PhysicsWorld.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Mutex.h"
  29. #include "PhysicsEvents.h"
  30. #include "PhysicsUtils.h"
  31. #include "PhysicsWorld.h"
  32. #include "Profiler.h"
  33. #include "Ray.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "Sort.h"
  38. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  41. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  42. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  43. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  44. namespace Urho3D
  45. {
  46. const char* PHYSICS_CATEGORY = "Physics";
  47. static const int DEFAULT_FPS = 60;
  48. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  49. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  50. {
  51. return lhs.distance_ < rhs.distance_;
  52. }
  53. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  54. {
  55. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  56. }
  57. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  58. {
  59. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  60. }
  61. /// Callback for physics world queries.
  62. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  63. {
  64. /// Construct.
  65. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  66. {
  67. }
  68. /// Add a contact result.
  69. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObject *colObj0, int, int, const btCollisionObject *colObj1, int, int)
  70. {
  71. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0->getUserPointer());
  72. if (body && !result_.Contains(body))
  73. result_.Push(body);
  74. body = reinterpret_cast<RigidBody*>(colObj1->getUserPointer());
  75. if (body && !result_.Contains(body))
  76. result_.Push(body);
  77. return 0.0f;
  78. }
  79. /// Found rigid bodies.
  80. PODVector<RigidBody*>& result_;
  81. };
  82. OBJECTTYPESTATIC(PhysicsWorld);
  83. PhysicsWorld::PhysicsWorld(Context* context) :
  84. Component(context),
  85. collisionConfiguration_(0),
  86. collisionDispatcher_(0),
  87. broadphase_(0),
  88. solver_(0),
  89. world_(0),
  90. fps_(DEFAULT_FPS),
  91. timeAcc_(0.0f),
  92. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  93. interpolation_(true),
  94. applyingTransforms_(false),
  95. debugRenderer_(0),
  96. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  97. {
  98. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  99. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  100. broadphase_ = new btDbvtBroadphase();
  101. solver_ = new btSequentialImpulseConstraintSolver();
  102. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  103. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  104. world_->getDispatchInfo().m_useContinuous = true;
  105. world_->setDebugDrawer(this);
  106. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  107. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  108. }
  109. PhysicsWorld::~PhysicsWorld()
  110. {
  111. if (scene_)
  112. {
  113. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  114. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  115. (*i)->ReleaseConstraint();
  116. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  117. (*i)->ReleaseBody();
  118. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  119. (*i)->ReleaseShape();
  120. }
  121. delete world_;
  122. world_ = 0;
  123. delete solver_;
  124. solver_ = 0;
  125. delete broadphase_;
  126. broadphase_ = 0;
  127. delete collisionDispatcher_;
  128. collisionDispatcher_ = 0;
  129. delete collisionConfiguration_;
  130. collisionConfiguration_ = 0;
  131. }
  132. void PhysicsWorld::RegisterObject(Context* context)
  133. {
  134. context->RegisterComponentFactory<PhysicsWorld>(PHYSICS_CATEGORY);
  135. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  136. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  137. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  138. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  139. }
  140. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  141. {
  142. if (debugRenderer_)
  143. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  144. else
  145. return false;
  146. }
  147. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  148. {
  149. if (debugRenderer_)
  150. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  151. }
  152. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  153. {
  154. if (debug)
  155. {
  156. PROFILE(PhysicsDrawDebug);
  157. debugRenderer_ = debug;
  158. debugDepthTest_ = depthTest;
  159. world_->debugDrawWorld();
  160. debugRenderer_ = 0;
  161. }
  162. }
  163. void PhysicsWorld::reportErrorWarning(const char* warningString)
  164. {
  165. LOGWARNING("Physics: " + String(warningString));
  166. }
  167. void PhysicsWorld::Update(float timeStep)
  168. {
  169. PROFILE(UpdatePhysics);
  170. float internalTimeStep = 1.0f / fps_;
  171. delayedWorldTransforms_.Clear();
  172. if (interpolation_)
  173. {
  174. int maxSubSteps = (int)(timeStep * fps_) + 1;
  175. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  176. }
  177. else
  178. {
  179. timeAcc_ += timeStep;
  180. while (timeAcc_ >= internalTimeStep)
  181. {
  182. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  183. timeAcc_ -= internalTimeStep;
  184. }
  185. }
  186. // Apply delayed (parented) world transforms now
  187. while (!delayedWorldTransforms_.Empty())
  188. {
  189. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  190. i != delayedWorldTransforms_.End(); ++i)
  191. {
  192. const DelayedWorldTransform& transform = i->second_;
  193. // If parent's transform has already been assigned, can proceed
  194. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  195. {
  196. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  197. delayedWorldTransforms_.Erase(i);
  198. }
  199. }
  200. }
  201. }
  202. void PhysicsWorld::UpdateCollisions()
  203. {
  204. world_->performDiscreteCollisionDetection();
  205. }
  206. void PhysicsWorld::SetFps(int fps)
  207. {
  208. fps_ = Clamp(fps, 1, 1000);
  209. }
  210. void PhysicsWorld::SetGravity(Vector3 gravity)
  211. {
  212. world_->setGravity(ToBtVector3(gravity));
  213. }
  214. void PhysicsWorld::SetInterpolation(bool enable)
  215. {
  216. interpolation_ = enable;
  217. }
  218. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  219. {
  220. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  221. }
  222. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  223. {
  224. PROFILE(PhysicsRaycast);
  225. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  226. maxDistance * ray.direction_));
  227. rayCallback.m_collisionFilterGroup = (short)0xffff;
  228. rayCallback.m_collisionFilterMask = collisionMask;
  229. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  230. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  231. {
  232. PhysicsRaycastResult newResult;
  233. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  234. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  235. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  236. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  237. result.Push(newResult);
  238. }
  239. Sort(result.Begin(), result.End(), CompareRaycastResults);
  240. }
  241. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  242. {
  243. PROFILE(PhysicsRaycastSingle);
  244. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  245. maxDistance * ray.direction_));
  246. rayCallback.m_collisionFilterGroup = (short)0xffff;
  247. rayCallback.m_collisionFilterMask = collisionMask;
  248. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  249. if (rayCallback.hasHit())
  250. {
  251. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  252. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  253. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  254. result.distance_ = (result.position_ - ray.origin_).Length();
  255. }
  256. else
  257. {
  258. result.body_ = 0;
  259. result.position_ = Vector3::ZERO;
  260. result.normal_ = Vector3::ZERO;
  261. result.distance_ = M_INFINITY;
  262. }
  263. }
  264. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  265. {
  266. PROFILE(PhysicsSphereCast);
  267. btSphereShape shape(radius);
  268. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  269. maxDistance * ray.direction_));
  270. convexCallback.m_collisionFilterGroup = (short)0xffff;
  271. convexCallback.m_collisionFilterMask = collisionMask;
  272. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  273. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  274. if (convexCallback.hasHit())
  275. {
  276. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  277. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  278. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  279. result.distance_ = (result.position_ - ray.origin_).Length();
  280. }
  281. else
  282. {
  283. result.body_ = 0;
  284. result.position_ = Vector3::ZERO;
  285. result.normal_ = Vector3::ZERO;
  286. result.distance_ = M_INFINITY;
  287. }
  288. }
  289. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  290. {
  291. PROFILE(PhysicsSphereQuery);
  292. result.Clear();
  293. btSphereShape sphereShape(sphere.radius_);
  294. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  295. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  296. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  297. tempRigidBody->activate();
  298. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  299. PhysicsQueryCallback callback(result);
  300. world_->contactTest(tempRigidBody, callback);
  301. world_->removeRigidBody(tempRigidBody);
  302. delete tempRigidBody;
  303. }
  304. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  305. {
  306. PROFILE(PhysicsBoxQuery);
  307. result.Clear();
  308. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  309. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  310. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  311. tempRigidBody->activate();
  312. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  313. PhysicsQueryCallback callback(result);
  314. world_->contactTest(tempRigidBody, callback);
  315. world_->removeRigidBody(tempRigidBody);
  316. delete tempRigidBody;
  317. }
  318. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  319. {
  320. PROFILE(GetCollidingBodies);
  321. result.Clear();
  322. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  323. i != currentCollisions_.End(); ++i)
  324. {
  325. if (i->first_.first_ == body)
  326. result.Push(i->first_.second_);
  327. else if (i->first_.second_ == body)
  328. result.Push(i->first_.first_);
  329. }
  330. }
  331. Vector3 PhysicsWorld::GetGravity() const
  332. {
  333. return ToVector3(world_->getGravity());
  334. }
  335. void PhysicsWorld::AddRigidBody(RigidBody* body)
  336. {
  337. rigidBodies_.Push(body);
  338. }
  339. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  340. {
  341. rigidBodies_.Remove(body);
  342. }
  343. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  344. {
  345. collisionShapes_.Push(shape);
  346. }
  347. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  348. {
  349. collisionShapes_.Remove(shape);
  350. }
  351. void PhysicsWorld::AddConstraint(Constraint* constraint)
  352. {
  353. constraints_.Push(constraint);
  354. }
  355. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  356. {
  357. constraints_.Remove(constraint);
  358. }
  359. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  360. {
  361. delayedWorldTransforms_[transform.rigidBody_] = transform;
  362. }
  363. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  364. {
  365. DebugRenderer* debug = GetComponent<DebugRenderer>();
  366. DrawDebugGeometry(debug, depthTest);
  367. }
  368. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  369. {
  370. debugRenderer_ = debug;
  371. }
  372. void PhysicsWorld::SetDebugDepthTest(bool enable)
  373. {
  374. debugDepthTest_ = enable;
  375. }
  376. void PhysicsWorld::CleanupGeometryCache()
  377. {
  378. // Remove cached shapes whose only reference is the cache itself
  379. for (HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  380. i != geometryCache_.End();)
  381. {
  382. HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  383. if (current->second_.Refs() == 1)
  384. geometryCache_.Erase(current);
  385. }
  386. }
  387. void PhysicsWorld::OnNodeSet(Node* node)
  388. {
  389. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  390. if (node)
  391. {
  392. scene_ = GetScene();
  393. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  394. }
  395. }
  396. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  397. {
  398. using namespace SceneSubsystemUpdate;
  399. Update(eventData[P_TIMESTEP].GetFloat());
  400. }
  401. void PhysicsWorld::PreStep(float timeStep)
  402. {
  403. // Send pre-step event
  404. using namespace PhysicsPreStep;
  405. VariantMap eventData;
  406. eventData[P_WORLD] = (void*)this;
  407. eventData[P_TIMESTEP] = timeStep;
  408. SendEvent(E_PHYSICSPRESTEP, eventData);
  409. // Start profiling block for the actual simulation step
  410. #ifdef ENABLE_PROFILING
  411. Profiler* profiler = GetSubsystem<Profiler>();
  412. if (profiler)
  413. profiler->BeginBlock("StepSimulation");
  414. #endif
  415. }
  416. void PhysicsWorld::PostStep(float timeStep)
  417. {
  418. #ifdef ENABLE_PROFILING
  419. Profiler* profiler = GetSubsystem<Profiler>();
  420. if (profiler)
  421. profiler->EndBlock();
  422. #endif
  423. SendCollisionEvents();
  424. // Send post-step event
  425. using namespace PhysicsPreStep;
  426. VariantMap eventData;
  427. eventData[P_WORLD] = (void*)this;
  428. eventData[P_TIMESTEP] = timeStep;
  429. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  430. }
  431. void PhysicsWorld::SendCollisionEvents()
  432. {
  433. PROFILE(SendCollisionEvents);
  434. currentCollisions_.Clear();
  435. int numManifolds = collisionDispatcher_->getNumManifolds();
  436. if (numManifolds)
  437. {
  438. VariantMap physicsCollisionData;
  439. VariantMap nodeCollisionData;
  440. VectorBuffer contacts;
  441. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  442. for (int i = 0; i < numManifolds; ++i)
  443. {
  444. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  445. int numContacts = contactManifold->getNumContacts();
  446. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  447. if (!numContacts)
  448. continue;
  449. btCollisionObject* objectA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  450. btCollisionObject* objectB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  451. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  452. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  453. // If it's not a rigidbody, maybe a ghost object
  454. if (!bodyA || !bodyB)
  455. continue;
  456. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  457. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  458. continue;
  459. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  460. continue;
  461. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  462. !bodyA->IsActive() && !bodyB->IsActive())
  463. continue;
  464. WeakPtr<RigidBody> bodyWeakA(bodyA);
  465. WeakPtr<RigidBody> bodyWeakB(bodyB);
  466. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  467. if (bodyA < bodyB)
  468. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  469. else
  470. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  471. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  472. // objects during collision event handling
  473. currentCollisions_[bodyPair] = contactManifold;
  474. }
  475. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  476. i != currentCollisions_.End(); ++i)
  477. {
  478. RigidBody* bodyA = i->first_.first_;
  479. RigidBody* bodyB = i->first_.second_;
  480. if (!bodyA || !bodyB)
  481. continue;
  482. btPersistentManifold* contactManifold = i->second_;
  483. int numContacts = contactManifold->getNumContacts();
  484. Node* nodeA = bodyA->GetNode();
  485. Node* nodeB = bodyB->GetNode();
  486. WeakPtr<Node> nodeWeakA(nodeA);
  487. WeakPtr<Node> nodeWeakB(nodeB);
  488. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  489. bool newCollision = !previousCollisions_.Contains(i->first_);
  490. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  491. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  492. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  493. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  494. physicsCollisionData[PhysicsCollision::P_PHANTOM] = phantom;
  495. contacts.Clear();
  496. for (int j = 0; j < numContacts; ++j)
  497. {
  498. btManifoldPoint& point = contactManifold->getContactPoint(j);
  499. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  500. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  501. contacts.WriteFloat(point.m_distance1);
  502. contacts.WriteFloat(point.m_appliedImpulse);
  503. }
  504. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  505. // Send separate collision start event if collision is new
  506. if (newCollision)
  507. {
  508. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData);
  509. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  510. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  511. continue;
  512. }
  513. // Then send the ongoing collision event
  514. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  515. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  516. continue;
  517. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  518. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  519. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  520. nodeCollisionData[NodeCollision::P_PHANTOM] = phantom;
  521. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  522. if (newCollision)
  523. {
  524. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  525. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  526. continue;
  527. }
  528. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData);
  529. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  530. continue;
  531. contacts.Clear();
  532. for (int j = 0; j < numContacts; ++j)
  533. {
  534. btManifoldPoint& point = contactManifold->getContactPoint(j);
  535. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  536. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  537. contacts.WriteFloat(point.m_distance1);
  538. contacts.WriteFloat(point.m_appliedImpulse);
  539. }
  540. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  541. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  542. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  543. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  544. if (newCollision)
  545. {
  546. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  547. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  548. continue;
  549. }
  550. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData);
  551. }
  552. }
  553. // Send collision end events as applicable
  554. {
  555. VariantMap physicsCollisionData;
  556. VariantMap nodeCollisionData;
  557. physicsCollisionData[PhysicsCollisionEnd::P_WORLD] = (void*)this;
  558. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  559. {
  560. if (!currentCollisions_.Contains(i->first_))
  561. {
  562. RigidBody* bodyA = i->first_.first_;
  563. RigidBody* bodyB = i->first_.second_;
  564. if (!bodyA || !bodyB)
  565. continue;
  566. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  567. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  568. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  569. continue;
  570. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  571. continue;
  572. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  573. !bodyA->IsActive() && !bodyB->IsActive())
  574. continue;
  575. Node* nodeA = bodyA->GetNode();
  576. Node* nodeB = bodyB->GetNode();
  577. WeakPtr<Node> nodeWeakA(nodeA);
  578. WeakPtr<Node> nodeWeakB(nodeB);
  579. physicsCollisionData[PhysicsCollisionEnd::P_BODYA] = (void*)bodyA;
  580. physicsCollisionData[PhysicsCollisionEnd::P_BODYB] = (void*)bodyB;
  581. physicsCollisionData[PhysicsCollisionEnd::P_NODEA] = (void*)nodeA;
  582. physicsCollisionData[PhysicsCollisionEnd::P_NODEB] = (void*)nodeB;
  583. physicsCollisionData[PhysicsCollisionEnd::P_PHANTOM] = phantom;
  584. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData);
  585. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  586. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  587. continue;
  588. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyA;
  589. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeB;
  590. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyB;
  591. nodeCollisionData[NodeCollisionEnd::P_PHANTOM] = phantom;
  592. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  593. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  594. continue;
  595. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyB;
  596. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeA;
  597. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyA;
  598. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  599. }
  600. }
  601. }
  602. previousCollisions_ = currentCollisions_;
  603. }
  604. void RegisterPhysicsLibrary(Context* context)
  605. {
  606. CollisionShape::RegisterObject(context);
  607. RigidBody::RegisterObject(context);
  608. Constraint::RegisterObject(context);
  609. PhysicsWorld::RegisterObject(context);
  610. }
  611. }