View.cpp 90 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "Profiler.h"
  35. #include "Scene.h"
  36. #include "ShaderVariation.h"
  37. #include "Sort.h"
  38. #include "Technique.h"
  39. #include "Texture2D.h"
  40. #include "TextureCube.h"
  41. #include "VertexBuffer.h"
  42. #include "View.h"
  43. #include "WorkQueue.h"
  44. #include "Zone.h"
  45. #include "DebugNew.h"
  46. static const Vector3 directions[] =
  47. {
  48. Vector3(1.0f, 0.0f, 0.0f),
  49. Vector3(-1.0f, 0.0f, 0.0f),
  50. Vector3(0.0f, 1.0f, 0.0f),
  51. Vector3(0.0f, -1.0f, 0.0f),
  52. Vector3(0.0f, 0.0f, 1.0f),
  53. Vector3(0.0f, 0.0f, -1.0f)
  54. };
  55. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  56. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  57. {
  58. View* view = reinterpret_cast<View*>(item->aux_);
  59. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  60. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  61. Drawable** unculledStart = &view->tempDrawables_[0][0] + view->unculledDrawableStart_;
  62. OcclusionBuffer* buffer = view->occlusionBuffer_;
  63. while (start != end)
  64. {
  65. Drawable* drawable = *start;
  66. bool useOcclusion = start < unculledStart;
  67. unsigned char flags = drawable->GetDrawableFlags();
  68. ++start;
  69. if (flags & DRAWABLE_ZONE)
  70. continue;
  71. drawable->UpdateDistance(view->frame_);
  72. // If draw distance non-zero, check it
  73. float maxDistance = drawable->GetDrawDistance();
  74. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  75. continue;
  76. if (buffer && useOcclusion && !buffer->IsVisible(drawable->GetWorldBoundingBox()))
  77. continue;
  78. drawable->MarkInView(view->frame_);
  79. // For geometries, clear lights and find new zone if necessary
  80. if (flags & DRAWABLE_GEOMETRY)
  81. {
  82. drawable->ClearLights();
  83. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  84. view->FindZone(drawable, threadIndex);
  85. }
  86. }
  87. }
  88. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  89. {
  90. View* view = reinterpret_cast<View*>(item->aux_);
  91. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  92. view->ProcessLight(*query, threadIndex);
  93. }
  94. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  95. {
  96. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  97. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  98. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  99. while (start != end)
  100. {
  101. Drawable* drawable = *start;
  102. drawable->UpdateGeometry(frame);
  103. ++start;
  104. }
  105. }
  106. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  107. {
  108. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  109. queue->SortFrontToBack();
  110. }
  111. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  112. {
  113. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  114. queue->SortBackToFront();
  115. }
  116. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  117. {
  118. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  119. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  120. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  121. start->litBatches_.SortFrontToBack();
  122. }
  123. OBJECTTYPESTATIC(View);
  124. View::View(Context* context) :
  125. Object(context),
  126. graphics_(GetSubsystem<Graphics>()),
  127. renderer_(GetSubsystem<Renderer>()),
  128. octree_(0),
  129. camera_(0),
  130. cameraZone_(0),
  131. farClipZone_(0),
  132. renderTarget_(0),
  133. depthStencil_(0)
  134. {
  135. frame_.camera_ = 0;
  136. // Create octree query vectors for each thread
  137. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  138. tempZones_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  139. }
  140. View::~View()
  141. {
  142. }
  143. bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
  144. {
  145. if (!viewport.scene_ || !viewport.camera_)
  146. return false;
  147. // If scene is loading asynchronously, it is incomplete and should not be rendered
  148. if (viewport.scene_->IsAsyncLoading())
  149. return false;
  150. Octree* octree = viewport.scene_->GetComponent<Octree>();
  151. if (!octree)
  152. return false;
  153. // Check for the render texture being larger than the G-buffer in light pre-pass mode
  154. lightPrepass_ = renderer_->GetLightPrepass();
  155. if (lightPrepass_ && renderTarget)
  156. {
  157. if (renderTarget->GetWidth() > graphics_->GetWidth() || renderTarget->GetHeight() > graphics_->GetHeight())
  158. {
  159. // Display message only once per rendertarget, do not spam each frame
  160. if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
  161. {
  162. gBufferErrorDisplayed_.Insert(renderTarget);
  163. LOGERROR("Render texture is larger than the G-buffer, can not render");
  164. }
  165. return false;
  166. }
  167. }
  168. octree_ = octree;
  169. camera_ = viewport.camera_;
  170. renderTarget_ = renderTarget;
  171. if (!renderTarget)
  172. depthStencil_ = 0;
  173. else
  174. depthStencil_ = renderTarget->GetLinkedDepthStencil();
  175. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  176. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  177. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  178. if (viewport.rect_ != IntRect::ZERO)
  179. {
  180. screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
  181. screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
  182. screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
  183. screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
  184. }
  185. else
  186. screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
  187. width_ = screenRect_.right_ - screenRect_.left_;
  188. height_ = screenRect_.bottom_ - screenRect_.top_;
  189. drawShadows_ = renderer_->GetDrawShadows();
  190. materialQuality_ = renderer_->GetMaterialQuality();
  191. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  192. // Use edge filter only when final target is the backbuffer
  193. edgeFilter_ = !renderTarget_ && renderer_->GetEdgeFilter();
  194. // Set possible quality overrides from the camera
  195. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  196. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  197. materialQuality_ = QUALITY_LOW;
  198. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  199. drawShadows_ = false;
  200. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  201. maxOccluderTriangles_ = 0;
  202. return true;
  203. }
  204. void View::Update(const FrameInfo& frame)
  205. {
  206. if (!camera_ || !octree_)
  207. return;
  208. frame_.camera_ = camera_;
  209. frame_.timeStep_ = frame.timeStep_;
  210. frame_.frameNumber_ = frame.frameNumber_;
  211. frame_.viewSize_ = IntVector2(width_, height_);
  212. // Clear old light scissor cache, geometry, light, occluder & batch lists
  213. lightScissorCache_.Clear();
  214. geometries_.Clear();
  215. allGeometries_.Clear();
  216. geometryDepthBounds_.Clear();
  217. lights_.Clear();
  218. zones_.Clear();
  219. occluders_.Clear();
  220. baseQueue_.Clear();
  221. preAlphaQueue_.Clear();
  222. gbufferQueue_.Clear();
  223. alphaQueue_.Clear();
  224. postAlphaQueue_.Clear();
  225. lightQueues_.Clear();
  226. vertexLightQueues_.Clear();
  227. // Do not update if camera projection is illegal
  228. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  229. if (!camera_->IsProjectionValid())
  230. return;
  231. // Set automatic aspect ratio if required
  232. if (camera_->GetAutoAspectRatio())
  233. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  234. // Cache the camera frustum to avoid recalculating it constantly
  235. frustum_ = camera_->GetFrustum();
  236. // Reset shadow map allocations; they can be reused between views as each is rendered completely at a time
  237. renderer_->ResetShadowMapAllocations();
  238. GetDrawables();
  239. GetBatches();
  240. UpdateGeometries();
  241. }
  242. void View::Render()
  243. {
  244. if (!octree_ || !camera_)
  245. return;
  246. // Forget parameter sources from the previous view
  247. graphics_->ClearParameterSources();
  248. // If stream offset is supported, write all instance transforms to a single large buffer
  249. // Else we must lock the instance buffer for each batch group
  250. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  251. PrepareInstancingBuffer();
  252. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  253. // again to ensure correct projection will be used
  254. if (camera_->GetAutoAspectRatio())
  255. camera_->SetAspectRatio((float)(width_) / (float)(height_));
  256. graphics_->SetColorWrite(true);
  257. graphics_->SetFillMode(FILL_SOLID);
  258. // Bind the face selection and indirection cube maps for point light shadows
  259. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  260. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  261. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  262. // ie. when using light pre-pass and/or doing edge filtering
  263. if (renderTarget_)
  264. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  265. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  266. // as a render texture produced on Direct3D9
  267. #ifdef USE_OPENGL
  268. if (renderTarget_)
  269. camera_->SetFlipVertical(true);
  270. #endif
  271. // Render
  272. if (lightPrepass_)
  273. RenderBatchesLightPrepass();
  274. else
  275. RenderBatchesForward();
  276. #ifdef USE_OPENGL
  277. camera_->SetFlipVertical(false);
  278. #endif
  279. graphics_->SetViewTexture(0);
  280. graphics_->SetScissorTest(false);
  281. graphics_->SetStencilTest(false);
  282. graphics_->ResetStreamFrequencies();
  283. // If this is a main view, draw the associated debug geometry now
  284. if (!renderTarget_)
  285. {
  286. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  287. if (scene)
  288. {
  289. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  290. if (debug)
  291. {
  292. debug->SetView(camera_);
  293. debug->Render();
  294. }
  295. }
  296. }
  297. // Blit if necessary (OpenGL light pre-pass, or edge filter)
  298. #ifdef USE_OPENGL
  299. if (lightPrepass_ || edgeFilter_)
  300. #else
  301. if (edgeFilter_)
  302. #endif
  303. BlitFramebuffer();
  304. // "Forget" the camera, octree and zone after rendering
  305. camera_ = 0;
  306. octree_ = 0;
  307. cameraZone_ = 0;
  308. farClipZone_ = 0;
  309. occlusionBuffer_ = 0;
  310. frame_.camera_ = 0;
  311. }
  312. void View::GetDrawables()
  313. {
  314. PROFILE(GetDrawables);
  315. WorkQueue* queue = GetSubsystem<WorkQueue>();
  316. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  317. // Perform one octree query to get everything, then examine the results
  318. FrustumOctreeQuery query(tempDrawables, frustum_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT | DRAWABLE_ZONE);
  319. octree_->GetDrawables(query);
  320. // Add unculled geometries & lights
  321. unculledDrawableStart_ = tempDrawables.Size();
  322. octree_->GetUnculledDrawables(tempDrawables, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  323. // Get zones and occluders first
  324. highestZonePriority_ = M_MIN_INT;
  325. int bestPriority = M_MIN_INT;
  326. Vector3 cameraPos = camera_->GetWorldPosition();
  327. // Get default zone first in case we do not have zones defined
  328. Zone* defaultZone = renderer_->GetDefaultZone();
  329. cameraZone_ = farClipZone_ = defaultZone;
  330. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  331. {
  332. Drawable* drawable = *i;
  333. unsigned char flags = drawable->GetDrawableFlags();
  334. if (flags & DRAWABLE_ZONE)
  335. {
  336. Zone* zone = static_cast<Zone*>(drawable);
  337. zones_.Push(zone);
  338. int priority = zone->GetPriority();
  339. if (priority > highestZonePriority_)
  340. highestZonePriority_ = priority;
  341. if (zone->IsInside(cameraPos) && priority > bestPriority)
  342. {
  343. cameraZone_ = zone;
  344. bestPriority = priority;
  345. }
  346. }
  347. else if (flags & DRAWABLE_GEOMETRY && drawable->IsOccluder())
  348. occluders_.Push(drawable);
  349. }
  350. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  351. cameraZoneOverride_ = cameraZone_->GetOverride();
  352. if (!cameraZoneOverride_)
  353. {
  354. Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0, 0, camera_->GetFarClip());
  355. bestPriority = M_MIN_INT;
  356. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  357. {
  358. int priority = (*i)->GetPriority();
  359. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  360. {
  361. farClipZone_ = *i;
  362. bestPriority = priority;
  363. }
  364. }
  365. }
  366. if (farClipZone_ == defaultZone)
  367. farClipZone_ = cameraZone_;
  368. // If occlusion in use, get & render the occluders
  369. occlusionBuffer_ = 0;
  370. if (maxOccluderTriangles_ > 0)
  371. {
  372. UpdateOccluders(occluders_, camera_);
  373. if (occluders_.Size())
  374. {
  375. PROFILE(DrawOcclusion);
  376. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  377. DrawOccluders(occlusionBuffer_, occluders_);
  378. }
  379. }
  380. // Check visibility and find zones for moved drawables in worker threads
  381. {
  382. WorkItem item;
  383. item.workFunction_ = CheckVisibilityWork;
  384. item.aux_ = this;
  385. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  386. while (start != tempDrawables.End())
  387. {
  388. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  389. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  390. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  391. item.start_ = &(*start);
  392. item.end_ = &(*end);
  393. queue->AddWorkItem(item);
  394. start = end;
  395. }
  396. queue->Complete();
  397. }
  398. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  399. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  400. sceneBox_.defined_ = false;
  401. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  402. sceneViewBox_.defined_ = false;
  403. Matrix3x4 view(camera_->GetInverseWorldTransform());
  404. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  405. {
  406. Drawable* drawable = tempDrawables[i];
  407. unsigned char flags = drawable->GetDrawableFlags();
  408. if (flags & DRAWABLE_ZONE || !drawable->IsInView(frame_))
  409. continue;
  410. if (flags & DRAWABLE_GEOMETRY)
  411. {
  412. // Expand the scene bounding boxes. However, do not take "infinite" objects such as the skybox into account,
  413. // as the bounding boxes are also used for shadow focusing
  414. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  415. BoundingBox geomViewBox = geomBox.Transformed(view);
  416. if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
  417. {
  418. sceneBox_.Merge(geomBox);
  419. sceneViewBox_.Merge(geomViewBox);
  420. }
  421. // Store depth info for split directional light queries
  422. GeometryDepthBounds bounds;
  423. bounds.min_ = geomViewBox.min_.z_;
  424. bounds.max_ = geomViewBox.max_.z_;
  425. geometryDepthBounds_.Push(bounds);
  426. geometries_.Push(drawable);
  427. allGeometries_.Push(drawable);
  428. }
  429. else if (flags & DRAWABLE_LIGHT)
  430. {
  431. Light* light = static_cast<Light*>(drawable);
  432. lights_.Push(light);
  433. }
  434. }
  435. // Sort the lights to brightest/closest first
  436. for (unsigned i = 0; i < lights_.Size(); ++i)
  437. {
  438. Light* light = lights_[i];
  439. light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
  440. }
  441. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  442. }
  443. void View::GetBatches()
  444. {
  445. WorkQueue* queue = GetSubsystem<WorkQueue>();
  446. // Process lit geometries and shadow casters for each light
  447. {
  448. PROFILE_MULTIPLE(ProcessLights, lights_.Size());
  449. lightQueryResults_.Resize(lights_.Size());
  450. WorkItem item;
  451. item.workFunction_ = ProcessLightWork;
  452. item.aux_ = this;
  453. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  454. {
  455. LightQueryResult& query = lightQueryResults_[i];
  456. query.light_ = lights_[i];
  457. item.start_ = &query;
  458. queue->AddWorkItem(item);
  459. }
  460. // Ensure all lights have been processed before proceeding
  461. queue->Complete();
  462. }
  463. // Build light queues and lit batches
  464. {
  465. bool fallback = graphics_->GetFallback();
  466. maxLightsDrawables_.Clear();
  467. lightQueueMapping_.Clear();
  468. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  469. {
  470. const LightQueryResult& query = *i;
  471. // If light has no affected geometries, no need to process further
  472. if (query.litGeometries_.Empty())
  473. continue;
  474. PROFILE(GetLightBatches);
  475. Light* light = query.light_;
  476. // Per-pixel light
  477. if (!light->GetPerVertex())
  478. {
  479. unsigned shadowSplits = query.numSplits_;
  480. // Initialize light queue. Store light-to-queue mapping so that the queue can be found later
  481. lightQueues_.Resize(lightQueues_.Size() + 1);
  482. LightBatchQueue& lightQueue = lightQueues_.Back();
  483. lightQueueMapping_[light] = &lightQueue;
  484. lightQueue.light_ = light;
  485. lightQueue.litBatches_.Clear();
  486. lightQueue.volumeBatches_.Clear();
  487. // Allocate shadow map now
  488. lightQueue.shadowMap_ = 0;
  489. if (shadowSplits > 0)
  490. {
  491. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, width_, height_);
  492. // If did not manage to get a shadow map, convert the light to unshadowed
  493. if (!lightQueue.shadowMap_)
  494. shadowSplits = 0;
  495. }
  496. // Setup shadow batch queues
  497. lightQueue.shadowSplits_.Resize(shadowSplits);
  498. for (unsigned j = 0; j < shadowSplits; ++j)
  499. {
  500. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  501. Camera* shadowCamera = query.shadowCameras_[j];
  502. shadowQueue.shadowCamera_ = shadowCamera;
  503. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  504. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  505. // Setup the shadow split viewport and finalize shadow camera parameters
  506. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  507. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  508. // Loop through shadow casters
  509. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  510. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  511. {
  512. Drawable* drawable = *k;
  513. if (!drawable->IsInView(frame_, false))
  514. {
  515. drawable->MarkInView(frame_, false);
  516. allGeometries_.Push(drawable);
  517. }
  518. unsigned numBatches = drawable->GetNumBatches();
  519. for (unsigned l = 0; l < numBatches; ++l)
  520. {
  521. Batch shadowBatch;
  522. drawable->GetBatch(shadowBatch, frame_, l);
  523. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  524. if (!shadowBatch.geometry_ || !tech)
  525. continue;
  526. Pass* pass = tech->GetPass(PASS_SHADOW);
  527. // Skip if material has no shadow pass
  528. if (!pass)
  529. continue;
  530. // Fill the rest of the batch
  531. shadowBatch.camera_ = shadowCamera;
  532. shadowBatch.zone_ = GetZone(drawable);
  533. shadowBatch.lightQueue_ = &lightQueue;
  534. FinalizeBatch(shadowBatch, tech, pass);
  535. shadowQueue.shadowBatches_.AddBatch(shadowBatch);
  536. }
  537. }
  538. }
  539. // Process lit geometries
  540. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  541. {
  542. Drawable* drawable = *j;
  543. drawable->AddLight(light);
  544. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  545. if (!drawable->GetMaxLights())
  546. GetLitBatches(drawable, lightQueue);
  547. else
  548. maxLightsDrawables_.Insert(drawable);
  549. }
  550. // In light pre-pass mode, store the light volume batch now
  551. if (lightPrepass_)
  552. {
  553. Batch volumeBatch;
  554. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  555. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  556. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  557. volumeBatch.camera_ = camera_;
  558. volumeBatch.lightQueue_ = &lightQueue;
  559. volumeBatch.distance_ = light->GetDistance();
  560. volumeBatch.material_ = 0;
  561. volumeBatch.pass_ = 0;
  562. volumeBatch.zone_ = 0;
  563. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  564. lightQueue.volumeBatches_.Push(volumeBatch);
  565. }
  566. }
  567. // Per-vertex light
  568. else
  569. {
  570. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  571. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  572. {
  573. Drawable* drawable = *j;
  574. drawable->AddVertexLight(light);
  575. }
  576. }
  577. }
  578. }
  579. // Process drawables with limited per-pixel light count
  580. if (maxLightsDrawables_.Size())
  581. {
  582. PROFILE(GetMaxLightsBatches);
  583. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  584. {
  585. Drawable* drawable = *i;
  586. drawable->LimitLights();
  587. const PODVector<Light*>& lights = drawable->GetLights();
  588. for (unsigned i = 0; i < lights.Size(); ++i)
  589. {
  590. Light* light = lights[i];
  591. // Find the correct light queue again
  592. Map<Light*, LightBatchQueue*>::Iterator j = lightQueueMapping_.Find(light);
  593. if (j != lightQueueMapping_.End())
  594. GetLitBatches(drawable, *(j->second_));
  595. }
  596. }
  597. }
  598. // Build base pass batches
  599. {
  600. PROFILE(GetBaseBatches);
  601. hasZeroLightMask_ = false;
  602. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  603. {
  604. Drawable* drawable = *i;
  605. unsigned numBatches = drawable->GetNumBatches();
  606. bool vertexLightsProcessed = false;
  607. for (unsigned j = 0; j < numBatches; ++j)
  608. {
  609. Batch baseBatch;
  610. drawable->GetBatch(baseBatch, frame_, j);
  611. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  612. if (!baseBatch.geometry_ || !tech)
  613. continue;
  614. // Check here if the material technique refers to a rendertarget texture with camera(s) attached
  615. // Only check this for the main view (null rendertarget)
  616. if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
  617. CheckMaterialForAuxView(baseBatch.material_);
  618. // Fill the rest of the batch
  619. baseBatch.camera_ = camera_;
  620. baseBatch.zone_ = GetZone(drawable);
  621. baseBatch.isBase_ = true;
  622. Pass* pass = 0;
  623. // In light prepass mode check for G-buffer and material passes first
  624. if (lightPrepass_)
  625. {
  626. pass = tech->GetPass(PASS_GBUFFER);
  627. if (pass)
  628. {
  629. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  630. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  631. hasZeroLightMask_ = true;
  632. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  633. baseBatch.lightMask_ = GetLightMask(drawable);
  634. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  635. gbufferQueue_.AddBatch(baseBatch);
  636. pass = tech->GetPass(PASS_MATERIAL);
  637. }
  638. }
  639. // Next check for forward base pass
  640. if (!pass)
  641. {
  642. // Skip if a lit base pass already exists
  643. if (j < 32 && drawable->HasBasePass(j))
  644. continue;
  645. pass = tech->GetPass(PASS_BASE);
  646. }
  647. if (pass)
  648. {
  649. // Check for vertex lights (both forward unlit and light pre-pass material pass)
  650. const PODVector<Light*>& vertexLights = drawable->GetVertexLights();
  651. if (!vertexLights.Empty())
  652. {
  653. // In light pre-pass mode, check if this is an opaque object that has converted its lights to per-vertex
  654. // due to overflowing the pixel light count. These need to be skipped as the per-pixel accumulation
  655. // already renders the light
  656. /// \todo Sub-geometries might need different interpretation if opaque & alpha are mixed
  657. if (!vertexLightsProcessed)
  658. {
  659. drawable->LimitVertexLights(lightPrepass_ && pass->GetBlendMode() == BLEND_REPLACE);
  660. vertexLightsProcessed = true;
  661. }
  662. // The vertex light vector possibly became empty, so re-check
  663. if (!vertexLights.Empty())
  664. {
  665. // Find a vertex light queue. If not found, create new
  666. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  667. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  668. if (i == vertexLightQueues_.End())
  669. {
  670. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  671. i->second_.light_ = 0;
  672. i->second_.shadowMap_ = 0;
  673. i->second_.vertexLights_ = vertexLights;
  674. }
  675. baseBatch.lightQueue_ = &(i->second_);
  676. }
  677. }
  678. if (pass->GetBlendMode() == BLEND_REPLACE)
  679. {
  680. FinalizeBatch(baseBatch, tech, pass);
  681. baseQueue_.AddBatch(baseBatch);
  682. }
  683. else
  684. {
  685. // Transparent batches can not be instanced
  686. FinalizeBatch(baseBatch, tech, pass, false);
  687. alphaQueue_.AddBatch(baseBatch);
  688. }
  689. continue;
  690. }
  691. // If no base pass, finally check for pre-alpha / post-alpha custom passes
  692. pass = tech->GetPass(PASS_PREALPHA);
  693. if (pass)
  694. {
  695. FinalizeBatch(baseBatch, tech, pass);
  696. preAlphaQueue_.AddBatch(baseBatch);
  697. continue;
  698. }
  699. pass = tech->GetPass(PASS_POSTALPHA);
  700. if (pass)
  701. {
  702. // Post-alpha pass is treated similarly as alpha, and is not instanced
  703. FinalizeBatch(baseBatch, tech, pass, false);
  704. postAlphaQueue_.AddBatch(baseBatch);
  705. continue;
  706. }
  707. }
  708. }
  709. }
  710. }
  711. void View::UpdateGeometries()
  712. {
  713. PROFILE(UpdateGeometries);
  714. WorkQueue* queue = GetSubsystem<WorkQueue>();
  715. // Sort batches
  716. {
  717. WorkItem item;
  718. item.workFunction_ = SortBatchQueueFrontToBackWork;
  719. item.start_ = &baseQueue_;
  720. queue->AddWorkItem(item);
  721. item.start_ = &preAlphaQueue_;
  722. queue->AddWorkItem(item);
  723. if (lightPrepass_)
  724. {
  725. item.start_ = &gbufferQueue_;
  726. queue->AddWorkItem(item);
  727. }
  728. item.workFunction_ = SortBatchQueueBackToFrontWork;
  729. item.start_ = &alphaQueue_;
  730. queue->AddWorkItem(item);
  731. item.start_ = &postAlphaQueue_;
  732. queue->AddWorkItem(item);
  733. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  734. {
  735. item.workFunction_ = SortLightQueueWork;
  736. item.start_ = &(*i);
  737. queue->AddWorkItem(item);
  738. }
  739. }
  740. // Update geometries. Split into threaded and non-threaded updates.
  741. {
  742. nonThreadedGeometries_.Clear();
  743. threadedGeometries_.Clear();
  744. for (PODVector<Drawable*>::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i)
  745. {
  746. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  747. if (type == UPDATE_MAIN_THREAD)
  748. nonThreadedGeometries_.Push(*i);
  749. else if (type == UPDATE_WORKER_THREAD)
  750. threadedGeometries_.Push(*i);
  751. }
  752. if (threadedGeometries_.Size())
  753. {
  754. WorkItem item;
  755. item.workFunction_ = UpdateDrawableGeometriesWork;
  756. item.aux_ = const_cast<FrameInfo*>(&frame_);
  757. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  758. while (start != threadedGeometries_.End())
  759. {
  760. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  761. if (end - start > DRAWABLES_PER_WORK_ITEM)
  762. end = start + DRAWABLES_PER_WORK_ITEM;
  763. item.start_ = &(*start);
  764. item.end_ = &(*end);
  765. queue->AddWorkItem(item);
  766. start = end;
  767. }
  768. }
  769. // While the work queue is processed, update non-threaded geometries
  770. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  771. (*i)->UpdateGeometry(frame_);
  772. }
  773. // Finally ensure all threaded work has completed
  774. queue->Complete();
  775. }
  776. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  777. {
  778. Light* light = lightQueue.light_;
  779. Light* firstLight = drawable->GetFirstLight();
  780. Zone* zone = GetZone(drawable);
  781. // Shadows on transparencies can only be rendered if shadow maps are not reused
  782. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  783. bool hasVertexLights = drawable->GetVertexLights().Size() > 0;
  784. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  785. unsigned numBatches = drawable->GetNumBatches();
  786. for (unsigned i = 0; i < numBatches; ++i)
  787. {
  788. Batch litBatch;
  789. drawable->GetBatch(litBatch, frame_, i);
  790. Technique* tech = GetTechnique(drawable, litBatch.material_);
  791. if (!litBatch.geometry_ || !tech)
  792. continue;
  793. // Do not create pixel lit forward passes for materials that render into the G-buffer
  794. if (lightPrepass_ && tech->HasPass(PASS_GBUFFER))
  795. continue;
  796. Pass* pass = 0;
  797. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  798. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  799. if (i < 32 && light == firstLight && !hasVertexLights && !hasAmbientGradient && !drawable->HasBasePass(i))
  800. {
  801. pass = tech->GetPass(PASS_LITBASE);
  802. if (pass)
  803. {
  804. litBatch.isBase_ = true;
  805. drawable->SetBasePass(i);
  806. }
  807. }
  808. // If no lit base pass, get ordinary light pass
  809. if (!pass)
  810. pass = tech->GetPass(PASS_LIGHT);
  811. // Skip if material does not receive light at all
  812. if (!pass)
  813. continue;
  814. // Fill the rest of the batch
  815. litBatch.camera_ = camera_;
  816. litBatch.lightQueue_ = &lightQueue;
  817. litBatch.zone_ = GetZone(drawable);
  818. // Check from the ambient pass whether the object is opaque or transparent
  819. Pass* ambientPass = tech->GetPass(PASS_BASE);
  820. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  821. {
  822. FinalizeBatch(litBatch, tech, pass);
  823. lightQueue.litBatches_.AddBatch(litBatch);
  824. }
  825. else
  826. {
  827. // Transparent batches can not be instanced
  828. FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows);
  829. alphaQueue_.AddBatch(litBatch);
  830. }
  831. }
  832. }
  833. void View::RenderBatchesForward()
  834. {
  835. // Reset the light optimization stencil reference value
  836. lightStencilValue_ = 1;
  837. bool needBlit = edgeFilter_;
  838. RenderSurface* renderTarget = needBlit ? renderer_->GetScreenBuffer()->GetRenderSurface() : renderTarget_;
  839. RenderSurface* depthStencil = needBlit ? 0 : depthStencil_;
  840. // If not reusing shadowmaps, render all of them first
  841. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  842. {
  843. PROFILE(RenderShadowMaps);
  844. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  845. {
  846. if (i->shadowMap_)
  847. RenderShadowMap(*i);
  848. }
  849. }
  850. graphics_->SetRenderTarget(0, renderTarget);
  851. graphics_->SetDepthStencil(depthStencil);
  852. graphics_->SetViewport(screenRect_);
  853. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, farClipZone_->GetFogColor());
  854. if (!baseQueue_.IsEmpty())
  855. {
  856. // Render opaque object unlit base pass
  857. PROFILE(RenderBase);
  858. RenderBatchQueue(baseQueue_);
  859. }
  860. if (!lightQueues_.Empty())
  861. {
  862. // Render shadow maps + opaque objects' additive lighting
  863. PROFILE(RenderLights);
  864. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  865. {
  866. // If reusing shadowmaps, render each of them before the lit batches
  867. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  868. {
  869. RenderShadowMap(*i);
  870. graphics_->SetRenderTarget(0, renderTarget);
  871. graphics_->SetDepthStencil(depthStencil);
  872. graphics_->SetViewport(screenRect_);
  873. }
  874. RenderLightBatchQueue(i->litBatches_, i->light_);
  875. }
  876. }
  877. graphics_->SetScissorTest(false);
  878. graphics_->SetStencilTest(false);
  879. graphics_->SetRenderTarget(0, renderTarget);
  880. graphics_->SetDepthStencil(depthStencil);
  881. graphics_->SetViewport(screenRect_);
  882. if (!preAlphaQueue_.IsEmpty())
  883. {
  884. // Render pre-alpha custom pass
  885. PROFILE(RenderPreAlpha);
  886. RenderBatchQueue(preAlphaQueue_);
  887. }
  888. if (!alphaQueue_.IsEmpty())
  889. {
  890. // Render transparent objects (both base passes & additive lighting)
  891. PROFILE(RenderAlpha);
  892. RenderBatchQueue(alphaQueue_, true);
  893. }
  894. if (!postAlphaQueue_.IsEmpty())
  895. {
  896. // Render pre-alpha custom pass
  897. PROFILE(RenderPostAlpha);
  898. RenderBatchQueue(postAlphaQueue_);
  899. }
  900. }
  901. void View::RenderBatchesLightPrepass()
  902. {
  903. // If not reusing shadowmaps, render all of them first
  904. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  905. {
  906. PROFILE(RenderShadowMaps);
  907. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  908. {
  909. if (i->shadowMap_)
  910. RenderShadowMap(*i);
  911. }
  912. }
  913. Texture2D* normalBuffer = renderer_->GetNormalBuffer();
  914. Texture2D* depthBuffer = renderer_->GetDepthBuffer();
  915. #ifdef USE_OPENGL
  916. bool needBlit = true;
  917. #else
  918. bool needBlit = edgeFilter_;
  919. #endif
  920. RenderSurface* renderTarget = needBlit ? renderer_->GetScreenBuffer()->GetRenderSurface() : renderTarget_;
  921. RenderSurface* depthStencil = 0;
  922. // Hardware depth support: render to RGBA normal buffer and read hardware depth
  923. if (graphics_->GetHardwareDepthSupport())
  924. {
  925. depthStencil = depthBuffer->GetRenderSurface();
  926. graphics_->SetRenderTarget(0, normalBuffer);
  927. }
  928. // No hardware depth support: render to RGBA normal buffer and R32F depth
  929. else
  930. {
  931. graphics_->SetRenderTarget(0, normalBuffer);
  932. graphics_->SetRenderTarget(1, depthBuffer);
  933. }
  934. graphics_->SetDepthStencil(depthStencil);
  935. graphics_->SetViewport(screenRect_);
  936. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  937. if (!gbufferQueue_.IsEmpty())
  938. {
  939. // Render G-buffer batches
  940. PROFILE(RenderGBuffer);
  941. RenderBatchQueue(gbufferQueue_);
  942. }
  943. // Clear the light accumulation buffer. However, skip the clear if the first light is a directional light with full mask
  944. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  945. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  946. Texture2D* lightBuffer = renderer_->GetLightBuffer();
  947. graphics_->ResetRenderTarget(1);
  948. graphics_->SetRenderTarget(0, lightBuffer);
  949. graphics_->SetDepthStencil(depthStencil);
  950. graphics_->SetViewport(screenRect_);
  951. if (!optimizeLightBuffer)
  952. graphics_->Clear(CLEAR_COLOR);
  953. if (!lightQueues_.Empty())
  954. {
  955. // Render shadow maps + light volumes
  956. PROFILE(RenderLights);
  957. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  958. {
  959. // If reusing shadowmaps, render each of them before the lit batches
  960. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  961. {
  962. RenderShadowMap(*i);
  963. graphics_->SetRenderTarget(0, lightBuffer);
  964. graphics_->SetDepthStencil(depthStencil);
  965. graphics_->SetViewport(screenRect_);
  966. }
  967. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  968. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  969. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  970. {
  971. SetupLightVolumeBatch(i->volumeBatches_[j]);
  972. i->volumeBatches_[j].Draw(graphics_, renderer_);
  973. }
  974. }
  975. }
  976. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  977. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  978. // Clear destination rendertarget with fog color
  979. graphics_->SetAlphaTest(false);
  980. graphics_->SetBlendMode(BLEND_REPLACE);
  981. graphics_->SetColorWrite(true);
  982. graphics_->SetDepthTest(CMP_ALWAYS);
  983. graphics_->SetDepthWrite(false);
  984. graphics_->SetScissorTest(false);
  985. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  986. graphics_->SetRenderTarget(0, renderTarget);
  987. graphics_->SetDepthStencil(depthStencil);
  988. graphics_->SetViewport(screenRect_);
  989. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  990. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  991. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  992. DrawFullscreenQuad(camera_, false);
  993. if (!baseQueue_.IsEmpty())
  994. {
  995. // Render opaque objects with deferred lighting result
  996. PROFILE(RenderBase);
  997. graphics_->SetTexture(TU_LIGHTBUFFER, lightBuffer);
  998. RenderBatchQueue(baseQueue_);
  999. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1000. }
  1001. if (!preAlphaQueue_.IsEmpty())
  1002. {
  1003. // Render pre-alpha custom pass
  1004. PROFILE(RenderPreAlpha);
  1005. RenderBatchQueue(preAlphaQueue_);
  1006. }
  1007. if (!alphaQueue_.IsEmpty())
  1008. {
  1009. // Render transparent objects (both base passes & additive lighting)
  1010. PROFILE(RenderAlpha);
  1011. RenderBatchQueue(alphaQueue_, true);
  1012. }
  1013. if (!postAlphaQueue_.IsEmpty())
  1014. {
  1015. // Render pre-alpha custom pass
  1016. PROFILE(RenderPostAlpha);
  1017. RenderBatchQueue(postAlphaQueue_);
  1018. }
  1019. }
  1020. void View::BlitFramebuffer()
  1021. {
  1022. // Blit the final image to destination rendertarget
  1023. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1024. graphics_->SetAlphaTest(false);
  1025. graphics_->SetBlendMode(BLEND_REPLACE);
  1026. graphics_->SetDepthTest(CMP_ALWAYS);
  1027. graphics_->SetDepthWrite(true);
  1028. graphics_->SetScissorTest(false);
  1029. graphics_->SetStencilTest(false);
  1030. graphics_->SetRenderTarget(0, renderTarget_);
  1031. graphics_->SetDepthStencil(depthStencil_);
  1032. graphics_->SetViewport(screenRect_);
  1033. String shaderName = edgeFilter_ ? "EdgeFilter" : "CopyFramebuffer";
  1034. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1035. float gBufferWidth = (float)graphics_->GetWidth();
  1036. float gBufferHeight = (float)graphics_->GetHeight();
  1037. {
  1038. float widthRange = 0.5f * width_ / gBufferWidth;
  1039. float heightRange = 0.5f * height_ / gBufferHeight;
  1040. #ifdef USE_OPENGL
  1041. Vector4 bufferUVOffset(((float)screenRect_.left_) / gBufferWidth + widthRange,
  1042. 1.0f - (((float)screenRect_.top_) / gBufferHeight + heightRange), widthRange, heightRange);
  1043. #else
  1044. Vector4 bufferUVOffset((0.5f + (float)screenRect_.left_) / gBufferWidth + widthRange,
  1045. (0.5f + (float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  1046. #endif
  1047. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1048. }
  1049. if (edgeFilter_)
  1050. {
  1051. const EdgeFilterParameters& parameters = renderer_->GetEdgeFilterParameters();
  1052. graphics_->SetShaderParameter(PSP_EDGEFILTERPARAMS, Vector4(parameters.radius_, parameters.threshold_,
  1053. parameters.strength_, 0.0f));
  1054. float addX = 1.0f / (float)gBufferWidth;
  1055. float addY = 1.0f / (float)gBufferHeight;
  1056. graphics_->SetShaderParameter(PSP_SAMPLEOFFSETS, Vector4(addX, addY, 0.0f, 0.0f));
  1057. }
  1058. graphics_->SetTexture(TU_DIFFUSE, renderer_->GetScreenBuffer());
  1059. DrawFullscreenQuad(camera_, false);
  1060. graphics_->SetTexture(TU_DIFFUSE, 0);
  1061. }
  1062. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1063. {
  1064. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1065. float halfViewSize = camera->GetHalfViewSize();
  1066. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1067. Vector3 cameraPos = camera->GetWorldPosition();
  1068. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1069. {
  1070. Drawable* occluder = *i;
  1071. bool erase = false;
  1072. if (!occluder->IsInView(frame_, false))
  1073. occluder->UpdateDistance(frame_);
  1074. // Check occluder's draw distance (in main camera view)
  1075. float maxDistance = occluder->GetDrawDistance();
  1076. if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
  1077. erase = true;
  1078. else
  1079. {
  1080. // Check that occluder is big enough on the screen
  1081. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1082. float diagonal = (box.max_ - box.min_).LengthFast();
  1083. float compare;
  1084. if (!camera->IsOrthographic())
  1085. compare = diagonal * halfViewSize / occluder->GetDistance();
  1086. else
  1087. compare = diagonal * invOrthoSize;
  1088. if (compare < occluderSizeThreshold_)
  1089. erase = true;
  1090. else
  1091. {
  1092. // Store amount of triangles divided by screen size as a sorting key
  1093. // (best occluders are big and have few triangles)
  1094. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1095. }
  1096. }
  1097. if (erase)
  1098. i = occluders.Erase(i);
  1099. else
  1100. ++i;
  1101. }
  1102. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1103. if (occluders.Size())
  1104. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1105. }
  1106. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1107. {
  1108. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1109. buffer->Clear();
  1110. for (unsigned i = 0; i < occluders.Size(); ++i)
  1111. {
  1112. Drawable* occluder = occluders[i];
  1113. if (i > 0)
  1114. {
  1115. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1116. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1117. continue;
  1118. }
  1119. // Check for running out of triangles
  1120. if (!occluder->DrawOcclusion(buffer))
  1121. break;
  1122. }
  1123. buffer->BuildDepthHierarchy();
  1124. }
  1125. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1126. {
  1127. Light* light = query.light_;
  1128. LightType type = light->GetLightType();
  1129. // Check if light should be shadowed
  1130. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1131. // If shadow distance non-zero, check it
  1132. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1133. isShadowed = false;
  1134. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1135. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1136. query.litGeometries_.Clear();
  1137. switch (type)
  1138. {
  1139. case LIGHT_DIRECTIONAL:
  1140. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1141. {
  1142. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1143. query.litGeometries_.Push(geometries_[i]);
  1144. }
  1145. break;
  1146. case LIGHT_SPOT:
  1147. {
  1148. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1149. octree_->GetDrawables(octreeQuery);
  1150. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1151. {
  1152. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1153. query.litGeometries_.Push(tempDrawables[i]);
  1154. }
  1155. }
  1156. break;
  1157. case LIGHT_POINT:
  1158. {
  1159. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()),
  1160. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1161. octree_->GetDrawables(octreeQuery);
  1162. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1163. {
  1164. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1165. query.litGeometries_.Push(tempDrawables[i]);
  1166. }
  1167. }
  1168. break;
  1169. }
  1170. // If no lit geometries or not shadowed, no need to process shadow cameras
  1171. if (query.litGeometries_.Empty() || !isShadowed)
  1172. {
  1173. query.numSplits_ = 0;
  1174. return;
  1175. }
  1176. // Determine number of shadow cameras and setup their initial positions
  1177. SetupShadowCameras(query);
  1178. // Process each split for shadow casters
  1179. query.shadowCasters_.Clear();
  1180. for (unsigned i = 0; i < query.numSplits_; ++i)
  1181. {
  1182. Camera* shadowCamera = query.shadowCameras_[i];
  1183. Frustum shadowCameraFrustum = shadowCamera->GetFrustum();
  1184. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1185. // For point light check that the face is visible: if not, can skip the split
  1186. if (type == LIGHT_POINT)
  1187. {
  1188. BoundingBox shadowCameraBox(shadowCameraFrustum);
  1189. if (frustum_.IsInsideFast(shadowCameraBox) == OUTSIDE)
  1190. continue;
  1191. }
  1192. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1193. if (type == LIGHT_DIRECTIONAL)
  1194. {
  1195. if (sceneViewBox_.min_.z_ > query.shadowFarSplits_[i])
  1196. continue;
  1197. if (sceneViewBox_.max_.z_ < query.shadowNearSplits_[i])
  1198. continue;
  1199. }
  1200. // For spot light (which has only one shadow split) we can optimize by reusing the query for
  1201. // lit geometries, whose result still exists in tempDrawables
  1202. if (type != LIGHT_SPOT)
  1203. {
  1204. FrustumOctreeQuery octreeQuery(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1205. camera_->GetViewMask(), true);
  1206. octree_->GetDrawables(octreeQuery);
  1207. }
  1208. // Check which shadow casters actually contribute to the shadowing
  1209. ProcessShadowCasters(query, tempDrawables, i);
  1210. }
  1211. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1212. // only cost has been the shadow camera setup & queries
  1213. if (query.shadowCasters_.Empty())
  1214. query.numSplits_ = 0;
  1215. }
  1216. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1217. {
  1218. Light* light = query.light_;
  1219. Matrix3x4 lightView;
  1220. Matrix4 lightProj;
  1221. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1222. lightView = shadowCamera->GetInverseWorldTransform();
  1223. lightProj = shadowCamera->GetProjection();
  1224. bool dirLight = shadowCamera->IsOrthographic();
  1225. query.shadowCasterBox_[splitIndex].defined_ = false;
  1226. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1227. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1228. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1229. Frustum lightViewFrustum;
  1230. if (!dirLight)
  1231. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1232. else
  1233. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, query.shadowNearSplits_[splitIndex]),
  1234. Min(sceneViewBox_.max_.z_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1235. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1236. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1237. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1238. return;
  1239. BoundingBox lightViewBox;
  1240. BoundingBox lightProjBox;
  1241. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1242. {
  1243. Drawable* drawable = *i;
  1244. // In case this is a spot light query result reused for optimization, we may have non-shadowcasters included.
  1245. // Check for that first
  1246. if (!drawable->GetCastShadows())
  1247. continue;
  1248. // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
  1249. // times. However, this should not cause problems as no scene modification happens at this point.
  1250. if (!drawable->IsInView(frame_, false))
  1251. drawable->UpdateDistance(frame_);
  1252. // Check shadow distance
  1253. float maxShadowDistance = drawable->GetShadowDistance();
  1254. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1255. continue;
  1256. // Check shadow mask
  1257. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1258. continue;
  1259. // Project shadow caster bounding box to light view space for visibility check
  1260. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1261. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1262. {
  1263. // Merge to shadow caster bounding box and add to the list
  1264. if (dirLight)
  1265. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1266. else
  1267. {
  1268. lightProjBox = lightViewBox.Projected(lightProj);
  1269. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1270. }
  1271. query.shadowCasters_.Push(drawable);
  1272. }
  1273. }
  1274. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1275. }
  1276. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1277. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1278. {
  1279. if (shadowCamera->IsOrthographic())
  1280. {
  1281. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1282. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1283. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1284. }
  1285. else
  1286. {
  1287. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1288. if (drawable->IsInView(frame_))
  1289. return true;
  1290. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1291. Vector3 center = lightViewBox.Center();
  1292. Ray extrusionRay(center, center.Normalized());
  1293. float extrusionDistance = shadowCamera->GetFarClip();
  1294. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  1295. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1296. float sizeFactor = extrusionDistance / originalDistance;
  1297. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1298. // than necessary, so the test will be conservative
  1299. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1300. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1301. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1302. lightViewBox.Merge(extrudedBox);
  1303. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1304. }
  1305. }
  1306. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1307. {
  1308. unsigned width = shadowMap->GetWidth();
  1309. unsigned height = shadowMap->GetHeight();
  1310. int maxCascades = renderer_->GetMaxShadowCascades();
  1311. // Due to instruction count limits, light prepass in SM2.0 can only support up to 3 cascades
  1312. #ifndef USE_OPENGL
  1313. if (lightPrepass_ && !graphics_->GetSM3Support())
  1314. maxCascades = Max(maxCascades, 3);
  1315. #endif
  1316. switch (light->GetLightType())
  1317. {
  1318. case LIGHT_DIRECTIONAL:
  1319. if (maxCascades == 1)
  1320. return IntRect(0, 0, width, height);
  1321. else if (maxCascades == 2)
  1322. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1323. else
  1324. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1325. (splitIndex / 2 + 1) * height / 2);
  1326. case LIGHT_SPOT:
  1327. return IntRect(0, 0, width, height);
  1328. case LIGHT_POINT:
  1329. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1330. (splitIndex / 2 + 1) * height / 3);
  1331. }
  1332. return IntRect();
  1333. }
  1334. void View::OptimizeLightByScissor(Light* light)
  1335. {
  1336. if (light && light->GetLightType() != LIGHT_DIRECTIONAL)
  1337. graphics_->SetScissorTest(true, GetLightScissor(light));
  1338. else
  1339. graphics_->SetScissorTest(false);
  1340. }
  1341. void View::OptimizeLightByStencil(Light* light)
  1342. {
  1343. if (light)
  1344. {
  1345. LightType type = light->GetLightType();
  1346. if (type == LIGHT_DIRECTIONAL)
  1347. {
  1348. graphics_->SetStencilTest(false);
  1349. return;
  1350. }
  1351. Geometry* geometry = renderer_->GetLightGeometry(light);
  1352. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1353. Matrix4 projection(camera_->GetProjection());
  1354. float lightDist;
  1355. if (type == LIGHT_POINT)
  1356. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
  1357. else
  1358. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  1359. // If the camera is actually inside the light volume, do not draw to stencil as it would waste fillrate
  1360. if (lightDist < M_EPSILON)
  1361. {
  1362. graphics_->SetStencilTest(false);
  1363. return;
  1364. }
  1365. // If the stencil value has wrapped, clear the whole stencil first
  1366. if (!lightStencilValue_)
  1367. {
  1368. graphics_->Clear(CLEAR_STENCIL);
  1369. lightStencilValue_ = 1;
  1370. }
  1371. // If possible, render the stencil volume front faces. However, close to the near clip plane render back faces instead
  1372. // to avoid clipping.
  1373. if (lightDist < camera_->GetNearClip() * 2.0f)
  1374. {
  1375. renderer_->SetCullMode(CULL_CW, camera_);
  1376. graphics_->SetDepthTest(CMP_GREATER);
  1377. }
  1378. else
  1379. {
  1380. renderer_->SetCullMode(CULL_CCW, camera_);
  1381. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1382. }
  1383. graphics_->SetColorWrite(false);
  1384. graphics_->SetDepthWrite(false);
  1385. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, lightStencilValue_);
  1386. graphics_->SetShaders(renderer_->GetStencilVS(), renderer_->GetStencilPS());
  1387. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1388. graphics_->SetShaderParameter(VSP_MODEL, light->GetVolumeTransform(camera_));
  1389. geometry->Draw(graphics_);
  1390. graphics_->ClearTransformSources();
  1391. graphics_->SetColorWrite(true);
  1392. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, lightStencilValue_);
  1393. // Increase stencil value for next light
  1394. ++lightStencilValue_;
  1395. }
  1396. else
  1397. graphics_->SetStencilTest(false);
  1398. }
  1399. const Rect& View::GetLightScissor(Light* light)
  1400. {
  1401. HashMap<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1402. if (i != lightScissorCache_.End())
  1403. return i->second_;
  1404. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1405. Matrix4 projection(camera_->GetProjection());
  1406. switch (light->GetLightType())
  1407. {
  1408. case LIGHT_POINT:
  1409. {
  1410. BoundingBox viewBox(light->GetWorldBoundingBox().Transformed(view));
  1411. return lightScissorCache_[light] = viewBox.Projected(projection);
  1412. }
  1413. case LIGHT_SPOT:
  1414. {
  1415. Frustum viewFrustum(light->GetFrustum().Transformed(view));
  1416. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1417. }
  1418. default:
  1419. return lightScissorCache_[light] = Rect::FULL;
  1420. }
  1421. }
  1422. void View::SetupShadowCameras(LightQueryResult& query)
  1423. {
  1424. Light* light = query.light_;
  1425. LightType type = light->GetLightType();
  1426. int splits = 0;
  1427. if (type == LIGHT_DIRECTIONAL)
  1428. {
  1429. const CascadeParameters& cascade = light->GetShadowCascade();
  1430. float nearSplit = camera_->GetNearClip();
  1431. float farSplit;
  1432. while (splits < renderer_->GetMaxShadowCascades())
  1433. {
  1434. // If split is completely beyond camera far clip, we are done
  1435. if (nearSplit > camera_->GetFarClip())
  1436. break;
  1437. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1438. if (farSplit <= nearSplit)
  1439. break;
  1440. // Setup the shadow camera for the split
  1441. Camera* shadowCamera = renderer_->GetShadowCamera();
  1442. query.shadowCameras_[splits] = shadowCamera;
  1443. query.shadowNearSplits_[splits] = nearSplit;
  1444. query.shadowFarSplits_[splits] = farSplit;
  1445. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1446. nearSplit = farSplit;
  1447. ++splits;
  1448. }
  1449. }
  1450. if (type == LIGHT_SPOT)
  1451. {
  1452. Camera* shadowCamera = renderer_->GetShadowCamera();
  1453. query.shadowCameras_[0] = shadowCamera;
  1454. Node* cameraNode = shadowCamera->GetNode();
  1455. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1456. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1457. shadowCamera->SetFarClip(light->GetRange());
  1458. shadowCamera->SetFov(light->GetFov());
  1459. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1460. splits = 1;
  1461. }
  1462. if (type == LIGHT_POINT)
  1463. {
  1464. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1465. {
  1466. Camera* shadowCamera = renderer_->GetShadowCamera();
  1467. query.shadowCameras_[i] = shadowCamera;
  1468. Node* cameraNode = shadowCamera->GetNode();
  1469. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1470. cameraNode->SetPosition(light->GetWorldPosition());
  1471. cameraNode->SetDirection(directions[i]);
  1472. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1473. shadowCamera->SetFarClip(light->GetRange());
  1474. shadowCamera->SetFov(90.0f);
  1475. shadowCamera->SetAspectRatio(1.0f);
  1476. }
  1477. splits = MAX_CUBEMAP_FACES;
  1478. }
  1479. query.numSplits_ = splits;
  1480. }
  1481. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1482. {
  1483. Node* cameraNode = shadowCamera->GetNode();
  1484. float extrusionDistance = camera_->GetFarClip();
  1485. const FocusParameters& parameters = light->GetShadowFocus();
  1486. // Calculate initial position & rotation
  1487. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1488. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1489. cameraNode->SetTransform(pos, light->GetWorldRotation());
  1490. // Calculate main camera shadowed frustum in light's view space
  1491. farSplit = Min(farSplit, camera_->GetFarClip());
  1492. // Use the scene Z bounds to limit frustum size if applicable
  1493. if (parameters.focus_)
  1494. {
  1495. nearSplit = Max(sceneViewBox_.min_.z_, nearSplit);
  1496. farSplit = Min(sceneViewBox_.max_.z_, farSplit);
  1497. }
  1498. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1499. frustumVolume_.Define(splitFrustum);
  1500. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1501. if (parameters.focus_)
  1502. {
  1503. BoundingBox litGeometriesBox;
  1504. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1505. {
  1506. // Skip "infinite" objects like the skybox
  1507. const BoundingBox& geomBox = geometries_[i]->GetWorldBoundingBox();
  1508. if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
  1509. {
  1510. if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit &&
  1511. (GetLightMask(geometries_[i]) & light->GetLightMask()))
  1512. litGeometriesBox.Merge(geomBox);
  1513. }
  1514. }
  1515. if (litGeometriesBox.defined_)
  1516. {
  1517. frustumVolume_.Clip(litGeometriesBox);
  1518. // If volume became empty, restore it to avoid zero size
  1519. if (frustumVolume_.Empty())
  1520. frustumVolume_.Define(splitFrustum);
  1521. }
  1522. }
  1523. // Transform frustum volume to light space
  1524. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1525. frustumVolume_.Transform(lightView);
  1526. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1527. BoundingBox shadowBox;
  1528. if (!parameters.nonUniform_)
  1529. shadowBox.Define(Sphere(frustumVolume_));
  1530. else
  1531. shadowBox.Define(frustumVolume_);
  1532. shadowCamera->SetOrthographic(true);
  1533. shadowCamera->SetAspectRatio(1.0f);
  1534. shadowCamera->SetNearClip(0.0f);
  1535. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1536. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1537. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1538. }
  1539. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1540. const BoundingBox& shadowCasterBox)
  1541. {
  1542. const FocusParameters& parameters = light->GetShadowFocus();
  1543. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1544. LightType type = light->GetLightType();
  1545. if (type == LIGHT_DIRECTIONAL)
  1546. {
  1547. BoundingBox shadowBox;
  1548. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1549. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1550. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1551. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1552. // Requantize and snap to shadow map texels
  1553. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1554. }
  1555. if (type == LIGHT_SPOT)
  1556. {
  1557. if (parameters.focus_)
  1558. {
  1559. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1560. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1561. float viewSize = Max(viewSizeX, viewSizeY);
  1562. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1563. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1564. float quantize = parameters.quantize_ * invOrthoSize;
  1565. float minView = parameters.minView_ * invOrthoSize;
  1566. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1567. if (viewSize < 1.0f)
  1568. shadowCamera->SetZoom(1.0f / viewSize);
  1569. }
  1570. }
  1571. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1572. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1573. if (shadowCamera->GetZoom() >= 1.0f)
  1574. {
  1575. if (light->GetLightType() != LIGHT_POINT)
  1576. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1577. else
  1578. {
  1579. #ifdef USE_OPENGL
  1580. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1581. #else
  1582. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1583. #endif
  1584. }
  1585. }
  1586. }
  1587. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1588. const BoundingBox& viewBox)
  1589. {
  1590. Node* cameraNode = shadowCamera->GetNode();
  1591. const FocusParameters& parameters = light->GetShadowFocus();
  1592. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1593. float minX = viewBox.min_.x_;
  1594. float minY = viewBox.min_.y_;
  1595. float maxX = viewBox.max_.x_;
  1596. float maxY = viewBox.max_.y_;
  1597. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1598. Vector2 viewSize(maxX - minX, maxY - minY);
  1599. // Quantize size to reduce swimming
  1600. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1601. if (parameters.nonUniform_)
  1602. {
  1603. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1604. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1605. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1606. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1607. }
  1608. else if (parameters.focus_)
  1609. {
  1610. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1611. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1612. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1613. viewSize.y_ = viewSize.x_;
  1614. }
  1615. shadowCamera->SetOrthoSize(viewSize);
  1616. // Center shadow camera to the view space bounding box
  1617. Vector3 pos(shadowCamera->GetWorldPosition());
  1618. Quaternion rot(shadowCamera->GetWorldRotation());
  1619. Vector3 adjust(center.x_, center.y_, 0.0f);
  1620. cameraNode->Translate(rot * adjust);
  1621. // If the shadow map viewport is known, snap to whole texels
  1622. if (shadowMapWidth > 0.0f)
  1623. {
  1624. Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
  1625. // Take into account that shadow map border will not be used
  1626. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1627. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1628. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1629. cameraNode->Translate(rot * snap);
  1630. }
  1631. }
  1632. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1633. {
  1634. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1635. int bestPriority = M_MIN_INT;
  1636. Zone* newZone = 0;
  1637. // If bounding box center is in view, can use the visible zones. Else must query via the octree
  1638. if (frustum_.IsInside(center))
  1639. {
  1640. // First check if the last zone remains a conclusive result
  1641. Zone* lastZone = drawable->GetLastZone();
  1642. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1643. lastZone->GetPriority() >= highestZonePriority_)
  1644. newZone = lastZone;
  1645. else
  1646. {
  1647. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1648. {
  1649. int priority = (*i)->GetPriority();
  1650. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1651. {
  1652. newZone = *i;
  1653. bestPriority = priority;
  1654. }
  1655. }
  1656. }
  1657. }
  1658. else
  1659. {
  1660. PODVector<Zone*>& tempZones = tempZones_[threadIndex];
  1661. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>&>(tempZones), center, DRAWABLE_ZONE);
  1662. octree_->GetDrawables(query);
  1663. bestPriority = M_MIN_INT;
  1664. for (PODVector<Zone*>::Iterator i = tempZones.Begin(); i != tempZones.End(); ++i)
  1665. {
  1666. int priority = (*i)->GetPriority();
  1667. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1668. {
  1669. newZone = *i;
  1670. bestPriority = priority;
  1671. }
  1672. }
  1673. }
  1674. drawable->SetZone(newZone);
  1675. }
  1676. Zone* View::GetZone(Drawable* drawable)
  1677. {
  1678. if (cameraZoneOverride_)
  1679. return cameraZone_;
  1680. Zone* drawableZone = drawable->GetZone();
  1681. return drawableZone ? drawableZone : cameraZone_;
  1682. }
  1683. unsigned View::GetLightMask(Drawable* drawable)
  1684. {
  1685. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1686. }
  1687. unsigned View::GetShadowMask(Drawable* drawable)
  1688. {
  1689. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1690. }
  1691. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1692. {
  1693. unsigned long long hash = 0;
  1694. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1695. hash += (unsigned long long)(*i);
  1696. return hash;
  1697. }
  1698. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1699. {
  1700. if (!material)
  1701. material = renderer_->GetDefaultMaterial();
  1702. if (!material)
  1703. return 0;
  1704. float lodDistance = drawable->GetLodDistance();
  1705. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1706. if (techniques.Empty())
  1707. return 0;
  1708. // Check for suitable technique. Techniques should be ordered like this:
  1709. // Most distant & highest quality
  1710. // Most distant & lowest quality
  1711. // Second most distant & highest quality
  1712. // ...
  1713. for (unsigned i = 0; i < techniques.Size(); ++i)
  1714. {
  1715. const TechniqueEntry& entry = techniques[i];
  1716. Technique* technique = entry.technique_;
  1717. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1718. continue;
  1719. if (lodDistance >= entry.lodDistance_)
  1720. return technique;
  1721. }
  1722. // If no suitable technique found, fallback to the last
  1723. return techniques.Back().technique_;
  1724. }
  1725. void View::CheckMaterialForAuxView(Material* material)
  1726. {
  1727. const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
  1728. for (unsigned i = 0; i < textures.Size(); ++i)
  1729. {
  1730. // Have to check cube & 2D textures separately
  1731. Texture* texture = textures[i];
  1732. if (texture)
  1733. {
  1734. if (texture->GetType() == Texture2D::GetTypeStatic())
  1735. {
  1736. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1737. RenderSurface* target = tex2D->GetRenderSurface();
  1738. if (target)
  1739. {
  1740. const Viewport& viewport = target->GetViewport();
  1741. if (viewport.scene_ && viewport.camera_)
  1742. renderer_->AddView(target, viewport);
  1743. }
  1744. }
  1745. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1746. {
  1747. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1748. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1749. {
  1750. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1751. if (target)
  1752. {
  1753. const Viewport& viewport = target->GetViewport();
  1754. if (viewport.scene_ && viewport.camera_)
  1755. renderer_->AddView(target, viewport);
  1756. }
  1757. }
  1758. }
  1759. }
  1760. }
  1761. // Set frame number so that we can early-out next time we come across this material on the same frame
  1762. material->MarkForAuxView(frame_.frameNumber_);
  1763. }
  1764. void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows)
  1765. {
  1766. // Convert to instanced if possible
  1767. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  1768. batch.geometryType_ = GEOM_INSTANCED;
  1769. batch.pass_ = pass;
  1770. renderer_->SetBatchShaders(batch, tech, pass, allowShadows);
  1771. batch.CalculateSortKey();
  1772. }
  1773. void View::PrepareInstancingBuffer()
  1774. {
  1775. PROFILE(PrepareInstancingBuffer);
  1776. unsigned totalInstances = 0;
  1777. totalInstances += baseQueue_.GetNumInstances(renderer_);
  1778. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  1779. if (lightPrepass_)
  1780. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  1781. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1782. {
  1783. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1784. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  1785. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  1786. }
  1787. // If fail to set buffer size, fall back to per-group locking
  1788. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  1789. {
  1790. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  1791. unsigned freeIndex = 0;
  1792. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  1793. if (lockedData)
  1794. {
  1795. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1796. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1797. if (lightPrepass_)
  1798. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1799. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1800. {
  1801. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1802. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1803. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1804. }
  1805. instancingBuffer->Unlock();
  1806. }
  1807. }
  1808. }
  1809. void View::SetupLightVolumeBatch(Batch& batch)
  1810. {
  1811. Light* light = batch.lightQueue_->light_;
  1812. LightType type = light->GetLightType();
  1813. float lightDist;
  1814. // Use replace blend mode for the first light volume, and additive for the rest
  1815. graphics_->SetAlphaTest(false);
  1816. graphics_->SetBlendMode(light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  1817. graphics_->SetDepthWrite(false);
  1818. if (type != LIGHT_DIRECTIONAL)
  1819. {
  1820. if (type == LIGHT_POINT)
  1821. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
  1822. else
  1823. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  1824. // Draw front faces if not inside light volume
  1825. if (lightDist < camera_->GetNearClip() * 2.0f)
  1826. {
  1827. renderer_->SetCullMode(CULL_CW, camera_);
  1828. graphics_->SetDepthTest(CMP_GREATER);
  1829. }
  1830. else
  1831. {
  1832. renderer_->SetCullMode(CULL_CCW, camera_);
  1833. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1834. }
  1835. }
  1836. else
  1837. {
  1838. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  1839. // refresh the directional light's model transform before rendering
  1840. light->GetVolumeTransform(camera_);
  1841. graphics_->SetCullMode(CULL_NONE);
  1842. graphics_->SetDepthTest(CMP_ALWAYS);
  1843. }
  1844. graphics_->SetScissorTest(false);
  1845. graphics_->SetStencilTest(true, CMP_LESS, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  1846. }
  1847. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  1848. {
  1849. Light quadDirLight(context_);
  1850. quadDirLight.SetLightType(LIGHT_DIRECTIONAL);
  1851. Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
  1852. graphics_->SetCullMode(CULL_NONE);
  1853. graphics_->SetShaderParameter(VSP_MODEL, model);
  1854. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  1855. graphics_->ClearTransformSources();
  1856. renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
  1857. }
  1858. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor)
  1859. {
  1860. graphics_->SetScissorTest(false);
  1861. // During G-buffer rendering, mark opaque pixels to stencil buffer
  1862. bool isGBuffer = &queue == &gbufferQueue_;
  1863. if (!isGBuffer)
  1864. graphics_->SetStencilTest(false);
  1865. // Base instanced
  1866. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
  1867. queue.sortedBaseBatchGroups_.End(); ++i)
  1868. {
  1869. BatchGroup* group = *i;
  1870. if (isGBuffer)
  1871. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  1872. group->Draw(graphics_, renderer_);
  1873. }
  1874. // Base non-instanced
  1875. for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
  1876. {
  1877. Batch* batch = *i;
  1878. if (isGBuffer)
  1879. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  1880. batch->Draw(graphics_, renderer_);
  1881. }
  1882. // Non-base instanced
  1883. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  1884. {
  1885. BatchGroup* group = *i;
  1886. if (useScissor && group->lightQueue_)
  1887. OptimizeLightByScissor(group->lightQueue_->light_);
  1888. if (isGBuffer)
  1889. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  1890. group->Draw(graphics_, renderer_);
  1891. }
  1892. // Non-base non-instanced
  1893. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1894. {
  1895. Batch* batch = *i;
  1896. if (useScissor)
  1897. {
  1898. if (!batch->isBase_ && batch->lightQueue_)
  1899. OptimizeLightByScissor(batch->lightQueue_->light_);
  1900. else
  1901. graphics_->SetScissorTest(false);
  1902. }
  1903. if (isGBuffer)
  1904. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  1905. batch->Draw(graphics_, renderer_);
  1906. }
  1907. }
  1908. void View::RenderLightBatchQueue(const BatchQueue& queue, Light* light)
  1909. {
  1910. graphics_->SetScissorTest(false);
  1911. graphics_->SetStencilTest(false);
  1912. // Base instanced
  1913. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
  1914. queue.sortedBaseBatchGroups_.End(); ++i)
  1915. {
  1916. BatchGroup* group = *i;
  1917. group->Draw(graphics_, renderer_);
  1918. }
  1919. // Base non-instanced
  1920. for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
  1921. {
  1922. Batch* batch = *i;
  1923. batch->Draw(graphics_, renderer_);
  1924. }
  1925. // All base passes have been drawn. Optimize at this point by both stencil volume and scissor
  1926. OptimizeLightByStencil(light);
  1927. OptimizeLightByScissor(light);
  1928. // Non-base instanced
  1929. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  1930. {
  1931. BatchGroup* group = *i;
  1932. group->Draw(graphics_, renderer_);
  1933. }
  1934. // Non-base non-instanced
  1935. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1936. {
  1937. Batch* batch = *i;
  1938. batch->Draw(graphics_, renderer_);
  1939. }
  1940. }
  1941. void View::RenderShadowMap(const LightBatchQueue& queue)
  1942. {
  1943. PROFILE(RenderShadowMap);
  1944. Texture2D* shadowMap = queue.shadowMap_;
  1945. graphics_->SetStencilTest(false);
  1946. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1947. if (!graphics_->GetFallback())
  1948. {
  1949. graphics_->SetColorWrite(false);
  1950. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1951. graphics_->SetDepthStencil(shadowMap);
  1952. graphics_->Clear(CLEAR_DEPTH);
  1953. }
  1954. else
  1955. {
  1956. graphics_->SetColorWrite(true);
  1957. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface());
  1958. graphics_->SetDepthStencil(shadowMap->GetRenderSurface()->GetLinkedDepthStencil());
  1959. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH, Color::WHITE);
  1960. }
  1961. // Set shadow depth bias
  1962. BiasParameters parameters = queue.light_->GetShadowBias();
  1963. // Adjust the light's constant depth bias according to global shadow map resolution
  1964. /// \todo Should remove this adjustment and find a more flexible solution
  1965. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  1966. if (shadowMapSize <= 512)
  1967. parameters.constantBias_ *= 2.0f;
  1968. else if (shadowMapSize >= 2048)
  1969. parameters.constantBias_ *= 0.5f;
  1970. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1971. // Render each of the splits
  1972. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  1973. {
  1974. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  1975. if (!shadowQueue.shadowBatches_.IsEmpty())
  1976. {
  1977. graphics_->SetViewport(shadowQueue.shadowViewport_);
  1978. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1979. // However, do not do this for point lights, which need to render continuously across cube faces
  1980. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  1981. if (queue.light_->GetLightType() != LIGHT_POINT)
  1982. {
  1983. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  1984. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1985. graphics_->SetScissorTest(true, zoomRect, false);
  1986. }
  1987. else
  1988. graphics_->SetScissorTest(false);
  1989. // Draw instanced and non-instanced shadow casters
  1990. RenderBatchQueue(shadowQueue.shadowBatches_);
  1991. }
  1992. }
  1993. graphics_->SetColorWrite(true);
  1994. graphics_->SetDepthBias(0.0f, 0.0f);
  1995. }