GetWidth();
  1855. unsigned height = shadowMap->GetHeight();
  1856. int maxCascades = renderer_->GetMaxShadowCascades();
  1857. switch (light->GetLightType())
  1858. {
  1859. case LIGHT_DIRECTIONAL:
  1860. if (maxCascades == 1)
  1861. return IntRect(0, 0, width, height);
  1862. else if (maxCascades == 2)
  1863. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1864. else
  1865. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1866. (splitIndex / 2 + 1) * height / 2);
  1867. case LIGHT_SPOT:
  1868. return IntRect(0, 0, width, height);
  1869. case LIGHT_POINT:
  1870. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1871. (splitIndex / 2 + 1) * height / 3);
  1872. }
  1873. return IntRect();
  1874. }
  1875. void View::SetupShadowCameras(LightQueryResult& query)
  1876. {
  1877. Light* light = query.light_;
  1878. int splits = 0;
  1879. switch (light->GetLightType())
  1880. {
  1881. case LIGHT_DIRECTIONAL:
  1882. {
  1883. const CascadeParameters& cascade = light->GetShadowCascade();
  1884. float nearSplit = camera_->GetNearClip();
  1885. float farSplit;
  1886. while (splits < renderer_->GetMaxShadowCascades())
  1887. {
  1888. // If split is completely beyond camera far clip, we are done
  1889. if (nearSplit > camera_->GetFarClip())
  1890. break;
  1891. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1892. if (farSplit <= nearSplit)
  1893. break;
  1894. // Setup the shadow camera for the split
  1895. Camera* shadowCamera = renderer_->GetShadowCamera();
  1896. query.shadowCameras_[splits] = shadowCamera;
  1897. query.shadowNearSplits_[splits] = nearSplit;
  1898. query.shadowFarSplits_[splits] = farSplit;
  1899. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1900. nearSplit = farSplit;
  1901. ++splits;
  1902. }
  1903. }
  1904. break;
  1905. case LIGHT_SPOT:
  1906. {
  1907. Camera* shadowCamera = renderer_->GetShadowCamera();
  1908. query.shadowCameras_[0] = shadowCamera;
  1909. Node* cameraNode = shadowCamera->GetNode();
  1910. Node* lightNode = light->GetNode();
  1911. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1912. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1913. shadowCamera->SetFarClip(light->GetRange());
  1914. shadowCamera->SetFov(light->GetFov());
  1915. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1916. splits = 1;
  1917. }
  1918. break;
  1919. case LIGHT_POINT:
  1920. {
  1921. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1922. {
  1923. Camera* shadowCamera = renderer_->GetShadowCamera();
  1924. query.shadowCameras_[i] = shadowCamera;
  1925. Node* cameraNode = shadowCamera->GetNode();
  1926. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1927. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1928. cameraNode->SetDirection(*directions[i]);
  1929. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1930. shadowCamera->SetFarClip(light->GetRange());
  1931. shadowCamera->SetFov(90.0f);
  1932. shadowCamera->SetAspectRatio(1.0f);
  1933. }
  1934. splits = MAX_CUBEMAP_FACES;
  1935. }
  1936. break;
  1937. }
  1938. query.numSplits_ = splits;
  1939. }
  1940. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1941. {
  1942. Node* shadowCameraNode = shadowCamera->GetNode();
  1943. Node* lightNode = light->GetNode();
  1944. float extrusionDistance = camera_->GetFarClip();
  1945. const FocusParameters& parameters = light->GetShadowFocus();
  1946. // Calculate initial position & rotation
  1947. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightNode->GetWorldDirection();
  1948. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1949. // Calculate main camera shadowed frustum in light's view space
  1950. farSplit = Min(farSplit, camera_->GetFarClip());
  1951. // Use the scene Z bounds to limit frustum size if applicable
  1952. if (parameters.focus_)
  1953. {
  1954. nearSplit = Max(minZ_, nearSplit);
  1955. farSplit = Min(maxZ_, farSplit);
  1956. }
  1957. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1958. Polyhedron frustumVolume;
  1959. frustumVolume.Define(splitFrustum);
  1960. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1961. if (parameters.focus_)
  1962. {
  1963. BoundingBox litGeometriesBox;
  1964. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1965. {
  1966. Drawable* drawable = geometries_[i];
  1967. // Skip skyboxes as they have undefinedly large bounding box size
  1968. if (drawable->GetType() == Skybox::GetTypeStatic())
  1969. continue;
  1970. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1971. (GetLightMask(drawable) & light->GetLightMask()))
  1972. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1973. }
  1974. if (litGeometriesBox.defined_)
  1975. {
  1976. frustumVolume.Clip(litGeometriesBox);
  1977. // If volume became empty, restore it to avoid zero size
  1978. if (frustumVolume.Empty())
  1979. frustumVolume.Define(splitFrustum);
  1980. }
  1981. }
  1982. // Transform frustum volume to light space
  1983. const Matrix3x4& lightView = shadowCamera->GetView();
  1984. frustumVolume.Transform(lightView);
  1985. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1986. BoundingBox shadowBox;
  1987. if (!parameters.nonUniform_)
  1988. shadowBox.Define(Sphere(frustumVolume));
  1989. else
  1990. shadowBox.Define(frustumVolume);
  1991. shadowCamera->SetOrthographic(true);
  1992. shadowCamera->SetAspectRatio(1.0f);
  1993. shadowCamera->SetNearClip(0.0f);
  1994. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1995. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1996. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1997. }
  1998. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1999. const BoundingBox& shadowCasterBox)
  2000. {
  2001. const FocusParameters& parameters = light->GetShadowFocus();
  2002. float shadowMapWidth = (float)(shadowViewport.Width());
  2003. LightType type = light->GetLightType();
  2004. if (type == LIGHT_DIRECTIONAL)
  2005. {
  2006. BoundingBox shadowBox;
  2007. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  2008. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  2009. shadowBox.min_.y_ = -shadowBox.max_.y_;
  2010. shadowBox.min_.x_ = -shadowBox.max_.x_;
  2011. // Requantize and snap to shadow map texels
  2012. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  2013. }
  2014. if (type == LIGHT_SPOT)
  2015. {
  2016. if (parameters.focus_)
  2017. {
  2018. float viewSizeX = Max(Abs(shadowCasterBox.min_.x_), Abs(shadowCasterBox.max_.x_));
  2019. float viewSizeY = Max(Abs(shadowCasterBox.min_.y_), Abs(shadowCasterBox.max_.y_));
  2020. float viewSize = Max(viewSizeX, viewSizeY);
  2021. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  2022. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  2023. float quantize = parameters.quantize_ * invOrthoSize;
  2024. float minView = parameters.minView_ * invOrthoSize;
  2025. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  2026. if (viewSize < 1.0f)
  2027. shadowCamera->SetZoom(1.0f / viewSize);
  2028. }
  2029. }
  2030. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  2031. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  2032. if (shadowCamera->GetZoom() >= 1.0f)
  2033. {
  2034. if (light->GetLightType() != LIGHT_POINT)
  2035. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  2036. else
  2037. {
  2038. #ifdef USE_OPENGL
  2039. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  2040. #else
  2041. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  2042. #endif
  2043. }
  2044. }
  2045. }
  2046. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  2047. const BoundingBox& viewBox)
  2048. {
  2049. Node* shadowCameraNode = shadowCamera->GetNode();
  2050. const FocusParameters& parameters = light->GetShadowFocus();
  2051. float shadowMapWidth = (float)(shadowViewport.Width());
  2052. float minX = viewBox.min_.x_;
  2053. float minY = viewBox.min_.y_;
  2054. float maxX = viewBox.max_.x_;
  2055. float maxY = viewBox.max_.y_;
  2056. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  2057. Vector2 viewSize(maxX - minX, maxY - minY);
  2058. // Quantize size to reduce swimming
  2059. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  2060. if (parameters.nonUniform_)
  2061. {
  2062. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  2063. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  2064. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  2065. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  2066. }
  2067. else if (parameters.focus_)
  2068. {
  2069. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  2070. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  2071. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  2072. viewSize.y_ = viewSize.x_;
  2073. }
  2074. shadowCamera->SetOrthoSize(viewSize);
  2075. // Center shadow camera to the view space bounding box
  2076. Quaternion rot(shadowCameraNode->GetWorldRotation());
  2077. Vector3 adjust(center.x_, center.y_, 0.0f);
  2078. shadowCameraNode->Translate(rot * adjust);
  2079. // If the shadow map viewport is known, snap to whole texels
  2080. if (shadowMapWidth > 0.0f)
  2081. {
  2082. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  2083. // Take into account that shadow map border will not be used
  2084. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  2085. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  2086. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  2087. shadowCameraNode->Translate(rot * snap);
  2088. }
  2089. }
  2090. void View::FindZone(Drawable* drawable)
  2091. {
  2092. Vector3 center = drawable->GetWorldBoundingBox().Center();
  2093. int bestPriority = M_MIN_INT;
  2094. Zone* newZone = 0;
  2095. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  2096. // (possibly incorrect) and must be re-evaluated on the next frame
  2097. bool temporary = !camera_->GetFrustum().IsInside(center);
  2098. // First check if the current zone remains a conclusive result
  2099. Zone* lastZone = drawable->GetZone();
  2100. if (lastZone && (lastZone->GetViewMask() & camera_->GetViewMask()) && lastZone->GetPriority() >= highestZonePriority_ &&
  2101. (drawable->GetZoneMask() & lastZone->GetZoneMask()) && lastZone->IsInside(center))
  2102. newZone = lastZone;
  2103. else
  2104. {
  2105. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  2106. {
  2107. Zone* zone = *i;
  2108. int priority = zone->GetPriority();
  2109. if (priority > bestPriority && (drawable->GetZoneMask() & zone->GetZoneMask()) && zone->IsInside(center))
  2110. {
  2111. newZone = zone;
  2112. bestPriority = priority;
  2113. }
  2114. }
  2115. }
  2116. drawable->SetZone(newZone, temporary);
  2117. }
  2118. Technique* View::GetTechnique(Drawable* drawable, Material* material)
  2119. {
  2120. if (!material)
  2121. {
  2122. const Vector<TechniqueEntry>& techniques = renderer_->GetDefaultMaterial()->GetTechniques();
  2123. return techniques.Size() ? techniques[0].technique_ : (Technique*)0;
  2124. }
  2125. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  2126. // If only one technique, no choice
  2127. if (techniques.Size() == 1)
  2128. return techniques[0].technique_;
  2129. else
  2130. {
  2131. float lodDistance = drawable->GetLodDistance();
  2132. // Check for suitable technique. Techniques should be ordered like this:
  2133. // Most distant & highest quality
  2134. // Most distant & lowest quality
  2135. // Second most distant & highest quality
  2136. // ...
  2137. for (unsigned i = 0; i < techniques.Size(); ++i)
  2138. {
  2139. const TechniqueEntry& entry = techniques[i];
  2140. Technique* tech = entry.technique_;
  2141. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  2142. continue;
  2143. if (lodDistance >= entry.lodDistance_)
  2144. return tech;
  2145. }
  2146. // If no suitable technique found, fallback to the last
  2147. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  2148. }
  2149. }
  2150. void View::CheckMaterialForAuxView(Material* material)
  2151. {
  2152. const SharedPtr<Texture>* textures = material->GetTextures();
  2153. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  2154. {
  2155. Texture* texture = textures[i];
  2156. if (texture && texture->GetUsage() == TEXTURE_RENDERTARGET)
  2157. {
  2158. // Have to check cube & 2D textures separately
  2159. if (texture->GetType() == Texture2D::GetTypeStatic())
  2160. {
  2161. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  2162. RenderSurface* target = tex2D->GetRenderSurface();
  2163. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  2164. target->QueueUpdate();
  2165. }
  2166. else if (texture->GetType() == TextureCube::GetTypeStatic())
  2167. {
  2168. TextureCube* texCube = static_cast<TextureCube*>(texture);
  2169. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  2170. {
  2171. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  2172. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  2173. target->QueueUpdate();
  2174. }
  2175. }
  2176. }
  2177. }
  2178. // Flag as processed so we can early-out next time we come across this material on the same frame
  2179. material->MarkForAuxView(frame_.frameNumber_);
  2180. }
  2181. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  2182. {
  2183. if (!batch.material_)
  2184. batch.material_ = renderer_->GetDefaultMaterial();
  2185. // Convert to instanced if possible
  2186. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && batch.geometry_->GetIndexBuffer() && !batch.overrideView_)
  2187. batch.geometryType_ = GEOM_INSTANCED;
  2188. if (batch.geometryType_ == GEOM_INSTANCED)
  2189. {
  2190. BatchGroupKey key(batch);
  2191. HashMap<BatchGroupKey, BatchGroup>::Iterator i = batchQueue.batchGroups_.Find(key);
  2192. if (i == batchQueue.batchGroups_.End())
  2193. {
  2194. // Create a new group based on the batch
  2195. // In case the group remains below the instancing limit, do not enable instancing shaders yet
  2196. BatchGroup newGroup(batch);
  2197. newGroup.geometryType_ = GEOM_STATIC;
  2198. renderer_->SetBatchShaders(newGroup, tech, allowShadows);
  2199. newGroup.CalculateSortKey();
  2200. i = batchQueue.batchGroups_.Insert(MakePair(key, newGroup));
  2201. }
  2202. int oldSize = i->second_.instances_.Size();
  2203. i->second_.AddTransforms(batch);
  2204. // Convert to using instancing shaders when the instancing limit is reached
  2205. if (oldSize < minInstances_ && (int)i->second_.instances_.Size() >= minInstances_)
  2206. {
  2207. i->second_.geometryType_ = GEOM_INSTANCED;
  2208. renderer_->SetBatchShaders(i->second_, tech, allowShadows);
  2209. i->second_.CalculateSortKey();
  2210. }
  2211. }
  2212. else
  2213. {
  2214. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2215. batch.CalculateSortKey();
  2216. batchQueue.batches_.Push(batch);
  2217. }
  2218. }
  2219. void View::PrepareInstancingBuffer()
  2220. {
  2221. PROFILE(PrepareInstancingBuffer);
  2222. unsigned totalInstances = 0;
  2223. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2224. totalInstances += i->second_.GetNumInstances();
  2225. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2226. {
  2227. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2228. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances();
  2229. totalInstances += i->litBaseBatches_.GetNumInstances();
  2230. totalInstances += i->litBatches_.GetNumInstances();
  2231. }
  2232. // If fail to set buffer size, fall back to per-group locking
  2233. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2234. {
  2235. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2236. unsigned freeIndex = 0;
  2237. void* dest = instancingBuffer->Lock(0, totalInstances, true);
  2238. if (!dest)
  2239. return;
  2240. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2241. i->second_.SetTransforms(dest, freeIndex);
  2242. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2243. {
  2244. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2245. i->shadowSplits_[j].shadowBatches_.SetTransforms(dest, freeIndex);
  2246. i->litBaseBatches_.SetTransforms(dest, freeIndex);
  2247. i->litBatches_.SetTransforms(dest, freeIndex);
  2248. }
  2249. instancingBuffer->Unlock();
  2250. }
  2251. }
  2252. void View::SetupLightVolumeBatch(Batch& batch)
  2253. {
  2254. Light* light = batch.lightQueue_->light_;
  2255. LightType type = light->GetLightType();
  2256. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2257. float lightDist;
  2258. graphics_->SetBlendMode(light->IsNegative() ? BLEND_SUBTRACT : BLEND_ADD);
  2259. graphics_->SetDepthBias(0.0f, 0.0f);
  2260. graphics_->SetDepthWrite(false);
  2261. graphics_->SetFillMode(FILL_SOLID);
  2262. graphics_->SetClipPlane(false);
  2263. if (type != LIGHT_DIRECTIONAL)
  2264. {
  2265. if (type == LIGHT_POINT)
  2266. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2267. else
  2268. lightDist = light->GetFrustum().Distance(cameraPos);
  2269. // Draw front faces if not inside light volume
  2270. if (lightDist < camera_->GetNearClip() * 2.0f)
  2271. {
  2272. renderer_->SetCullMode(CULL_CW, camera_);
  2273. graphics_->SetDepthTest(CMP_GREATER);
  2274. }
  2275. else
  2276. {
  2277. renderer_->SetCullMode(CULL_CCW, camera_);
  2278. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2279. }
  2280. }
  2281. else
  2282. {
  2283. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2284. // refresh the directional light's model transform before rendering
  2285. light->GetVolumeTransform(camera_);
  2286. graphics_->SetCullMode(CULL_NONE);
  2287. graphics_->SetDepthTest(CMP_ALWAYS);
  2288. }
  2289. graphics_->SetScissorTest(false);
  2290. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2291. }
  2292. void View::RenderShadowMap(const LightBatchQueue& queue)
  2293. {
  2294. PROFILE(RenderShadowMap);
  2295. Texture2D* shadowMap = queue.shadowMap_;
  2296. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2297. graphics_->SetColorWrite(false);
  2298. graphics_->SetFillMode(FILL_SOLID);
  2299. graphics_->SetClipPlane(false);
  2300. graphics_->SetStencilTest(false);
  2301. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2302. graphics_->SetDepthStencil(shadowMap);
  2303. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2304. graphics_->Clear(CLEAR_DEPTH);
  2305. // Set shadow depth bias
  2306. const BiasParameters& parameters = queue.light_->GetShadowBias();
  2307. // Render each of the splits
  2308. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2309. {
  2310. float multiplier = 1.0f;
  2311. // For directional light cascade splits, adjust depth bias according to the far clip ratio of the splits
  2312. if (i > 0 && queue.light_->GetLightType() == LIGHT_DIRECTIONAL)
  2313. {
  2314. multiplier = Max(queue.shadowSplits_[i].shadowCamera_->GetFarClip() / queue.shadowSplits_[0].shadowCamera_->GetFarClip(), 1.0f);
  2315. multiplier = 1.0f + (multiplier - 1.0f) * queue.light_->GetShadowCascade().biasAutoAdjust_;
  2316. }
  2317. graphics_->SetDepthBias(multiplier * parameters.constantBias_, multiplier * parameters.slopeScaledBias_);
  2318. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2319. if (!shadowQueue.shadowBatches_.IsEmpty())
  2320. {
  2321. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2322. shadowQueue.shadowBatches_.Draw(this);
  2323. }
  2324. }
  2325. graphics_->SetColorWrite(true);
  2326. graphics_->SetDepthBias(0.0f, 0.0f);
  2327. }
  2328. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2329. {
  2330. // If using the backbuffer, return the backbuffer depth-stencil
  2331. if (!renderTarget)
  2332. return 0;
  2333. // Then check for linked depth-stencil
  2334. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2335. // Finally get one from Renderer
  2336. if (!depthStencil)
  2337. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2338. return depthStencil;
  2339. }
  2340. }