Pipeline.cpp 46 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "DebugRenderer.h"
  25. #include "Geometry.h"
  26. #include "IndexBuffer.h"
  27. #include "InstancedModel.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "OctreeQuery.h"
  34. #include "Pipeline.h"
  35. #include "PixelShader.h"
  36. #include "Profiler.h"
  37. #include "Renderer.h"
  38. #include "RendererEvents.h"
  39. #include "RendererImpl.h"
  40. #include "ResourceCache.h"
  41. #include "StringUtils.h"
  42. #include "Texture2D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "VertexShader.h"
  46. #include "View.h"
  47. #include "XMLFile.h"
  48. #include "DebugNew.h"
  49. static const float dirLightVertexData[] =
  50. {
  51. -1, 1, 0,
  52. 1, 1, 0,
  53. 1, -1, 0,
  54. -1, -1, 0,
  55. };
  56. static const unsigned short dirLightIndexData[] =
  57. {
  58. 0, 1, 2,
  59. 2, 3, 0,
  60. };
  61. static const float pointLightVertexData[] =
  62. {
  63. -0.423169f, -1.000000f, 0.423169f,
  64. -0.423169f, -1.000000f, -0.423169f,
  65. 0.423169f, -1.000000f, -0.423169f,
  66. 0.423169f, -1.000000f, 0.423169f,
  67. 0.423169f, 1.000000f, -0.423169f,
  68. -0.423169f, 1.000000f, -0.423169f,
  69. -0.423169f, 1.000000f, 0.423169f,
  70. 0.423169f, 1.000000f, 0.423169f,
  71. -1.000000f, 0.423169f, -0.423169f,
  72. -1.000000f, -0.423169f, -0.423169f,
  73. -1.000000f, -0.423169f, 0.423169f,
  74. -1.000000f, 0.423169f, 0.423169f,
  75. 0.423169f, 0.423169f, -1.000000f,
  76. 0.423169f, -0.423169f, -1.000000f,
  77. -0.423169f, -0.423169f, -1.000000f,
  78. -0.423169f, 0.423169f, -1.000000f,
  79. 1.000000f, 0.423169f, 0.423169f,
  80. 1.000000f, -0.423169f, 0.423169f,
  81. 1.000000f, -0.423169f, -0.423169f,
  82. 1.000000f, 0.423169f, -0.423169f,
  83. 0.423169f, -0.423169f, 1.000000f,
  84. 0.423169f, 0.423169f, 1.000000f,
  85. -0.423169f, 0.423169f, 1.000000f,
  86. -0.423169f, -0.423169f, 1.000000f
  87. };
  88. static const unsigned short pointLightIndexData[] =
  89. {
  90. 0, 1, 2,
  91. 0, 2, 3,
  92. 4, 5, 6,
  93. 4, 6, 7,
  94. 8, 9, 10,
  95. 8, 10, 11,
  96. 12, 13, 14,
  97. 12, 14, 15,
  98. 16, 17, 18,
  99. 16, 18, 19,
  100. 20, 21, 22,
  101. 20, 22, 23,
  102. 0, 10, 9,
  103. 0, 9, 1,
  104. 13, 2, 1,
  105. 13, 1, 14,
  106. 23, 0, 3,
  107. 23, 3, 20,
  108. 17, 3, 2,
  109. 17, 2, 18,
  110. 21, 7, 6,
  111. 21, 6, 22,
  112. 7, 16, 19,
  113. 7, 19, 4,
  114. 5, 8, 11,
  115. 5, 11, 6,
  116. 4, 12, 15,
  117. 4, 15, 5,
  118. 22, 11, 10,
  119. 22, 10, 23,
  120. 8, 15, 14,
  121. 8, 14, 9,
  122. 12, 19, 18,
  123. 12, 18, 13,
  124. 16, 21, 20,
  125. 16, 20, 17,
  126. 0, 23, 10,
  127. 1, 9, 14,
  128. 2, 13, 18,
  129. 3, 17, 20,
  130. 6, 11, 22,
  131. 5, 15, 8,
  132. 4, 19, 12,
  133. 7, 21, 16
  134. };
  135. static const float spotLightVertexData[] =
  136. {
  137. // Use slightly clamped Z-range so that shadowed point light splits line up nicely
  138. 0.00001f, 0.00001f, 0.00001f,
  139. 0.00001f, -0.00001f, 0.00001f,
  140. -0.00001f, -0.00001f, 0.00001f,
  141. -0.00001f, 0.00001f, 0.00001f,
  142. 1.00000f, 1.00000f, 0.99999f,
  143. 1.00000f, -1.00000f, 0.99999f,
  144. -1.00000f, -1.00000f, 0.99999f,
  145. -1.00000f, 1.00000f, 0.99999f,
  146. };
  147. static const unsigned short spotLightIndexData[] =
  148. {
  149. 3, 0, 1,
  150. 3, 1, 2,
  151. 0, 4, 5,
  152. 0, 5, 1,
  153. 3, 7, 4,
  154. 3, 4, 0,
  155. 7, 3, 2,
  156. 7, 2, 6,
  157. 6, 2, 1,
  158. 6, 1, 5,
  159. 7, 5, 4,
  160. 7, 6, 5
  161. };
  162. static const std::string geometryVSVariations[] =
  163. {
  164. "",
  165. "Skinned",
  166. "Instanced"
  167. };
  168. static const std::string gBufferPSVariations[] =
  169. {
  170. "",
  171. "HW"
  172. };
  173. static const std::string lightVSVariations[] =
  174. {
  175. "",
  176. "Spot",
  177. "Shadow",
  178. "SpotShadow"
  179. };
  180. static const std::string deferredLightVSVariations[] =
  181. {
  182. "",
  183. "Dir",
  184. "Ortho",
  185. "OrthoDir"
  186. };
  187. static const std::string deferredLightPSVariations[] =
  188. {
  189. "Dir",
  190. "DirSpec",
  191. "DirShadow",
  192. "DirShadowSpec",
  193. "DirNegative",
  194. "Point",
  195. "PointSpec",
  196. "PointShadow",
  197. "PointShadowSpec",
  198. "PointNegative",
  199. "Spot",
  200. "SpotSpec",
  201. "SpotShadow",
  202. "SpotShadowSpec",
  203. "SpotNegative",
  204. "OrthoDir",
  205. "OrthoDirSpec",
  206. "OrthoDirShadow",
  207. "OrthoDirShadowSpec",
  208. "OrthoDirNegative",
  209. "OrthoPoint",
  210. "OrthoPointSpec",
  211. "OrthoPointShadow",
  212. "OrthoPointShadowSpec",
  213. "OrthoPointNegative",
  214. "OrthoSpot",
  215. "OrthoSpotSpec",
  216. "OrthoSpotShadow",
  217. "OrthoSpotShadowSpec",
  218. "OrthoSpotNegative",
  219. "LinearDir",
  220. "LinearDirSpec",
  221. "LinearDirShadow",
  222. "LinearDirShadowSpec",
  223. "LinearDirNegative",
  224. "LinearPoint",
  225. "LinearPointSpec",
  226. "LinearPointShadow",
  227. "LinearPointShadowSpec",
  228. "LinearPointNegative",
  229. "LinearSpot",
  230. "LinearSpotSpec",
  231. "LinearSpotShadow",
  232. "LinearSpotShadowSpec",
  233. "LinearSpotNegative"
  234. };
  235. static const std::string shadowPSVariations[] =
  236. {
  237. "",
  238. "HW"
  239. };
  240. void EdgeFilterParameters::validate()
  241. {
  242. mThreshold = max(mThreshold, 0.0f);
  243. mFilterStep = clamp(mFilterStep, 0.0f, 1.0f);
  244. mMaxFilter = clamp(mMaxFilter, 0.0f, 1.0f);
  245. mMaxScale = max(mMaxScale, 0.0f);
  246. }
  247. Pipeline::Pipeline(Renderer* renderer, ResourceCache* cache) :
  248. mRenderer(renderer),
  249. mCache(cache),
  250. mFrameNumber(M_MAX_UNSIGNED),
  251. mNumViews(0),
  252. mNumSplitLights(0),
  253. mElapsedTime(0.0f),
  254. mSpecularLighting(true),
  255. mDrawShadows(true),
  256. mTextureAnisotropy(4),
  257. mTextureFilterMode(FILTER_TRILINEAR),
  258. mTextureQuality(QUALITY_HIGH),
  259. mMaterialQuality(QUALITY_HIGH),
  260. mLightDetailLevel(QUALITY_HIGH),
  261. mShadowMapSize(1024),
  262. mShadowMapHiresDepth(false),
  263. mMaxOccluderTriangles(5000),
  264. mOcclusionBufferSize(256),
  265. mOccluderSizeThreshold(0.1f),
  266. mEdgeFilter(EdgeFilterParameters(0.25f, 0.25f, 0.50f, 10.0f)),
  267. mShadersChangedFrameNumber(M_MAX_UNSIGNED),
  268. mShadersDirty(true)
  269. {
  270. if (!mRenderer)
  271. EXCEPTION("Null renderer for Pipeline");
  272. LOGINFO("Rendering pipeline created");
  273. subscribeToEvent(EVENT_WINDOWRESIZED, EVENT_HANDLER(Pipeline, handleWindowResized));
  274. // Check shader model support
  275. if (mRenderer->getSM3Support())
  276. {
  277. mShaderPath = "Shaders/SM3/";
  278. mVSFormat = ".vs3";
  279. mPSFormat = ".ps3";
  280. InstancedModel::setInstancingMode(HARDWARE_INSTANCING);
  281. }
  282. else
  283. {
  284. mShaderPath = "Shaders/SM2/";
  285. mVSFormat = ".vs2";
  286. mPSFormat = ".ps2";
  287. InstancedModel::setInstancingMode(SHADER_INSTANCING);
  288. }
  289. mDefaultLightRamp = mCache->getResource<Texture2D>("Textures/Ramp.png");
  290. mDefaultLightSpot = mCache->getResource<Texture2D>("Textures/Spot.png");
  291. mDefaultMaterial = mCache->getResource<Material>("Materials/Default.xml");
  292. createGeometries();
  293. if (!createShadowMaps())
  294. mDrawShadows = false;
  295. resetViews();
  296. }
  297. Pipeline::~Pipeline()
  298. {
  299. LOGINFO("Rendering pipeline shut down");
  300. }
  301. void Pipeline::setSpecularLighting(bool enable)
  302. {
  303. mSpecularLighting = enable;
  304. }
  305. void Pipeline::setDrawShadows(bool enable)
  306. {
  307. mDrawShadows = enable;
  308. if (!createShadowMaps())
  309. mDrawShadows = false;
  310. }
  311. void Pipeline::setTextureAnisotropy(int level)
  312. {
  313. mTextureAnisotropy = max(level, 1);
  314. }
  315. void Pipeline::setTextureFilterMode(TextureFilterMode mode)
  316. {
  317. mTextureFilterMode = mode;
  318. }
  319. void Pipeline::setTextureQuality(int quality)
  320. {
  321. quality = clamp(quality, QUALITY_LOW, QUALITY_HIGH);
  322. if (quality != mTextureQuality)
  323. {
  324. mTextureQuality = quality;
  325. Texture::setQuality(mTextureQuality);
  326. reloadTextures();
  327. }
  328. }
  329. void Pipeline::setMaterialQuality(int quality)
  330. {
  331. mMaterialQuality = clamp(quality, QUALITY_LOW, QUALITY_MAX);
  332. mShadersDirty = true;
  333. resetViews();
  334. }
  335. void Pipeline::setLightDetailLevel(int detailLevel)
  336. {
  337. mLightDetailLevel = clamp(detailLevel, QUALITY_LOW, QUALITY_MAX);
  338. }
  339. void Pipeline::setShadowMapSize(int size)
  340. {
  341. mShadowMapSize = max(size, SHADOW_MIN_PIXELS);
  342. if (!createShadowMaps())
  343. {
  344. mShadowMapSize = 1024;
  345. if (!createShadowMaps())
  346. mDrawShadows = false;
  347. }
  348. }
  349. void Pipeline::setShadowMapHiresDepth(bool enable)
  350. {
  351. if (!mRenderer->getHiresShadowSupport())
  352. enable = false;
  353. mShadowMapHiresDepth = enable;
  354. if (!createShadowMaps())
  355. mDrawShadows = false;
  356. }
  357. void Pipeline::setMaxOccluderTriangles(int triangles)
  358. {
  359. mMaxOccluderTriangles = max(triangles, 0);
  360. }
  361. void Pipeline::setOcclusionBufferSize(int size)
  362. {
  363. mOcclusionBufferSize = max(size, 1);
  364. mOcclusionBuffers.clear();
  365. }
  366. void Pipeline::setOccluderSizeThreshold(float screenSize)
  367. {
  368. mOccluderSizeThreshold = max(screenSize, 0.0f);
  369. }
  370. void Pipeline::setEdgeFilter(const EdgeFilterParameters& parameters)
  371. {
  372. mEdgeFilter = parameters;
  373. }
  374. bool Pipeline::update(float timeStep, Octree* octree, Camera* camera)
  375. {
  376. PROFILE(Pipeline_Update);
  377. // If device lost, do not perform update. This is because any dynamic vertex/index buffer updates happen already here,
  378. // and if the device is lost, the updates queue up, causing memory use to rise constantly
  379. if ((mRenderer->isDeviceLost()) || (!camera) || (!octree))
  380. {
  381. mNumViews = 0;
  382. return false;
  383. }
  384. // Advance frame number & time, set up the frameinfo structure, and reset stats
  385. beginFrame(timeStep);
  386. // Reload shaders if needed
  387. if (mShadersDirty)
  388. loadShaders();
  389. // Update octree. Perform early update for nodes which need that, and reinsert moved nodes
  390. mFrame.mCamera = camera;
  391. octree->updateOctree(mFrame);
  392. // Add the main view
  393. addView(octree, camera, 0);
  394. // Get light and geometry nodes for the main view
  395. mViews[0]->update(mFrame);
  396. // Process any auxiliary views that were found during the main view processing
  397. for (unsigned i = 1; i < mNumViews; ++i)
  398. mViews[i]->update(mFrame);
  399. return true;
  400. }
  401. bool Pipeline::render()
  402. {
  403. PROFILE(Pipeline_Render);
  404. mRenderer->setDefaultTextureFilterMode(mTextureFilterMode);
  405. mRenderer->setTextureAnisotropy(mTextureAnisotropy);
  406. // If no views, just clear the screen
  407. if (!mNumViews)
  408. {
  409. mRenderer->setAlphaTest(false);
  410. mRenderer->setBlendMode(BLEND_REPLACE);
  411. mRenderer->setColorWrite(true);
  412. mRenderer->setDepthWrite(true);
  413. mRenderer->setFillMode(FILL_SOLID);
  414. mRenderer->setScissorTest(false);
  415. mRenderer->setStencilTest(false);
  416. mRenderer->clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL);
  417. return false;
  418. }
  419. // Render views from last to first (main view is rendered last)
  420. for (unsigned i = mNumViews - 1; i < mNumViews; --i)
  421. mViews[i]->render();
  422. // Disable scissor/stencil tests if left on by lights, and reset stream frequencies
  423. mRenderer->setScissorTest(false);
  424. mRenderer->setStencilTest(false);
  425. mRenderer->resetStreamFrequencies();
  426. return true;
  427. }
  428. void Pipeline::drawDebugGeometry(DebugRenderer* debug)
  429. {
  430. PROFILE(Pipeline_DrawDebugGeometry);
  431. if (!mNumViews)
  432. return;
  433. // Only use the main view
  434. const std::vector<GeometryNode*>& geometries = mViews[0]->getGeometries();
  435. const std::vector<Light*>& lights = mViews[0]->getLights();
  436. for (unsigned i = 0; i < geometries.size(); ++i)
  437. geometries[i]->drawDebugGeometry(debug);
  438. for (unsigned i = 0; i < lights.size(); ++i)
  439. lights[i]->drawDebugGeometry(debug);
  440. }
  441. VertexShader* Pipeline::getVertexShader(const std::string& name, bool checkExists) const
  442. {
  443. // Check for extra underscore with no variations and remove
  444. std::string fullName = replace(mShaderPath + name + mVSFormat, "_.", ".");
  445. if (checkExists)
  446. {
  447. if (!mCache->exists(fullName))
  448. return 0;
  449. }
  450. return mCache->getResource<VertexShader>(fullName);
  451. }
  452. PixelShader* Pipeline::getPixelShader(const std::string& name, bool checkExists) const
  453. {
  454. // Check for extra underscore with no variations and remove
  455. std::string fullName = replace(mShaderPath + name + mPSFormat, "_.", ".");
  456. if (checkExists)
  457. {
  458. if (!mCache->exists(fullName))
  459. return 0;
  460. }
  461. return mCache->getResource<PixelShader>(fullName);
  462. }
  463. unsigned Pipeline::getNumGeometries(bool allViews) const
  464. {
  465. unsigned numGeometries = 0;
  466. unsigned lastView = allViews ? mNumViews : 1;
  467. for (unsigned i = 0; i < lastView; ++i)
  468. numGeometries += mViews[i]->getGeometries().size();
  469. return numGeometries;
  470. }
  471. unsigned Pipeline::getNumLights(bool allViews) const
  472. {
  473. unsigned numLights = 0;
  474. unsigned lastView = allViews ? mNumViews : 1;
  475. for (unsigned i = 0; i < lastView; ++i)
  476. numLights += mViews[i]->getLights().size();
  477. return numLights;
  478. }
  479. unsigned Pipeline::getNumShadowMaps(bool allViews) const
  480. {
  481. unsigned numShadowMaps = 0;
  482. unsigned lastView = allViews ? mNumViews : 1;
  483. for (unsigned i = 0; i < lastView; ++i)
  484. {
  485. const std::vector<LightBatchQueue>& lightQueues = mViews[i]->getLightQueues();
  486. for (unsigned j = 0; j < lightQueues.size(); ++j)
  487. {
  488. Light* light = lightQueues[j].mLight;
  489. if ((light) && (light->getShadowMap()))
  490. ++numShadowMaps;
  491. }
  492. }
  493. return numShadowMaps;
  494. }
  495. unsigned Pipeline::getNumOccluders(bool allViews) const
  496. {
  497. unsigned numOccluders = 0;
  498. unsigned lastView = allViews ? mNumViews : 1;
  499. for (unsigned i = 0; i < lastView; ++i)
  500. numOccluders += mViews[i]->getOccluders().size();
  501. return numOccluders;
  502. }
  503. unsigned Pipeline::getNumShadowOccluders(bool allViews) const
  504. {
  505. unsigned numShadowOccluders = 0;
  506. unsigned lastView = allViews ? mNumViews : 1;
  507. for (unsigned i = 0; i < lastView; ++i)
  508. numShadowOccluders += mViews[i]->getShadowOccluders().size();
  509. return numShadowOccluders;
  510. }
  511. const OcclusionBuffer* Pipeline::getOcclusionBuffer(float aspectRatio, bool halfResolution)
  512. {
  513. // Return an occlusion buffer for debug output purposes. Do not allocate new
  514. int width = mOcclusionBufferSize;
  515. int height = (int)(mOcclusionBufferSize / aspectRatio);
  516. if (halfResolution)
  517. {
  518. width >>= 1;
  519. height >>= 1;
  520. }
  521. int searchKey = (width << 12) | height;
  522. std::map<int, SharedPtr<OcclusionBuffer> >::iterator i = mOcclusionBuffers.find(searchKey);
  523. if (i != mOcclusionBuffers.end())
  524. return i->second;
  525. else
  526. return 0;
  527. }
  528. void Pipeline::beginFrame(float timeStep)
  529. {
  530. mElapsedTime += timeStep;
  531. if (mElapsedTime >= MAX_ELAPSED_TIME)
  532. mElapsedTime -= MAX_ELAPSED_TIME;
  533. ++mFrameNumber;
  534. mFrameNumber &= M_MAX_INT;
  535. mFrame.mFrameNumber = mFrameNumber;
  536. mFrame.mTimeStep = timeStep;
  537. mFrame.mCamera = 0;
  538. mNumViews = 0;
  539. mNumSplitLights = 0;
  540. }
  541. void Pipeline::resetViews()
  542. {
  543. mViews.clear();
  544. mNumViews = 0;
  545. }
  546. void Pipeline::addView(Octree* octree, Camera* camera, RenderSurface* renderTarget)
  547. {
  548. if (mViews.size() <= mNumViews)
  549. mViews.resize(mNumViews + 1);
  550. if (!mViews[mNumViews])
  551. mViews[mNumViews] = new View(this);
  552. mViews[mNumViews]->define(octree, camera, renderTarget);
  553. ++mNumViews;
  554. }
  555. OcclusionBuffer* Pipeline::getOrCreateOcclusionBuffer(Camera& camera, int maxOccluderTriangles, bool halfResolution)
  556. {
  557. // Get an occlusion buffer matching the aspect ratio. If not found, allocate new
  558. int width = mOcclusionBufferSize;
  559. int height = (int)(mOcclusionBufferSize / camera.getAspectRatio());
  560. if (halfResolution)
  561. {
  562. width >>= 1;
  563. height >>= 1;
  564. }
  565. int searchKey = (width << 12) | height;
  566. SharedPtr<OcclusionBuffer> buffer;
  567. std::map<int, SharedPtr<OcclusionBuffer> >::iterator i = mOcclusionBuffers.find(searchKey);
  568. if (i != mOcclusionBuffers.end())
  569. buffer = i->second;
  570. else
  571. {
  572. buffer = new OcclusionBuffer();
  573. buffer->setSize(width, height);
  574. mOcclusionBuffers[searchKey] = buffer;
  575. }
  576. buffer->setView(camera);
  577. buffer->setMaxTriangles(maxOccluderTriangles);
  578. buffer->clear();
  579. return buffer;
  580. }
  581. Geometry* Pipeline::getLightGeometry(Light* light)
  582. {
  583. switch (light->getLightType())
  584. {
  585. case LIGHT_POINT:
  586. return mPointLightGeometry;
  587. case LIGHT_SPOT:
  588. case LIGHT_SPLITPOINT:
  589. return mSpotLightGeometry;
  590. default:
  591. return mDirLightGeometry;
  592. }
  593. }
  594. Texture2D* Pipeline::getShadowMap(float resolution)
  595. {
  596. if (resolution >= 0.75f)
  597. return mFullShadowMap;
  598. else if (resolution >= 0.375f)
  599. return mHalfShadowMap;
  600. else
  601. return mQuarterShadowMap;
  602. }
  603. void Pipeline::setBatchShaders(Batch& batch, MaterialTechnique* technique, MaterialPass* pass, bool allowShadows)
  604. {
  605. static std::set<Material*> errorDisplayed;
  606. batch.mTechnique = technique;
  607. batch.mPass = pass;
  608. // Check if shaders are unloaded or need reloading
  609. std::vector<SharedPtr<VertexShader> >& vertexShaders = pass->getVertexShaders();
  610. std::vector<SharedPtr<PixelShader> >& pixelShaders = pass->getPixelShaders();
  611. if ((!vertexShaders.size()) || (!pixelShaders.size()) || (technique->getShadersLoadedFrameNumber() !=
  612. mShadersChangedFrameNumber))
  613. {
  614. // First release all previous shaders, then load
  615. technique->releaseShaders();
  616. loadMaterialShaders(technique);
  617. }
  618. // Make sure shaders are loaded now
  619. if ((vertexShaders.size()) && (pixelShaders.size()))
  620. {
  621. // Recognize light pass from the amount of shaders
  622. if (pixelShaders.size() == 1)
  623. {
  624. unsigned vsi = 0;
  625. if (batch.mNode->getNodeFlags() & NODE_GEOMETRY)
  626. vsi = static_cast<GeometryNode*>(batch.mNode)->getGeometryType();
  627. batch.mVertexShader = vertexShaders[vsi];
  628. batch.mPixelShader = pixelShaders[0];
  629. }
  630. else
  631. {
  632. Light* light = batch.mForwardLight;
  633. if (!light)
  634. {
  635. // Do not log error, as it would result in a lot of spam
  636. batch.mVertexShader = 0;
  637. batch.mPixelShader = 0;
  638. return;
  639. }
  640. unsigned vsi = 0;
  641. unsigned psi = 0;
  642. if (batch.mNode->getNodeFlags() & NODE_GEOMETRY)
  643. vsi = static_cast<GeometryNode*>(batch.mNode)->getGeometryType() * MAX_LIGHT_VS_VARIATIONS;
  644. // Negative lights have no specular or shadows
  645. if (!light->isNegative())
  646. {
  647. if ((mSpecularLighting) && (light->getSpecularIntensity() > 0.0f))
  648. psi += LPS_SPEC;
  649. if ((allowShadows) && (light->getShadowMap()))
  650. {
  651. vsi += LVS_SHADOW;
  652. psi += LPS_SHADOW;
  653. }
  654. }
  655. else
  656. psi += LPS_NEGATIVE;
  657. switch (light->getLightType())
  658. {
  659. case LIGHT_POINT:
  660. case LIGHT_SPLITPOINT:
  661. psi += LPS_POINT;
  662. break;
  663. case LIGHT_SPOT:
  664. psi += LPS_SPOT;
  665. vsi += LVS_SPOT;
  666. break;
  667. }
  668. batch.mVertexShader = vertexShaders[vsi];
  669. batch.mPixelShader = pixelShaders[psi];
  670. }
  671. }
  672. // Log error if shaders could not be assigned, but only once per material
  673. if ((!batch.mVertexShader) || (!batch.mPixelShader))
  674. {
  675. Material* parentMat = technique->getParent();
  676. if (errorDisplayed.find(parentMat) == errorDisplayed.end())
  677. {
  678. errorDisplayed.insert(parentMat);
  679. LOGERROR("Material " + parentMat->getName() + " has missing shaders");
  680. }
  681. }
  682. }
  683. void Pipeline::setLightVolumeShaders(Batch& batch)
  684. {
  685. unsigned vsi = DLVS_NONE;
  686. unsigned psi = DLPS_NONE;
  687. Light* light = static_cast<Light*>(batch.mNode);
  688. switch(light->getLightType())
  689. {
  690. case LIGHT_DIRECTIONAL:
  691. vsi += DLVS_DIR;
  692. break;
  693. case LIGHT_POINT:
  694. case LIGHT_SPLITPOINT:
  695. psi += DLPS_POINT;
  696. break;
  697. case LIGHT_SPOT:
  698. psi += DLPS_SPOT;
  699. break;
  700. }
  701. if (!light->isNegative())
  702. {
  703. if (light->getShadowMap())
  704. psi += DLPS_SHADOW;
  705. if ((mSpecularLighting) && (light->getSpecularIntensity() > 0.0))
  706. psi += DLPS_SPEC;
  707. }
  708. else
  709. psi += DLPS_NEGATIVE;
  710. // Non-hardware depth & orthographic modes use linear depth, else reconstruct from z/w
  711. if (batch.mCamera->isOrthographic())
  712. {
  713. vsi += DLVS_ORTHO;
  714. psi += DLPS_ORTHO;
  715. }
  716. else if (!mRenderer->getHardwareDepthSupport())
  717. psi += DLPS_LINEAR;
  718. unsigned hwShadows = mRenderer->getHardwareShadowSupport() ? 1 : 0;
  719. if (!mLightVS[vsi])
  720. mLightVS[vsi] = getVertexShader(mLightShaderName + deferredLightVSVariations[vsi]);
  721. if (!mLightPS[psi])
  722. {
  723. unsigned variation = psi % 5;
  724. if ((variation == LPS_SHADOW) || (variation == LPS_SHADOWSPEC))
  725. mLightPS[psi] = getPixelShader(mLightShaderName + deferredLightPSVariations[psi] + shadowPSVariations[hwShadows]);
  726. else
  727. mLightPS[psi] = getPixelShader(mLightShaderName + deferredLightPSVariations[psi]);
  728. }
  729. batch.mVertexShader = mLightVS[vsi];
  730. batch.mPixelShader = mLightPS[psi];
  731. }
  732. void Pipeline::loadShaders()
  733. {
  734. PROFILE(Pipeline_LoadShaders);
  735. LOGINFO("Reloading shaders");
  736. // Release old material shaders, mark them for reload
  737. releaseMaterialShaders();
  738. mShadersChangedFrameNumber = mFrameNumber;
  739. // Load inbuilt shaders
  740. mStencilVS = getVertexShader("Stencil");
  741. mStencilPS = getPixelShader("Stencil");
  742. mLightVS.clear();
  743. mLightPS.clear();
  744. RenderMode renderMode = mRenderer->getRenderMode();
  745. if (renderMode != RENDER_FORWARD)
  746. {
  747. // There are rather many light volume shader variations, so load them later on-demand
  748. mLightVS.resize(MAX_DEFERRED_LIGHT_VS_VARIATIONS);
  749. mLightPS.resize(MAX_DEFERRED_LIGHT_PS_VARIATIONS);
  750. if (renderMode == RENDER_DEFERRED)
  751. mLightShaderName = "Deferred/Light_";
  752. else
  753. mLightShaderName = "Prepass/Light_";
  754. }
  755. // Remove shaders that are no longer referenced from the cache
  756. mCache->releaseResources(VertexShader::getTypeStatic());
  757. mCache->releaseResources(PixelShader::getTypeStatic());
  758. mShadersDirty = false;
  759. }
  760. void Pipeline::loadMaterialShaders(MaterialTechnique* technique)
  761. {
  762. loadMaterialPassShaders(technique, PASS_SHADOW);
  763. loadMaterialPassShaders(technique, PASS_POSTOPAQUE);
  764. if (mRenderer->getRenderMode() == RENDER_FORWARD)
  765. {
  766. loadMaterialPassShaders(technique, PASS_AMBIENT);
  767. loadMaterialPassShaders(technique, PASS_LIGHT);
  768. loadMaterialPassShaders(technique, PASS_NEGATIVE, false);
  769. }
  770. else
  771. {
  772. // G-Buffer pass types depend on whether deferred shading or light prepass is in use
  773. PassType gBufferPass, additionalPass;
  774. if (mRenderer->getRenderMode() == RENDER_DEFERRED)
  775. {
  776. gBufferPass = PASS_DEFERRED;
  777. additionalPass = PASS_EMISSIVE;
  778. }
  779. else
  780. {
  781. gBufferPass = PASS_PREPASS;
  782. additionalPass = PASS_MATERIAL;
  783. }
  784. if (technique->hasPass(gBufferPass))
  785. {
  786. loadMaterialPassShaders(technique, gBufferPass);
  787. loadMaterialPassShaders(technique, additionalPass);
  788. }
  789. else
  790. {
  791. loadMaterialPassShaders(technique, PASS_AMBIENT);
  792. // No shadows used in forward lighting, so do not load the shadowing shaders
  793. loadMaterialPassShaders(technique, PASS_LIGHT, false);
  794. loadMaterialPassShaders(technique, PASS_NEGATIVE, false);
  795. }
  796. }
  797. }
  798. void Pipeline::loadMaterialPassShaders(MaterialTechnique* technique, PassType pass, bool allowShadows)
  799. {
  800. std::map<PassType, MaterialPass>::iterator i = technique->mPasses.find(pass);
  801. if (i == technique->mPasses.end())
  802. return;
  803. std::string vertexShaderName = i->second.getVertexShaderName();
  804. std::string pixelShaderName = i->second.getPixelShaderName();
  805. // Check if the shader name is already a variation in itself
  806. if (vertexShaderName.find('_') == std::string::npos)
  807. vertexShaderName += "_";
  808. if (pixelShaderName.find('_') == std::string::npos)
  809. pixelShaderName += "_";
  810. // If INTZ depth is used, do not write depth into the third RT in GBuffer pass
  811. if ((pass == PASS_DEFERRED) || (pass == PASS_PREPASS))
  812. {
  813. unsigned hwDepth = mRenderer->getHardwareDepthSupport() ? 1 : 0;
  814. pixelShaderName += gBufferPSVariations[hwDepth];
  815. }
  816. // If ambient pass is not using REPLACE as the blend mode, do not load shadow shaders for the light pass
  817. if (pass == PASS_LIGHT)
  818. {
  819. if ((!technique->hasPass(PASS_AMBIENT)) || (technique->getPass(PASS_AMBIENT)->getBlendMode() != BLEND_REPLACE))
  820. allowShadows = false;
  821. }
  822. if (pass == PASS_NEGATIVE)
  823. allowShadows = false;
  824. unsigned hwShadows = mRenderer->getHardwareShadowSupport() ? 1 : 0;
  825. std::vector<SharedPtr<VertexShader> >& vertexShaders = i->second.getVertexShaders();
  826. std::vector<SharedPtr<PixelShader> >& pixelShaders = i->second.getPixelShaders();
  827. // Forget all the old shaders
  828. vertexShaders.clear();
  829. pixelShaders.clear();
  830. try
  831. {
  832. switch (i->first)
  833. {
  834. default:
  835. vertexShaders.resize(MAX_GEOMETRYTYPES);
  836. pixelShaders.resize(1);
  837. for (unsigned j = 0; j < MAX_GEOMETRYTYPES; ++j)
  838. vertexShaders[j] = getVertexShader(vertexShaderName + geometryVSVariations[j], j != 0);
  839. pixelShaders[0] = getPixelShader(pixelShaderName);
  840. break;
  841. case PASS_LIGHT:
  842. case PASS_NEGATIVE:
  843. vertexShaders.resize(MAX_GEOMETRYTYPES * MAX_LIGHT_VS_VARIATIONS);
  844. pixelShaders.resize(MAX_LIGHT_PS_VARIATIONS);
  845. for (unsigned j = 0; j < MAX_GEOMETRYTYPES * MAX_LIGHT_VS_VARIATIONS; ++j)
  846. {
  847. unsigned g = j / MAX_LIGHT_VS_VARIATIONS;
  848. unsigned l = j % MAX_LIGHT_VS_VARIATIONS;
  849. if ((!(l & LVS_SHADOW)) || (allowShadows))
  850. vertexShaders[j] = getVertexShader(vertexShaderName + lightVSVariations[l] + geometryVSVariations[g], g != 0);
  851. else
  852. vertexShaders[j].reset();
  853. }
  854. for (unsigned j = 0; j < MAX_LIGHT_PS_VARIATIONS; ++j)
  855. {
  856. unsigned variation = j % 5;
  857. if ((variation == LPS_SHADOW) || (variation == LPS_SHADOWSPEC))
  858. {
  859. if (allowShadows)
  860. pixelShaders[j] = getPixelShader(pixelShaderName + deferredLightPSVariations[j] +
  861. shadowPSVariations[hwShadows]);
  862. else
  863. pixelShaders[j].reset();
  864. }
  865. else
  866. {
  867. // For the negative pass, load only the negative version of the shader
  868. bool needed = (pass == PASS_LIGHT) ? (variation != LPS_NEGATIVE) : (variation == LPS_NEGATIVE);
  869. if (needed)
  870. pixelShaders[j] = getPixelShader(pixelShaderName + deferredLightPSVariations[j]);
  871. else
  872. pixelShaders[j].reset();
  873. }
  874. }
  875. break;
  876. }
  877. }
  878. catch (...)
  879. {
  880. }
  881. technique->markShadersLoaded(mShadersChangedFrameNumber);
  882. }
  883. void Pipeline::releaseMaterialShaders()
  884. {
  885. std::vector<Material*> materials = mCache->getResources<Material>();
  886. for (unsigned i = 0; i < materials.size(); ++i)
  887. {
  888. for (unsigned j = 0; j < materials[i]->getNumTechniques(); ++j)
  889. materials[i]->releaseShaders();
  890. }
  891. }
  892. void Pipeline::reloadTextures()
  893. {
  894. std::vector<Texture2D*> textures = mCache->getResources<Texture2D>();
  895. std::vector<TextureCube*> cubeTextures = mCache->getResources<TextureCube>();
  896. for (unsigned i = 0; i < textures.size(); ++i)
  897. mCache->reloadResource(textures[i]);
  898. for (unsigned i = 0; i < cubeTextures.size(); ++i)
  899. mCache->reloadResource(cubeTextures[i]);
  900. }
  901. void Pipeline::createGeometries()
  902. {
  903. PROFILE(Pipeline_CreateGeometries);
  904. SharedPtr<VertexBuffer> dlvb(new VertexBuffer(mRenderer));
  905. dlvb->setSize(4, MASK_POSITION);
  906. dlvb->setData(dirLightVertexData);
  907. SharedPtr<IndexBuffer> dlib(new IndexBuffer(mRenderer));
  908. dlib->setSize(6, false);
  909. dlib->setData(dirLightIndexData);
  910. mDirLightGeometry = new Geometry();
  911. mDirLightGeometry->setVertexBuffer(0, dlvb);
  912. mDirLightGeometry->setIndexBuffer(dlib);
  913. mDirLightGeometry->setDrawRange(TRIANGLE_LIST, 0, dlib->getIndexCount());
  914. SharedPtr<VertexBuffer> plvb(new VertexBuffer(mRenderer));
  915. plvb->setSize(24, MASK_POSITION);
  916. plvb->setData(pointLightVertexData);
  917. SharedPtr<IndexBuffer> plib(new IndexBuffer(mRenderer));
  918. plib->setSize(132, false);
  919. plib->setData(pointLightIndexData);
  920. mPointLightGeometry = new Geometry();
  921. mPointLightGeometry->setVertexBuffer(0, plvb);
  922. mPointLightGeometry->setIndexBuffer(plib);
  923. mPointLightGeometry->setDrawRange(TRIANGLE_LIST, 0, plib->getIndexCount());
  924. SharedPtr<VertexBuffer> slvb(new VertexBuffer(mRenderer));
  925. slvb->setSize(8, MASK_POSITION);
  926. slvb->setData(spotLightVertexData);
  927. SharedPtr<IndexBuffer> slib(new IndexBuffer(mRenderer));
  928. slib->setSize(36, false);
  929. slib->setData(spotLightIndexData);
  930. mSpotLightGeometry = new Geometry();
  931. mSpotLightGeometry->setVertexBuffer(0, slvb);
  932. mSpotLightGeometry->setIndexBuffer(slib);
  933. mSpotLightGeometry->setDrawRange(TRIANGLE_LIST, 0, slib->getIndexCount());
  934. }
  935. bool Pipeline::createShadowMaps()
  936. {
  937. PROFILE(Pipeline_CreateShadowMaps);
  938. unsigned shadowMapFormat = mShadowMapHiresDepth ? mRenderer->getHiresShadowMapFormat() : mRenderer->getShadowMapFormat();
  939. unsigned dummyColorFormat = mRenderer->getDummyColorFormat();
  940. bool hardwarePCF = mRenderer->getHardwareShadowSupport();
  941. if (shadowMapFormat == D3DFMT_UNKNOWN)
  942. return false;
  943. if (!mDrawShadows)
  944. {
  945. mFullShadowMap.reset();
  946. mHalfShadowMap.reset();
  947. mQuarterShadowMap.reset();
  948. mFullShadowMapColor.reset();
  949. mHalfShadowMapColor.reset();
  950. mQuarterShadowMapColor.reset();
  951. return true;
  952. }
  953. try
  954. {
  955. // Create shadow maps and dummy color rendertargets
  956. if (!mFullShadowMap)
  957. mFullShadowMap = new Texture2D(mRenderer, TEXTURE_DEPTHSTENCIL);
  958. mFullShadowMap->setSize(mShadowMapSize, mShadowMapSize, shadowMapFormat);
  959. mFullShadowMap->setFilterMode(hardwarePCF ? FILTER_BILINEAR : FILTER_NEAREST);
  960. if (!mHalfShadowMap)
  961. mHalfShadowMap = new Texture2D(mRenderer, TEXTURE_DEPTHSTENCIL);
  962. mHalfShadowMap->setSize(mShadowMapSize >> 1, mShadowMapSize >> 1, shadowMapFormat);
  963. mHalfShadowMap->setFilterMode(hardwarePCF ? FILTER_BILINEAR : FILTER_NEAREST);
  964. if (!mQuarterShadowMap)
  965. mQuarterShadowMap = new Texture2D(mRenderer, TEXTURE_DEPTHSTENCIL);
  966. mQuarterShadowMap->setSize(mShadowMapSize >> 2, mShadowMapSize >> 2, shadowMapFormat);
  967. mQuarterShadowMap->setFilterMode(hardwarePCF ? FILTER_BILINEAR : FILTER_NEAREST);
  968. if (!mFullShadowMapColor)
  969. mFullShadowMapColor = new Texture2D(mRenderer, TEXTURE_RENDERTARGET);
  970. mFullShadowMapColor->setSize(mShadowMapSize, mShadowMapSize, dummyColorFormat);
  971. if (!mHalfShadowMapColor)
  972. mHalfShadowMapColor = new Texture2D(mRenderer, TEXTURE_RENDERTARGET);
  973. mHalfShadowMapColor->setSize(mShadowMapSize >> 1, mShadowMapSize >> 1, dummyColorFormat);
  974. if (!mQuarterShadowMapColor)
  975. mQuarterShadowMapColor = new Texture2D(mRenderer, TEXTURE_RENDERTARGET);
  976. mQuarterShadowMapColor->setSize(mShadowMapSize >> 2, mShadowMapSize >> 2, dummyColorFormat);
  977. // Link the color rendertargets to depth rendertargets
  978. mFullShadowMap->getRenderSurface()->setLinkedRenderTarget(mFullShadowMapColor->getRenderSurface());
  979. mHalfShadowMap->getRenderSurface()->setLinkedRenderTarget(mHalfShadowMapColor->getRenderSurface());
  980. mQuarterShadowMap->getRenderSurface()->setLinkedRenderTarget(mQuarterShadowMapColor->getRenderSurface());
  981. }
  982. catch (...)
  983. {
  984. return false;
  985. }
  986. return true;
  987. }
  988. Light* Pipeline::createSplitLight(Light* original)
  989. {
  990. if (mNumSplitLights >= mSplitLightStore.size())
  991. mSplitLightStore.push_back(SharedPtr<Light>(new Light()));
  992. Light* light = mSplitLightStore[mNumSplitLights];
  993. light->copyFrom(original);
  994. mNumSplitLights++;
  995. return light;
  996. }
  997. void Pipeline::setupLightBatch(Batch& batch)
  998. {
  999. Light* light = static_cast<Light*>(batch.mNode);
  1000. const Matrix4x3* model = &light->getWorldTransform();
  1001. const Matrix4x3* view = &batch.mCamera->getInverseWorldTransform();
  1002. const Matrix4* projection = &batch.mCamera->getProjection();
  1003. light->overrideTransforms(0, *batch.mCamera, &model, &view);
  1004. float lightExtent = light->getVolumeExtent();
  1005. float lightViewDist = (light->getWorldPosition() - batch.mCamera->getWorldPosition()).getLengthFast();
  1006. mRenderer->setAlphaTest(false);
  1007. mRenderer->setBlendMode(light->isNegative() ? BLEND_MULTIPLY : BLEND_ADD);
  1008. mRenderer->setDepthWrite(false);
  1009. if (light->getLightType() == LIGHT_DIRECTIONAL)
  1010. {
  1011. // If the light does not extend to the near plane, use a stencil test. Else just draw with depth fail
  1012. if (light->getNearSplit() <= batch.mCamera->getNearClip())
  1013. {
  1014. mRenderer->setCullMode(CULL_NONE);
  1015. mRenderer->setDepthTest(CMP_GREATER);
  1016. mRenderer->setStencilTest(false);
  1017. }
  1018. else
  1019. {
  1020. Matrix4x3 nearTransform = light->getDirLightTransform(*batch.mCamera, true);
  1021. // Set state for stencil rendering
  1022. mRenderer->setColorWrite(false);
  1023. mRenderer->setCullMode(CULL_NONE);
  1024. mRenderer->setDepthTest(CMP_LESSEQUAL);
  1025. mRenderer->setStencilTest(true, CMP_ALWAYS, OP_INCR, OP_KEEP, OP_KEEP, 1);
  1026. mRenderer->setVertexShader(mStencilVS);
  1027. mRenderer->setPixelShader(mStencilPS);
  1028. mRenderer->setVertexShaderConstant(getVSRegister(VSP_MODELVIEWPROJ), (*projection) * nearTransform);
  1029. // Draw to stencil
  1030. batch.mGeometry->draw(mRenderer);
  1031. // Re-enable color write, set test for rendering the actual light
  1032. mRenderer->setColorWrite(true);
  1033. mRenderer->setDepthTest(CMP_GREATER);
  1034. mRenderer->setStencilTest(true, CMP_EQUAL, OP_ZERO, OP_KEEP, OP_ZERO, 1);
  1035. }
  1036. }
  1037. else
  1038. {
  1039. if (light->getLightType() == LIGHT_SPLITPOINT)
  1040. {
  1041. // Shadowed point light, split in 6 frustums: mask out overlapping pixels to prevent overlighting
  1042. // Check whether we should draw front or back faces
  1043. bool drawBackFaces = lightViewDist < (lightExtent + batch.mCamera->getNearClip());
  1044. mRenderer->setColorWrite(false);
  1045. mRenderer->setCullMode(drawBackFaces ? CULL_CCW : CULL_CW);
  1046. mRenderer->setDepthTest(drawBackFaces ? CMP_GREATER : CMP_LESS);
  1047. mRenderer->setStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 0);
  1048. mRenderer->setVertexShader(mStencilVS);
  1049. mRenderer->setPixelShader(mStencilPS);
  1050. mRenderer->setVertexShaderConstant(getVSRegister(VSP_MODELVIEWPROJ), (*projection) * (*view) * (*model));
  1051. // Draw the other faces to stencil to mark where we should not draw
  1052. batch.mGeometry->draw(mRenderer);
  1053. mRenderer->setColorWrite(true);
  1054. mRenderer->setCullMode(drawBackFaces ? CULL_CW : CULL_CCW);
  1055. mRenderer->setStencilTest(true, CMP_EQUAL, OP_DECR, OP_DECR, OP_KEEP, 0);
  1056. }
  1057. else
  1058. {
  1059. // If light is close to near clip plane, we might be inside light volume
  1060. if (lightViewDist < (lightExtent + batch.mCamera->getNearClip()))
  1061. {
  1062. // In this case reverse cull mode & depth test and render back faces
  1063. mRenderer->setCullMode(CULL_CW);
  1064. mRenderer->setDepthTest(CMP_GREATER);
  1065. mRenderer->setStencilTest(false);
  1066. }
  1067. else
  1068. {
  1069. // If not too close to far clip plane, write the back faces to stencil for optimization,
  1070. // then render front faces. Else just render front faces.
  1071. if (lightViewDist < (batch.mCamera->getFarClip() - lightExtent))
  1072. {
  1073. // Set state for stencil rendering
  1074. mRenderer->setColorWrite(false);
  1075. mRenderer->setCullMode(CULL_CW);
  1076. mRenderer->setDepthTest(CMP_GREATEREQUAL);
  1077. mRenderer->setStencilTest(true, CMP_ALWAYS, OP_INCR, OP_KEEP, OP_KEEP, 1);
  1078. mRenderer->setVertexShader(mStencilVS);
  1079. mRenderer->setPixelShader(mStencilPS);
  1080. mRenderer->setVertexShaderConstant(getVSRegister(VSP_MODELVIEWPROJ), (*projection) * (*view) * (*model));
  1081. // Draw to stencil
  1082. batch.mGeometry->draw(mRenderer);
  1083. // Re-enable color write, set test for rendering the actual light
  1084. mRenderer->setColorWrite(true);
  1085. mRenderer->setStencilTest(true, CMP_EQUAL, OP_ZERO, OP_KEEP, OP_ZERO, 1);
  1086. mRenderer->setCullMode(CULL_CCW);
  1087. mRenderer->setDepthTest(CMP_LESS);
  1088. }
  1089. else
  1090. {
  1091. mRenderer->setStencilTest(false);
  1092. mRenderer->setCullMode(CULL_CCW);
  1093. mRenderer->setDepthTest(CMP_LESS);
  1094. }
  1095. }
  1096. }
  1097. }
  1098. }
  1099. void Pipeline::drawFullScreenQuad(Camera& camera, VertexShader* vs, PixelShader* ps, bool nearQuad)
  1100. {
  1101. Light quadDirLight;
  1102. Matrix4x3 model = quadDirLight.getDirLightTransform(camera, nearQuad);
  1103. mRenderer->setCullMode(CULL_NONE);
  1104. mRenderer->setVertexShader(vs);
  1105. mRenderer->setPixelShader(ps);
  1106. mRenderer->setVertexShaderConstant(getVSRegister(VSP_MODELVIEWPROJ), camera.getProjection() * model);
  1107. mDirLightGeometry->draw(mRenderer);
  1108. }
  1109. void Pipeline::drawSplitLightToStencil(Camera& camera, Light* light, bool clear)
  1110. {
  1111. switch (light->getLightType())
  1112. {
  1113. case LIGHT_SPLITPOINT:
  1114. {
  1115. const Matrix4x3* model = &light->getWorldTransform();
  1116. const Matrix4x3* view = &camera.getInverseWorldTransform();
  1117. const Matrix4* projection = &camera.getProjection();
  1118. light->overrideTransforms(0, camera, &model, &view);
  1119. float lightExtent = light->getVolumeExtent();
  1120. float lightViewDist = (light->getWorldPosition() - camera.getWorldPosition()).getLengthFast();
  1121. bool drawBackFaces = lightViewDist < (lightExtent + camera.getNearClip());
  1122. mRenderer->setAlphaTest(false);
  1123. mRenderer->setColorWrite(false);
  1124. mRenderer->setDepthWrite(false);
  1125. mRenderer->setCullMode(drawBackFaces ? CULL_CW : CULL_CCW);
  1126. mRenderer->setDepthTest(drawBackFaces ? CMP_GREATER : CMP_LESS);
  1127. mRenderer->setVertexShader(mStencilVS);
  1128. mRenderer->setPixelShader(mStencilPS);
  1129. mRenderer->setVertexShaderConstant(getVSRegister(VSP_MODELVIEWPROJ), (*projection) * (*view) * (*model));
  1130. if (!clear)
  1131. {
  1132. // Draw the faces to stencil which we should draw (where no light has not been rendered yet)
  1133. mRenderer->setStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 0);
  1134. mSpotLightGeometry->draw(mRenderer);
  1135. // Draw the other faces to stencil to mark where we should not draw ("frees up" the pixels for other faces)
  1136. mRenderer->setCullMode(drawBackFaces ? CULL_CCW : CULL_CW);
  1137. mRenderer->setStencilTest(true, CMP_EQUAL, OP_DECR, OP_KEEP, OP_KEEP, 1);
  1138. mSpotLightGeometry->draw(mRenderer);
  1139. // Now set stencil test for rendering the lit geometries (also marks the pixels so that they will not be used again)
  1140. mRenderer->setStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 1);
  1141. mRenderer->setColorWrite(true);
  1142. }
  1143. else
  1144. {
  1145. // Clear the stencil by drawing the whole point light volume
  1146. mRenderer->setStencilTest(true, CMP_ALWAYS, OP_ZERO, OP_KEEP, OP_ZERO, 0);
  1147. mPointLightGeometry->draw(mRenderer);
  1148. mRenderer->setColorWrite(true);
  1149. mRenderer->setStencilTest(false);
  1150. }
  1151. }
  1152. break;
  1153. case LIGHT_DIRECTIONAL:
  1154. // If light encompasses whole frustum, no drawing to frustum necessary
  1155. if ((light->getNearSplit() <= camera.getNearClip()) && (light->getFarSplit() >= camera.getFarClip()))
  1156. return;
  1157. else
  1158. {
  1159. const Matrix4& projection = camera.getProjection();
  1160. Matrix4x3 nearTransform = light->getDirLightTransform(camera, true);
  1161. Matrix4x3 farTransform = light->getDirLightTransform(camera, false);
  1162. mRenderer->setAlphaTest(false);
  1163. mRenderer->setColorWrite(false);
  1164. mRenderer->setDepthWrite(false);
  1165. mRenderer->setCullMode(CULL_NONE);
  1166. if (!clear)
  1167. {
  1168. // If the split begins at the near plane (first split), draw at split far plane
  1169. if (light->getNearSplit() <= camera.getNearClip())
  1170. {
  1171. mRenderer->setDepthTest(CMP_GREATEREQUAL);
  1172. mRenderer->setVertexShader(mStencilVS);
  1173. mRenderer->setPixelShader(mStencilPS);
  1174. mRenderer->setVertexShaderConstant(getVSRegister(VSP_MODELVIEWPROJ), projection * farTransform);
  1175. mRenderer->setStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1176. }
  1177. // Otherwise draw at split near plane
  1178. else
  1179. {
  1180. mRenderer->setDepthTest(CMP_LESSEQUAL);
  1181. mRenderer->setVertexShader(mStencilVS);
  1182. mRenderer->setPixelShader(mStencilPS);
  1183. mRenderer->setVertexShaderConstant(getVSRegister(VSP_MODELVIEWPROJ), projection * nearTransform);
  1184. mRenderer->setStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1185. }
  1186. mDirLightGeometry->draw(mRenderer);
  1187. mRenderer->setColorWrite(true);
  1188. mRenderer->setStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 1);
  1189. }
  1190. else
  1191. {
  1192. // Clear the stencil by drawing at the far plane (assumed to be the last and most distant split)
  1193. mRenderer->setDepthTest(CMP_GREATER);
  1194. mRenderer->setVertexShader(mStencilVS);
  1195. mRenderer->setPixelShader(mStencilPS);
  1196. mRenderer->setVertexShaderConstant(getVSRegister(VSP_MODELVIEWPROJ), projection * farTransform);
  1197. mRenderer->setStencilTest(true, CMP_ALWAYS, OP_ZERO, OP_KEEP, OP_ZERO, 0);
  1198. mDirLightGeometry->draw(mRenderer);
  1199. mRenderer->setColorWrite(true);
  1200. mRenderer->setStencilTest(false);
  1201. }
  1202. }
  1203. }
  1204. }
  1205. void Pipeline::handleWindowResized(StringHash eventType, VariantMap& eventData)
  1206. {
  1207. // When screen mode changes, reload shaders and purge old views and occlusion buffers
  1208. mShadersDirty = true;
  1209. mOcclusionBuffers.clear();
  1210. resetViews();
  1211. }