InstancedModel.cpp 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "Geometry.h"
  26. #include "IndexBuffer.h"
  27. #include "InstancedModel.h"
  28. #include "Log.h"
  29. #include "Material.h"
  30. #include "Model.h"
  31. #include "OcclusionBuffer.h"
  32. #include "OctreeQuery.h"
  33. #include "Profiler.h"
  34. #include "Renderer.h"
  35. #include "ReplicationUtils.h"
  36. #include "ResourceCache.h"
  37. #include "VertexBuffer.h"
  38. #include "XMLElement.h"
  39. #include <cstring>
  40. #include "DebugNew.h"
  41. InstancingMode InstancedModel::sMode = SHADER_INSTANCING;
  42. std::map<const VertexBuffer*, SharedPtr<VertexBuffer> > InstancedModel::sInstanceVertexBuffers;
  43. std::map<std::pair<const IndexBuffer*, unsigned>, SharedPtr<IndexBuffer> > InstancedModel::sInstanceIndexBuffers;
  44. InstancedModel::InstancedModel(Octant* octant, const std::string& name) :
  45. GeometryNode(NODE_INSTANCEDMODEL, octant, name),
  46. mMode(sMode),
  47. mAverageInstanceScale(1.0f),
  48. mInstancesRelative(true),
  49. mInstancesDirty(true),
  50. mInstanceTransformsDirty(true),
  51. mHWInstancingBufferDirty(true)
  52. {
  53. }
  54. InstancedModel::~InstancedModel()
  55. {
  56. mGeometries.clear();
  57. cleanupInstanceBuffers();
  58. }
  59. void InstancedModel::save(Serializer& dest)
  60. {
  61. // Write GeometryNode properties
  62. GeometryNode::save(dest);
  63. // Write InstanceModel properties
  64. dest.writeStringHash(getResourceHash(mModel));
  65. dest.writeVLE(mOriginalMaterials.size());
  66. for (unsigned i = 0; i < mOriginalMaterials.size(); ++i)
  67. dest.writeStringHash(getResourceHash(mOriginalMaterials[i]));
  68. dest.writeBool(mInstancesRelative);
  69. dest.writeVLE(mInstances.size());
  70. for (unsigned i = 0; i < mInstances.size(); ++i)
  71. {
  72. dest.writeVector3(mInstances[i].mPosition);
  73. dest.writeQuaternion(mInstances[i].mRotation);
  74. dest.writeVector3(mInstances[i].mScale);
  75. }
  76. }
  77. void InstancedModel::load(Deserializer& source, ResourceCache* cache)
  78. {
  79. // Read GeometryNode properties
  80. GeometryNode::load(source, cache);
  81. // Read InstancedModel properties
  82. setModel(cache->getResource<Model>(source.readStringHash()));
  83. unsigned numMaterials = source.readVLE();
  84. for (unsigned i = 0; i < numMaterials; ++i)
  85. setMaterial(i, cache->getResource<Material>(source.readStringHash()));
  86. mInstancesRelative = source.readBool();
  87. setNumInstances(source.readVLE());
  88. for (unsigned i = 0; i < mInstances.size(); ++i)
  89. {
  90. mInstances[i].mPosition = source.readVector3();
  91. mInstances[i].mRotation = source.readQuaternion();
  92. mInstances[i].mScale = source.readVector3();
  93. }
  94. }
  95. void InstancedModel::saveXML(XMLElement& dest)
  96. {
  97. // Write GeometryNode properties
  98. GeometryNode::saveXML(dest);
  99. // Write InstancedModel properties
  100. XMLElement modelElem = dest.createChildElement("model");
  101. modelElem.setString("name", getResourceName(mModel));
  102. for (unsigned i = 0; i < mOriginalMaterials.size(); ++i)
  103. {
  104. XMLElement materialElem = dest.createChildElement("material");
  105. materialElem.setInt("index", i);
  106. materialElem.setString("name", getResourceName(mOriginalMaterials[i]));
  107. }
  108. XMLElement instancesElem = dest.createChildElement("instances");
  109. instancesElem.setBool("relative", mInstancesRelative);
  110. instancesElem.setInt("count", mInstances.size());
  111. for (unsigned i = 0; i < mInstances.size(); ++i)
  112. {
  113. XMLElement instanceElem = dest.createChildElement("instance");
  114. const Instance& instance = mInstances[i];
  115. instanceElem.setVector3("pos", instance.mPosition);
  116. instanceElem.setQuaternion("rot", instance.mRotation);
  117. instanceElem.setVector3("scale", instance.mScale);
  118. }
  119. }
  120. void InstancedModel::loadXML(const XMLElement& source, ResourceCache* cache)
  121. {
  122. // Read GeometryNode properties
  123. GeometryNode::loadXML(source, cache);
  124. // Read InstancedModel properties
  125. XMLElement modelElem = source.getChildElement("model");
  126. setModel(cache->getResource<Model>(modelElem.getString("name")));
  127. XMLElement materialElem = source.getChildElement("material");
  128. while (materialElem)
  129. {
  130. unsigned index = materialElem.getInt("index");
  131. setMaterial(index, cache->getResource<Material>(materialElem.getString("name")));
  132. materialElem = materialElem.getNextElement("material");
  133. }
  134. XMLElement instancesElem = source.getChildElement("instances");
  135. mInstancesRelative = instancesElem.getBool("relative");
  136. setNumInstances(instancesElem.getInt("count"));
  137. XMLElement instanceElem = source.getChildElement("instance");
  138. unsigned index = 0;
  139. while ((instanceElem) && (index < mInstances.size()))
  140. {
  141. Instance& instance = mInstances[index];
  142. instance.mPosition = instanceElem.getVector3("pos");
  143. instance.mRotation = instanceElem.getQuaternion("rot");
  144. instance.mScale = instanceElem.getVector3("scale");
  145. instanceElem = instanceElem.getNextElement("instance");
  146. ++index;
  147. }
  148. }
  149. bool InstancedModel::writeNetUpdate(Serializer& dest, Serializer& destRevision, Deserializer& baseRevision, const NetUpdateInfo& info)
  150. {
  151. // Write GeometryNode properties and see if there were any changes
  152. bool prevBits = GeometryNode::writeNetUpdate(dest, destRevision, baseRevision, info);
  153. // Build bitmask of changed properties
  154. unsigned char bits = 0;
  155. // Model and materials
  156. checkStringHash(getResourceHash(mModel), baseRevision, bits, 1);
  157. unsigned numBaseMaterials = baseRevision.getSize() ? baseRevision.readVLE() : 0;
  158. if (mMaterials.size() != numBaseMaterials)
  159. bits |= 2;
  160. for (unsigned i = 0; i < numBaseMaterials; ++i)
  161. {
  162. if (i < mMaterials.size())
  163. checkStringHash(getResourceHash(mOriginalMaterials[i]), baseRevision, bits, 2);
  164. else
  165. baseRevision.readStringHash();
  166. }
  167. // Instances
  168. checkBool(mInstancesRelative, baseRevision, bits, 4);
  169. unsigned numBaseInstances = baseRevision.getSize() ? baseRevision.readVLE() : 0;
  170. if (mInstances.size() != numBaseInstances)
  171. bits |= 8;
  172. static std::vector<unsigned char> instanceBits;
  173. instanceBits.resize(mInstances.size());
  174. // Compare against the base instances first
  175. for (unsigned i = 0; i < numBaseInstances; ++i)
  176. {
  177. if (i < mInstances.size())
  178. {
  179. instanceBits[i] = 0;
  180. checkVector3(mInstances[i].mPosition, baseRevision, instanceBits[i], 1);
  181. checkQuaternion(mInstances[i].mRotation, baseRevision, instanceBits[i], 2);
  182. checkVector3(mInstances[i].mScale, baseRevision, instanceBits[i], 4);
  183. if (instanceBits[i])
  184. bits |= 8;
  185. }
  186. else
  187. {
  188. baseRevision.readVector3();
  189. baseRevision.readQuaternion();
  190. baseRevision.readVector3();
  191. }
  192. }
  193. // Then check possible new instances against defaults
  194. for (unsigned i = numBaseInstances; i < mInstances.size(); ++i)
  195. {
  196. instanceBits[i] = 0;
  197. if (mInstances[i].mPosition != Vector3::sZero)
  198. instanceBits[i] |= 1;
  199. if (mInstances[i].mRotation != Quaternion::sIdentity)
  200. instanceBits[i] |= 2;
  201. if (mInstances[i].mScale != Vector3::sUnity)
  202. instanceBits[i] |= 4;
  203. if (instanceBits[i])
  204. bits |= 8;
  205. }
  206. // Update replication state fully, and network stream by delta
  207. dest.writeUByte(bits);
  208. writeStringHashDelta(getResourceHash(mModel), dest, destRevision, bits & 1);
  209. writeVLEDelta(mMaterials.size(), dest, destRevision, bits & 2);
  210. for (unsigned i = 0; i < mMaterials.size(); ++i)
  211. writeStringHashDelta(getResourceHash(mOriginalMaterials[i]), dest, destRevision, bits & 2);
  212. writeBoolDelta(mInstancesRelative, dest, destRevision, bits & 4);
  213. // Write all instances to the base revision
  214. destRevision.writeVLE(mInstances.size());
  215. for (unsigned i = 0; i < mInstances.size(); ++i)
  216. {
  217. destRevision.writeVector3(mInstances[i].mPosition);
  218. destRevision.writeQuaternion(mInstances[i].mRotation);
  219. destRevision.writeVector3(mInstances[i].mScale);
  220. }
  221. // Then write changed properties of instances to the network stream
  222. if (bits & 8)
  223. {
  224. dest.writeVLE(mInstances.size());
  225. for (unsigned i = 0; i < mInstances.size(); ++i)
  226. {
  227. dest.writeUByte(instanceBits[i]);
  228. if (instanceBits[i] & 1)
  229. dest.writeVector3(mInstances[i].mPosition);
  230. if (instanceBits[i] & 2)
  231. dest.writePackedQuaternion(mInstances[i].mRotation);
  232. if (instanceBits[i] & 4)
  233. dest.writeVector3(mInstances[i].mScale);
  234. }
  235. }
  236. return prevBits || (bits != 0);
  237. }
  238. void InstancedModel::readNetUpdate(Deserializer& source, ResourceCache* cache, const NetUpdateInfo& info)
  239. {
  240. // Read GeometryNode properties
  241. GeometryNode::readNetUpdate(source, cache, info);
  242. unsigned char bits = source.readUByte();
  243. if (bits & 1)
  244. setModel(cache->getResource<Model>(source.readStringHash()));
  245. if (bits & 2)
  246. {
  247. unsigned numMaterials = source.readVLE();
  248. for (unsigned i = 0; i < numMaterials; ++i)
  249. setMaterial(i, cache->getResource<Material>(source.readStringHash()));
  250. }
  251. readBoolDelta(mInstancesRelative, source, bits & 4);
  252. if (bits & 8)
  253. {
  254. unsigned numInstances = source.readVLE();
  255. if (numInstances != mInstances.size())
  256. setNumInstances(numInstances);
  257. for (unsigned i = 0; i < numInstances; ++i)
  258. {
  259. unsigned char instanceBits = source.readUByte();
  260. readVector3Delta(mInstances[i].mPosition, source, instanceBits & 1);
  261. readPackedQuaternionDelta(mInstances[i].mRotation, source, instanceBits & 2);
  262. readVector3Delta(mInstances[i].mScale, source, instanceBits & 4);
  263. }
  264. }
  265. }
  266. void InstancedModel::processRayQuery(RayOctreeQuery& query, float initialDistance)
  267. {
  268. PROFILE(InstancedModel_Raycast);
  269. RayQueryLevel level = query.mLevel;
  270. float nearest = M_INFINITY;
  271. unsigned nearestInstance = 0;
  272. switch (level)
  273. {
  274. case RAY_AABB_NOSUBOBJECTS:
  275. {
  276. RayQueryResult result;
  277. result.mNode = this;
  278. result.mDistance = initialDistance;
  279. query.mResult.push_back(result);
  280. return;
  281. }
  282. case RAY_AABB:
  283. for (unsigned i = 0; i < mInstances.size(); ++i)
  284. {
  285. Matrix4x3 transform(mInstances[i].mPosition, mInstances[i].mRotation, mInstances[i].mScale);
  286. if (mInstancesRelative)
  287. transform = getWorldTransform() * transform;
  288. BoundingBox instanceBox = mBoundingBox.getTransformed(transform);
  289. float distance = instanceBox.getDistance(query.mRay);
  290. if ((distance < query.mMaxDistance) && (distance < nearest))
  291. {
  292. nearest = distance;
  293. nearestInstance = i;
  294. }
  295. }
  296. break;
  297. case RAY_OBB:
  298. for (unsigned i = 0; i < mInstances.size(); ++i)
  299. {
  300. Matrix4x3 transform(mInstances[i].mPosition, mInstances[i].mRotation, mInstances[i].mScale);
  301. if (mInstancesRelative)
  302. transform = getWorldTransform() * transform;
  303. // Do an initial AABB test
  304. float distance = mBoundingBox.getTransformed(transform).getDistance(query.mRay);
  305. if ((distance < query.mMaxDistance) && (distance < nearest))
  306. {
  307. Matrix4x3 inverse = transform.getInverse();
  308. Ray localRay(inverse * query.mRay.mOrigin, inverse * Vector4(query.mRay.mDirection, 0.0f));
  309. distance = mBoundingBox.getDistance(localRay);
  310. if ((distance < query.mMaxDistance) && (distance < nearest))
  311. {
  312. nearest = distance;
  313. nearestInstance = i;
  314. }
  315. }
  316. }
  317. break;
  318. case RAY_TRIANGLE:
  319. for (unsigned i = 0; i < mInstances.size(); ++i)
  320. {
  321. Matrix4x3 transform(mInstances[i].mPosition, mInstances[i].mRotation, mInstances[i].mScale);
  322. if (mInstancesRelative)
  323. transform = getWorldTransform() * transform;
  324. // Do an initial AABB test
  325. float distance = mBoundingBox.getTransformed(transform).getDistance(query.mRay);
  326. if ((distance < query.mMaxDistance) && (distance < nearest))
  327. {
  328. // Then an OBB test
  329. Matrix4x3 inverse = transform.getInverse();
  330. Ray localRay(inverse * query.mRay.mOrigin, inverse * Vector4(query.mRay.mDirection, 0.0f));
  331. distance = mBoundingBox.getDistance(localRay);
  332. if ((distance < query.mMaxDistance) && (distance < nearest))
  333. {
  334. // And finally the triangle-level test
  335. for (unsigned j = 0; j < mOriginalGeometries.size(); ++j)
  336. {
  337. unsigned lodLevel = mModel->getRaycastLodLevel();
  338. if (lodLevel >= mOriginalGeometries[j].size())
  339. lodLevel = mOriginalLodLevels[j];
  340. Geometry* geom = mOriginalGeometries[j][lodLevel];
  341. if (geom)
  342. {
  343. distance = geom->getDistance(localRay);
  344. if ((distance < query.mMaxDistance) && (distance < nearest))
  345. {
  346. nearest = distance;
  347. nearestInstance = i;
  348. break;
  349. }
  350. }
  351. }
  352. }
  353. }
  354. }
  355. break;
  356. }
  357. // Return the nearest hit against an instance
  358. if (nearest < M_INFINITY)
  359. {
  360. RayQueryResult result;
  361. result.mNode = this;
  362. result.mDistance = nearest;
  363. result.mSubObject = nearestInstance;
  364. query.mResult.push_back(result);
  365. }
  366. }
  367. void InstancedModel::updateDistance(const FrameInfo& frame)
  368. {
  369. mDistance = frame.mCamera->getDistance(getWorldPosition());
  370. static const Vector3 dotScale(1 / 3.0f, 1 / 3.0f, 1 / 3.0f);
  371. float scale = mAverageInstanceScale;
  372. if (mInstancesRelative)
  373. scale *= getWorldScale().dotProduct(dotScale);
  374. float newLodDistance = frame.mCamera->getLodDistance(mDistance, scale, mLodBias);
  375. if (newLodDistance != mLodDistance)
  376. {
  377. mLodDistance = newLodDistance;
  378. mLodLevelsDirty = true;
  379. }
  380. }
  381. void InstancedModel::updateGeometry(const FrameInfo& frame, Renderer* renderer)
  382. {
  383. if (sMode != mMode)
  384. {
  385. mMode = sMode;
  386. mInstancesDirty = true;
  387. }
  388. if (mInstancesDirty)
  389. buildInstances(renderer);
  390. if (mInstanceTransformsDirty)
  391. updateInstanceTransforms();
  392. if ((mMode == HARDWARE_INSTANCING) && (mHWInstancingBufferDirty))
  393. updateHWInstancingBuffer();
  394. if (mLodLevelsDirty)
  395. calculateLodLevels();
  396. }
  397. unsigned InstancedModel::getNumBatches()
  398. {
  399. return mGeometries.size();
  400. }
  401. Geometry* InstancedModel::getBatchGeometry(unsigned batchIndex)
  402. {
  403. return mGeometries[batchIndex][mLodLevels[batchIndex]];
  404. }
  405. Material* InstancedModel::getBatchMaterial(unsigned batchIndex)
  406. {
  407. return mMaterials[batchIndex];
  408. }
  409. bool InstancedModel::getVertexShaderParameter(unsigned batchIndex, VSParameter parameter, const float** data,
  410. unsigned* count)
  411. {
  412. if ((parameter == VSP_MODELINSTANCES) && (mMode == SHADER_INSTANCING) && (mOriginalGeometries.size()))
  413. {
  414. unsigned batchNumber = batchIndex / mOriginalGeometries.size();
  415. *data = mInstanceTransforms[mBatchStarts[batchNumber]].getData();
  416. *count = mBatchCounts[batchNumber] * 12;
  417. return true;
  418. }
  419. return false;
  420. }
  421. bool InstancedModel::drawOcclusion(OcclusionBuffer* buffer)
  422. {
  423. bool success = true;
  424. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  425. {
  426. // Use designated LOD level for occlusion, or if out of range, same as visible
  427. unsigned lodLevel = mModel->getOcclusionLodLevel();
  428. if (lodLevel >= mGeometries[i].size())
  429. lodLevel = mOriginalLodLevels[i];
  430. Geometry* geom = mOriginalGeometries[i][lodLevel];
  431. if (!geom)
  432. continue;
  433. // Check that the material is suitable for occlusion (default material always is)
  434. // and set culling mode
  435. Material* mat = mOriginalMaterials[i];
  436. if (mat)
  437. {
  438. if (!mat->getOcclusion())
  439. continue;
  440. buffer->setCullMode(mat->getOcclusionCullMode());
  441. }
  442. else
  443. buffer->setCullMode(CULL_CCW);
  444. const unsigned char* vertexData;
  445. unsigned vertexSize;
  446. const unsigned char* indexData;
  447. unsigned indexSize;
  448. geom->lockRawData(vertexData, vertexSize, indexData, indexSize);
  449. // Check for valid geometry data
  450. if ((!vertexData) || (!indexData))
  451. continue;
  452. unsigned indexStart = geom->getIndexStart();
  453. unsigned indexCount = geom->getIndexCount();
  454. for (unsigned j = 0; j < mInstances.size(); ++j)
  455. {
  456. // Draw and check for running out of triangles
  457. if (!buffer->draw(mInstanceTransforms[j], vertexData, vertexSize, indexData, indexSize, indexStart, indexCount))
  458. {
  459. success = false;
  460. break;
  461. }
  462. }
  463. geom->unlockRawData();
  464. if (!success)
  465. break;
  466. }
  467. return success;
  468. }
  469. bool InstancedModel::setModel(Model* model)
  470. {
  471. PROFILE(InstancedModel_SetModel);
  472. if (!model)
  473. {
  474. LOGERROR("Null model for InstancedModel");
  475. return false;
  476. }
  477. if (model == mModel)
  478. return true;
  479. mModel = model;
  480. mOriginalGeometries.clear();
  481. mOriginalMaterials.clear();
  482. // Copy the subgeometry & LOD level structure
  483. const std::vector<std::vector<SharedPtr<Geometry> > >& geometries = model->getGeometries();
  484. for (unsigned i = 0; i < geometries.size(); ++i)
  485. {
  486. mOriginalGeometries.push_back(geometries[i]);
  487. mOriginalMaterials.push_back(SharedPtr<Material>());
  488. }
  489. // Set the bounding box
  490. setBoundingBox(model->getBoundingBox());
  491. markInstancesDirty();
  492. resetLodLevels();
  493. return true;
  494. }
  495. void InstancedModel::setMaterial(Material* material)
  496. {
  497. for (unsigned i = 0; i < mOriginalMaterials.size(); ++i)
  498. mOriginalMaterials[i] = material;
  499. markInstancesDirty();
  500. }
  501. bool InstancedModel::setMaterial(unsigned index, Material* material)
  502. {
  503. if (index >= mMaterials.size())
  504. {
  505. LOGERROR("Illegal material index");
  506. return false;
  507. }
  508. mMaterials[index] = material;
  509. markInstancesDirty();
  510. return true;
  511. }
  512. void InstancedModel::setNumInstances(unsigned num)
  513. {
  514. unsigned oldNum = mInstances.size();
  515. mInstances.resize(num);
  516. mInstanceTransforms.resize(num);
  517. // Set default values for new instances
  518. for (unsigned i = oldNum; i < num; ++i)
  519. {
  520. mInstances[i].mPosition = Vector3::sZero;
  521. mInstances[i].mRotation = Quaternion::sIdentity;
  522. mInstances[i].mScale = Vector3::sUnity;
  523. }
  524. markInstancesDirty();
  525. }
  526. void InstancedModel::setInstancesRelative(bool enable)
  527. {
  528. mInstancesRelative = enable;
  529. markInstanceTransformsDirty();
  530. }
  531. void InstancedModel::updated()
  532. {
  533. markInstanceTransformsDirty();
  534. }
  535. Material* InstancedModel::getMaterial(unsigned index) const
  536. {
  537. if (index >= mOriginalMaterials.size())
  538. return 0;
  539. return mOriginalMaterials[index];
  540. }
  541. Instance* InstancedModel::getInstance(unsigned index)
  542. {
  543. if (index >= mInstances.size())
  544. return 0;
  545. return &mInstances[index];
  546. }
  547. void InstancedModel::onMarkedDirty()
  548. {
  549. VolumeNode::onMarkedDirty();
  550. if (mInstancesRelative)
  551. mInstanceTransformsDirty = true;
  552. }
  553. void InstancedModel::onWorldBoundingBoxUpdate(BoundingBox& worldBoundingBox)
  554. {
  555. if (mInstanceTransformsDirty)
  556. updateInstanceTransforms();
  557. worldBoundingBox.mDefined = false;
  558. for (unsigned i = 0; i < mInstanceTransforms.size(); ++i)
  559. worldBoundingBox.merge(mBoundingBox.getTransformed(mInstanceTransforms[i]));
  560. if (!mInstances.size())
  561. worldBoundingBox.merge(getWorldPosition());
  562. }
  563. void InstancedModel::buildInstances(Renderer* renderer)
  564. {
  565. PROFILE(InstancedModel_Build);
  566. mInstancesDirty = false;
  567. mGeometries.clear();
  568. mMaterials.clear();
  569. mBatchStarts.clear();
  570. mBatchCounts.clear();
  571. if ((!mOriginalGeometries.size()) || (!mOriginalGeometries[0].size()))
  572. return;
  573. unsigned numInstances = mInstances.size();
  574. mInstanceTransformsDirty = true;
  575. if (mMode == SHADER_INSTANCING)
  576. {
  577. mHWInstancingBuffer.reset();
  578. unsigned instanceIndex = 0;
  579. while (numInstances)
  580. {
  581. // Check how many vertices in the original geometry. Avoid having to convert to 32bit indices
  582. unsigned maxVertices = 0;
  583. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  584. {
  585. if (!mOriginalGeometries[i][0])
  586. continue;
  587. unsigned vertices = mOriginalGeometries[i][0]->getVertexBuffer(0)->getVertexCount();
  588. if (vertices > maxVertices)
  589. maxVertices = vertices;
  590. }
  591. maxVertices = max(maxVertices, 1);
  592. unsigned instanceCount = 65536 / maxVertices;
  593. if (instanceCount < 2)
  594. {
  595. LOGERROR("Too many vertices in original geometry for instancing");
  596. mInstances.clear();
  597. return;
  598. }
  599. if (instanceCount > MAX_INSTANCES_PER_BATCH)
  600. instanceCount = MAX_INSTANCES_PER_BATCH;
  601. if (instanceCount > numInstances)
  602. instanceCount = numInstances;
  603. mBatchStarts.push_back(instanceIndex);
  604. mBatchCounts.push_back(instanceCount);
  605. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  606. {
  607. std::vector<SharedPtr<Geometry> > lodLevels;
  608. lodLevels.resize(mOriginalGeometries[i].size());
  609. for (unsigned j = 0; j < mOriginalGeometries[i].size(); ++j)
  610. {
  611. Geometry* original = mOriginalGeometries[i][j];
  612. if (!original)
  613. continue;
  614. SharedPtr<Geometry> clone(new Geometry());
  615. clone->setNumVertexBuffers(original->getNumVertexBuffers());
  616. for (unsigned k = 0; k < original->getNumVertexBuffers(); ++k)
  617. clone->setVertexBuffer(k, createInstanceVertexBuffer(original->getVertexBuffer(k), instanceCount),
  618. original->getVertexElementMask(k) | MASK_INSTANCENUMBER);
  619. unsigned indexStart;
  620. clone->setIndexBuffer(createInstanceIndexBuffer(mOriginalGeometries, i, j, instanceCount, indexStart));
  621. clone->setDrawRange(original->getPrimitiveType(), indexStart, instanceCount * original->getIndexCount());
  622. clone->setLodDistance(original->getLodDistance());
  623. lodLevels[j] = clone;
  624. }
  625. mGeometries.push_back(lodLevels);
  626. mMaterials.push_back(mOriginalMaterials[i]);
  627. }
  628. instanceIndex += instanceCount;
  629. numInstances -= instanceCount;
  630. }
  631. }
  632. else
  633. {
  634. cleanupInstanceBuffers();
  635. if (!mHWInstancingBuffer)
  636. mHWInstancingBuffer = new VertexBuffer(renderer);
  637. mHWInstancingBuffer->setSize(numInstances, MASK_INSTANCEMATRIX1 | MASK_INSTANCEMATRIX2 | MASK_INSTANCEMATRIX3);
  638. mHWInstancingBufferDirty = true;
  639. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  640. {
  641. std::vector<SharedPtr<Geometry> > lodLevels;
  642. for (unsigned j = 0; j < mOriginalGeometries[i].size(); ++j)
  643. {
  644. SharedPtr<Geometry> clone(new Geometry());
  645. Geometry* original = mOriginalGeometries[i][j];
  646. unsigned numVBs = original->getNumVertexBuffers();
  647. if (numVBs >= MAX_VERTEX_STREAMS)
  648. {
  649. LOGERROR("No room for instance vertex stream");
  650. mInstances.clear();
  651. return;
  652. }
  653. clone->setNumVertexBuffers(numVBs + 1);
  654. for (unsigned k = 0; k < numVBs; ++k)
  655. clone->setVertexBuffer(k, original->getVertexBuffer(k), original->getVertexElementMask(k));
  656. clone->setVertexBuffer(numVBs, mHWInstancingBuffer);
  657. clone->setIndexBuffer(original->getIndexBuffer());
  658. clone->setDrawRange(original->getPrimitiveType(), original->getIndexStart(), original->getIndexCount());
  659. clone->setInstanceCount(numInstances);
  660. clone->setLodDistance(original->getLodDistance());
  661. lodLevels.push_back(clone);
  662. }
  663. mGeometries.push_back(lodLevels);
  664. mMaterials.push_back(mOriginalMaterials[i]);
  665. }
  666. }
  667. resetLodLevels();
  668. }
  669. void InstancedModel::updateInstanceTransforms()
  670. {
  671. PROFILE(InstancedModel_UpdateTransforms);
  672. if (!mInstanceTransforms.size())
  673. return;
  674. Matrix4x3 transform;
  675. const Matrix4x3& worldTransform = getWorldTransform();
  676. static const Vector3 dotScale(1 / 3.0f, 1 / 3.0f, 1 / 3.0f);
  677. float scaleAcc = 0.0f;
  678. for (unsigned i = 0; i < mInstanceTransforms.size(); ++i)
  679. {
  680. transform.define(mInstances[i].mPosition, mInstances[i].mRotation, mInstances[i].mScale);
  681. scaleAcc += mInstances[i].mScale.dotProduct(dotScale);
  682. if (!mInstancesRelative)
  683. mInstanceTransforms[i] = transform;
  684. else
  685. mInstanceTransforms[i] = worldTransform * transform;
  686. }
  687. mAverageInstanceScale = scaleAcc / mInstanceTransforms.size();
  688. mInstanceTransformsDirty = false;
  689. if (mMode == HARDWARE_INSTANCING)
  690. mHWInstancingBufferDirty = true;
  691. }
  692. void InstancedModel::updateHWInstancingBuffer()
  693. {
  694. if ((mHWInstancingBuffer) && (mHWInstancingBuffer->getVertexCount() == mInstanceTransforms.size()))
  695. {
  696. PROFILE(InstancedModel_UpdateVertexBuffer);
  697. mHWInstancingBuffer->setData(mInstanceTransforms[0].getData());
  698. mHWInstancingBufferDirty = false;
  699. }
  700. }
  701. const SharedPtr<VertexBuffer>& InstancedModel::createInstanceVertexBuffer(VertexBuffer* original, unsigned instanceCount)
  702. {
  703. std::map<const VertexBuffer*, SharedPtr<VertexBuffer> >::iterator i = sInstanceVertexBuffers.find(original);
  704. // If there already exists a buffer with enough copies of the original, return it
  705. if ((i != sInstanceVertexBuffers.end()) && (i->second->getVertexCount() >= original->getVertexCount() * instanceCount))
  706. return i->second;
  707. // Otherwise have to (re)create the buffer
  708. if (i == sInstanceVertexBuffers.end())
  709. {
  710. sInstanceVertexBuffers[original] = new VertexBuffer(original->getRenderer());
  711. i = sInstanceVertexBuffers.find(original);
  712. }
  713. // Copy the vertices as many times as necessary and add the instance number data
  714. i->second->setSize(original->getVertexCount() * instanceCount, original->getElementMask() | MASK_INSTANCENUMBER);
  715. unsigned char* srcData = (unsigned char*)original->lock(0, original->getVertexCount(), LOCK_READONLY);
  716. unsigned char* destData = (unsigned char*)i->second->lock(0, i->second->getVertexCount(), LOCK_DISCARD);
  717. unsigned srcVertexSize = original->getVertexSize();
  718. float instanceIndex = 0.0f;
  719. for (unsigned j = 0; j < instanceCount; ++j)
  720. {
  721. for (unsigned k = 0; k < original->getVertexCount(); ++k)
  722. {
  723. memcpy(destData, &srcData[k * srcVertexSize], srcVertexSize);
  724. destData += srcVertexSize;
  725. *((float*)destData) = instanceIndex;
  726. destData += sizeof(float);
  727. }
  728. instanceIndex += 1.0f;
  729. }
  730. i->second->unlock();
  731. original->unlock();
  732. return i->second;
  733. }
  734. const SharedPtr<IndexBuffer>& InstancedModel::createInstanceIndexBuffer(
  735. const std::vector<std::vector<SharedPtr<Geometry> > >& geometries, unsigned subGeometry, unsigned lodLevel,
  736. unsigned instanceCount, unsigned& indexStart)
  737. {
  738. IndexBuffer* original = geometries[subGeometry][lodLevel]->getIndexBuffer();
  739. // Build the geometry part of search key by adding the total amount of used indices. Not foolproof,
  740. // but should suffice in cases where an indexbuffer is generally not shared between different models
  741. unsigned totalIndices = 0;
  742. for (unsigned i = 0; i < geometries.size(); ++i)
  743. {
  744. for (unsigned j = 0; j < geometries[i].size(); ++j)
  745. {
  746. if (geometries[i][j]->getIndexBuffer() == original)
  747. totalIndices += geometries[i][j]->getIndexCount();
  748. }
  749. }
  750. std::pair<const IndexBuffer*, unsigned> searchKey = std::make_pair(original, totalIndices);
  751. std::map<std::pair<const IndexBuffer*, unsigned>, SharedPtr<IndexBuffer> >::iterator i =
  752. sInstanceIndexBuffers.find(searchKey);
  753. // If there already exists a buffer with enough copies of the original, return it
  754. if ((i != sInstanceIndexBuffers.end()) && (i->second->getIndexCount() >= totalIndices * instanceCount))
  755. {
  756. unsigned currentInstanceCount = i->second->getIndexCount() / totalIndices;
  757. unsigned destIndex = 0;
  758. for (unsigned j = 0; j < geometries.size(); ++j)
  759. {
  760. for (unsigned k = 0; k < geometries[j].size(); ++k)
  761. {
  762. if ((j == subGeometry) && (k == lodLevel))
  763. indexStart = destIndex;
  764. if (geometries[j][k]->getIndexBuffer() == original)
  765. destIndex += currentInstanceCount * geometries[j][k]->getIndexCount();
  766. }
  767. }
  768. return i->second;
  769. }
  770. // Otherwise have to (re)create the buffer
  771. if (i == sInstanceIndexBuffers.end())
  772. {
  773. sInstanceIndexBuffers[searchKey] = new IndexBuffer(original->getRenderer());
  774. i = sInstanceIndexBuffers.find(searchKey);
  775. }
  776. i->second->setSize(totalIndices * instanceCount, original->getIndexSize() == sizeof(unsigned));
  777. // 16-bit indices
  778. if (original->getIndexSize() == sizeof(unsigned short))
  779. {
  780. unsigned short* srcData = (unsigned short*)original->lock(0, original->getIndexCount(), LOCK_READONLY);
  781. unsigned short* destData = (unsigned short*)i->second->lock(0, i->second->getIndexCount(), LOCK_DISCARD);
  782. unsigned destIndex = 0;
  783. for (unsigned j = 0; j < geometries.size(); ++j)
  784. {
  785. for (unsigned k = 0; k < geometries[j].size(); ++k)
  786. {
  787. unsigned vertexCount = geometries[j][k]->getVertexBuffer(0)->getVertexCount();
  788. if (geometries[j][k]->getIndexBuffer() == original)
  789. {
  790. if ((j == subGeometry) && (k == lodLevel))
  791. indexStart = destIndex;
  792. unsigned indexStart = geometries[j][k]->getIndexStart();
  793. unsigned indexEnd = indexStart + geometries[j][k]->getIndexCount();
  794. for (unsigned l = 0; l < instanceCount; ++l)
  795. {
  796. for (unsigned m = indexStart; m < indexEnd; ++m)
  797. {
  798. *destData = srcData[m] + l * vertexCount;
  799. ++destData;
  800. }
  801. }
  802. destIndex += instanceCount * (indexEnd - indexStart);
  803. }
  804. }
  805. }
  806. i->second->unlock();
  807. original->unlock();
  808. }
  809. // 32-bit indices
  810. else
  811. {
  812. unsigned* srcData = (unsigned*)original->lock(0, original->getIndexCount(), LOCK_READONLY);
  813. unsigned* destData = (unsigned*)i->second->lock(0, i->second->getIndexCount(), LOCK_DISCARD);
  814. unsigned destIndex = 0;
  815. for (unsigned j = 0; j < geometries.size(); ++j)
  816. {
  817. for (unsigned k = 0; k < geometries[j].size(); ++k)
  818. {
  819. unsigned vertexCount = geometries[j][k]->getVertexBuffer(0)->getVertexCount();
  820. if (geometries[j][k]->getIndexBuffer() == original)
  821. {
  822. if ((j == subGeometry) && (k == lodLevel))
  823. indexStart = destIndex;
  824. unsigned indexStart = geometries[j][k]->getIndexStart();
  825. unsigned indexEnd = indexStart + geometries[j][k]->getIndexCount();
  826. for (unsigned l = 0; l < instanceCount; ++l)
  827. {
  828. for (unsigned m = indexStart; m < indexEnd; ++m)
  829. {
  830. *destData = srcData[m] + l * vertexCount;
  831. ++destData;
  832. }
  833. }
  834. destIndex += instanceCount * (indexEnd - indexStart);
  835. }
  836. }
  837. }
  838. i->second->unlock();
  839. original->unlock();
  840. }
  841. return i->second;
  842. }
  843. void InstancedModel::cleanupInstanceBuffers()
  844. {
  845. // Remove buffers that are only referenced in the static maps, and no longer used by any InstancedModels
  846. for (std::map<const VertexBuffer*, SharedPtr<VertexBuffer> >::iterator i = sInstanceVertexBuffers.begin();
  847. i != sInstanceVertexBuffers.end();)
  848. {
  849. std::map<const VertexBuffer*, SharedPtr<VertexBuffer> >::iterator current = i;
  850. ++i;
  851. if (current->second.getRefCount() == 1)
  852. sInstanceVertexBuffers.erase(current);
  853. }
  854. for (std::map<std::pair<const IndexBuffer*, unsigned>, SharedPtr<IndexBuffer> >::iterator i = sInstanceIndexBuffers.begin();
  855. i != sInstanceIndexBuffers.end();)
  856. {
  857. std::map<std::pair<const IndexBuffer*, unsigned>, SharedPtr<IndexBuffer> >::iterator current = i;
  858. ++i;
  859. if (current->second.getRefCount() == 1)
  860. sInstanceIndexBuffers.erase(current);
  861. }
  862. }
  863. void InstancedModel::markInstancesDirty()
  864. {
  865. mInstancesDirty = true;
  866. markInstanceTransformsDirty();
  867. }
  868. void InstancedModel::markInstanceTransformsDirty()
  869. {
  870. VolumeNode::onMarkedDirty();
  871. mInstanceTransformsDirty = true;
  872. }
  873. void InstancedModel::setBoundingBox(const BoundingBox& box)
  874. {
  875. mBoundingBox = box;
  876. VolumeNode::onMarkedDirty();
  877. }
  878. void InstancedModel::resetLodLevels()
  879. {
  880. // Ensure that each subgeometry has at least one LOD level, and reset the current LOD level
  881. mOriginalLodLevels.resize(mOriginalGeometries.size());
  882. mLodLevels.resize(mGeometries.size());
  883. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  884. {
  885. if (!mOriginalGeometries[i].size())
  886. mOriginalGeometries[i].resize(1);
  887. mOriginalLodLevels[i] = 0;
  888. }
  889. for (unsigned i = 0; i < mGeometries.size(); ++i)
  890. {
  891. if (!mGeometries[i].size())
  892. mGeometries[i].resize(1);
  893. mLodLevels[i] = 0;
  894. }
  895. // Find out the real LOD levels on next geometry update
  896. mLodLevelsDirty = true;
  897. }
  898. void InstancedModel::calculateLodLevels()
  899. {
  900. for (unsigned i = 0; i < mOriginalGeometries.size(); ++i)
  901. {
  902. unsigned j;
  903. for (j = 1; j < mOriginalGeometries[i].size(); ++j)
  904. {
  905. if ((mOriginalGeometries[i][j]) && (mLodDistance <= mOriginalGeometries[i][j]->getLodDistance()))
  906. break;
  907. }
  908. mOriginalLodLevels[i] = j - 1;
  909. }
  910. for (unsigned i = 0; i < mGeometries.size(); ++i)
  911. {
  912. unsigned j;
  913. for (j = 1; j < mGeometries[i].size(); ++j)
  914. {
  915. if ((mGeometries[i][j]) && (mLodDistance <= mGeometries[i][j]->getLodDistance()))
  916. break;
  917. }
  918. mLodLevels[i] = j - 1;
  919. }
  920. mLodLevelsDirty = false;
  921. }