View.cpp 97 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "ResourceCache.h"
  35. #include "PostProcess.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Sort.h"
  40. #include "Technique.h"
  41. #include "Texture2D.h"
  42. #include "TextureCube.h"
  43. #include "VertexBuffer.h"
  44. #include "View.h"
  45. #include "WorkQueue.h"
  46. #include "Zone.h"
  47. #include "DebugNew.h"
  48. static const Vector3 directions[] =
  49. {
  50. Vector3(1.0f, 0.0f, 0.0f),
  51. Vector3(-1.0f, 0.0f, 0.0f),
  52. Vector3(0.0f, 1.0f, 0.0f),
  53. Vector3(0.0f, -1.0f, 0.0f),
  54. Vector3(0.0f, 0.0f, 1.0f),
  55. Vector3(0.0f, 0.0f, -1.0f)
  56. };
  57. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  58. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  59. {
  60. View* view = reinterpret_cast<View*>(item->aux_);
  61. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  62. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  63. OcclusionBuffer* buffer = view->occlusionBuffer_;
  64. while (start != end)
  65. {
  66. Drawable* drawable = *start;
  67. unsigned char flags = drawable->GetDrawableFlags();
  68. ++start;
  69. if (flags & DRAWABLE_ZONE)
  70. continue;
  71. drawable->UpdateDistance(view->frame_);
  72. // If draw distance non-zero, check it
  73. float maxDistance = drawable->GetDrawDistance();
  74. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  75. continue;
  76. if (buffer && drawable->IsOccludee() && !buffer->IsVisible(drawable->GetWorldBoundingBox()))
  77. continue;
  78. drawable->MarkInView(view->frame_);
  79. // For geometries, clear lights and find new zone if necessary
  80. if (flags & DRAWABLE_GEOMETRY)
  81. {
  82. drawable->ClearLights();
  83. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  84. view->FindZone(drawable, threadIndex);
  85. }
  86. }
  87. }
  88. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  89. {
  90. View* view = reinterpret_cast<View*>(item->aux_);
  91. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  92. view->ProcessLight(*query, threadIndex);
  93. }
  94. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  95. {
  96. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  97. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  98. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  99. while (start != end)
  100. {
  101. Drawable* drawable = *start;
  102. drawable->UpdateGeometry(frame);
  103. ++start;
  104. }
  105. }
  106. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  107. {
  108. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  109. queue->SortFrontToBack();
  110. }
  111. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  112. {
  113. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  114. queue->SortBackToFront();
  115. }
  116. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  117. {
  118. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  119. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  120. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  121. start->litBatches_.SortFrontToBack();
  122. }
  123. OBJECTTYPESTATIC(View);
  124. View::View(Context* context) :
  125. Object(context),
  126. graphics_(GetSubsystem<Graphics>()),
  127. renderer_(GetSubsystem<Renderer>()),
  128. octree_(0),
  129. camera_(0),
  130. cameraZone_(0),
  131. farClipZone_(0),
  132. renderTarget_(0)
  133. {
  134. frame_.camera_ = 0;
  135. // Create octree query vectors for each thread
  136. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  137. tempZones_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  138. }
  139. View::~View()
  140. {
  141. }
  142. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  143. {
  144. Scene* scene = viewport->GetScene();
  145. Camera* camera = viewport->GetCamera();
  146. if (!scene || !camera)
  147. return false;
  148. // If scene is loading asynchronously, it is incomplete and should not be rendered
  149. if (scene->IsAsyncLoading())
  150. return false;
  151. Octree* octree = scene->GetComponent<Octree>();
  152. if (!octree)
  153. return false;
  154. lightPrepass_ = renderer_->GetLightPrepass();
  155. octree_ = octree;
  156. camera_ = camera;
  157. renderTarget_ = renderTarget;
  158. // Get active post-processing effects on the viewport
  159. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  160. postProcesses_.Clear();
  161. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  162. {
  163. PostProcess* effect = i->Get();
  164. if (effect && effect->IsActive())
  165. postProcesses_.Push(*i);
  166. }
  167. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  168. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  169. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  170. const IntRect& rect = viewport->GetRect();
  171. if (rect != IntRect::ZERO)
  172. {
  173. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  174. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  175. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  176. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  177. }
  178. else
  179. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  180. viewSize_ = IntVector2(viewRect_.right_ - viewRect_.left_, viewRect_.bottom_ - viewRect_.top_);
  181. rtSize_ = IntVector2(rtWidth, rtHeight);
  182. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  183. #ifdef USE_OPENGL
  184. if (renderTarget_)
  185. {
  186. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  187. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  188. }
  189. #endif
  190. drawShadows_ = renderer_->GetDrawShadows();
  191. materialQuality_ = renderer_->GetMaterialQuality();
  192. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  193. // Set possible quality overrides from the camera
  194. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  195. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  196. materialQuality_ = QUALITY_LOW;
  197. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  198. drawShadows_ = false;
  199. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  200. maxOccluderTriangles_ = 0;
  201. return true;
  202. }
  203. void View::Update(const FrameInfo& frame)
  204. {
  205. if (!camera_ || !octree_)
  206. return;
  207. frame_.camera_ = camera_;
  208. frame_.timeStep_ = frame.timeStep_;
  209. frame_.frameNumber_ = frame.frameNumber_;
  210. frame_.viewSize_ = viewSize_;
  211. // Clear screen buffers, old light scissor cache, geometry, light, occluder & batch lists
  212. screenBuffers_.Clear();
  213. lightScissorCache_.Clear();
  214. geometries_.Clear();
  215. allGeometries_.Clear();
  216. geometryDepthBounds_.Clear();
  217. lights_.Clear();
  218. zones_.Clear();
  219. occluders_.Clear();
  220. baseQueue_.Clear();
  221. preAlphaQueue_.Clear();
  222. gbufferQueue_.Clear();
  223. alphaQueue_.Clear();
  224. postAlphaQueue_.Clear();
  225. lightQueues_.Clear();
  226. vertexLightQueues_.Clear();
  227. // Do not update if camera projection is illegal
  228. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  229. if (!camera_->IsProjectionValid())
  230. return;
  231. // Set automatic aspect ratio if required
  232. if (camera_->GetAutoAspectRatio())
  233. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  234. // Cache the camera frustum to avoid recalculating it constantly
  235. frustum_ = camera_->GetFrustum();
  236. GetDrawables();
  237. GetBatches();
  238. UpdateGeometries();
  239. }
  240. void View::Render()
  241. {
  242. if (!octree_ || !camera_)
  243. return;
  244. // Allocate screen buffers for post-processing and blitting as necessary
  245. AllocateScreenBuffers();
  246. // Forget parameter sources from the previous view
  247. graphics_->ClearParameterSources();
  248. // If stream offset is supported, write all instance transforms to a single large buffer
  249. // Else we must lock the instance buffer for each batch group
  250. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  251. PrepareInstancingBuffer();
  252. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  253. // again to ensure correct projection will be used
  254. if (camera_->GetAutoAspectRatio())
  255. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  256. graphics_->SetColorWrite(true);
  257. graphics_->SetFillMode(FILL_SOLID);
  258. // Bind the face selection and indirection cube maps for point light shadows
  259. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  260. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  261. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  262. // ie. when using light pre-pass and/or doing post-processing
  263. if (renderTarget_)
  264. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  265. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  266. // as a render texture produced on Direct3D9
  267. #ifdef USE_OPENGL
  268. if (renderTarget_)
  269. camera_->SetFlipVertical(true);
  270. #endif
  271. // Render
  272. if (lightPrepass_)
  273. RenderBatchesLightPrepass();
  274. else
  275. RenderBatchesForward();
  276. #ifdef USE_OPENGL
  277. camera_->SetFlipVertical(false);
  278. #endif
  279. graphics_->SetViewTexture(0);
  280. graphics_->SetScissorTest(false);
  281. graphics_->SetStencilTest(false);
  282. graphics_->ResetStreamFrequencies();
  283. // Run post-processes or framebuffer blitting now
  284. if (screenBuffers_.Size())
  285. {
  286. if (postProcesses_.Size())
  287. RunPostProcesses();
  288. else
  289. BlitFramebuffer();
  290. }
  291. // If this is a main view, draw the associated debug geometry now
  292. if (!renderTarget_)
  293. {
  294. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  295. if (scene)
  296. {
  297. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  298. if (debug)
  299. {
  300. debug->SetView(camera_);
  301. debug->Render();
  302. }
  303. }
  304. }
  305. // "Forget" the camera, octree and zone after rendering
  306. camera_ = 0;
  307. octree_ = 0;
  308. cameraZone_ = 0;
  309. farClipZone_ = 0;
  310. occlusionBuffer_ = 0;
  311. frame_.camera_ = 0;
  312. }
  313. void View::GetDrawables()
  314. {
  315. PROFILE(GetDrawables);
  316. WorkQueue* queue = GetSubsystem<WorkQueue>();
  317. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  318. // Perform one octree query to get everything, then examine the results
  319. FrustumOctreeQuery query(tempDrawables, frustum_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT | DRAWABLE_ZONE);
  320. octree_->GetDrawables(query);
  321. // Get zones and occluders first
  322. highestZonePriority_ = M_MIN_INT;
  323. int bestPriority = M_MIN_INT;
  324. Vector3 cameraPos = camera_->GetWorldPosition();
  325. // Get default zone first in case we do not have zones defined
  326. Zone* defaultZone = renderer_->GetDefaultZone();
  327. cameraZone_ = farClipZone_ = defaultZone;
  328. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  329. {
  330. Drawable* drawable = *i;
  331. unsigned char flags = drawable->GetDrawableFlags();
  332. if (flags & DRAWABLE_ZONE)
  333. {
  334. Zone* zone = static_cast<Zone*>(drawable);
  335. zones_.Push(zone);
  336. int priority = zone->GetPriority();
  337. if (priority > highestZonePriority_)
  338. highestZonePriority_ = priority;
  339. if (zone->IsInside(cameraPos) && priority > bestPriority)
  340. {
  341. cameraZone_ = zone;
  342. bestPriority = priority;
  343. }
  344. }
  345. else if (flags & DRAWABLE_GEOMETRY && drawable->IsOccluder())
  346. occluders_.Push(drawable);
  347. }
  348. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  349. cameraZoneOverride_ = cameraZone_->GetOverride();
  350. if (!cameraZoneOverride_)
  351. {
  352. Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0, 0, camera_->GetFarClip());
  353. bestPriority = M_MIN_INT;
  354. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  355. {
  356. int priority = (*i)->GetPriority();
  357. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  358. {
  359. farClipZone_ = *i;
  360. bestPriority = priority;
  361. }
  362. }
  363. }
  364. if (farClipZone_ == defaultZone)
  365. farClipZone_ = cameraZone_;
  366. // If occlusion in use, get & render the occluders
  367. occlusionBuffer_ = 0;
  368. if (maxOccluderTriangles_ > 0)
  369. {
  370. UpdateOccluders(occluders_, camera_);
  371. if (occluders_.Size())
  372. {
  373. PROFILE(DrawOcclusion);
  374. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  375. DrawOccluders(occlusionBuffer_, occluders_);
  376. }
  377. }
  378. // Check visibility and find zones for moved drawables in worker threads
  379. {
  380. WorkItem item;
  381. item.workFunction_ = CheckVisibilityWork;
  382. item.aux_ = this;
  383. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  384. while (start != tempDrawables.End())
  385. {
  386. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  387. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  388. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  389. item.start_ = &(*start);
  390. item.end_ = &(*end);
  391. queue->AddWorkItem(item);
  392. start = end;
  393. }
  394. queue->Complete();
  395. }
  396. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  397. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  398. sceneBox_.defined_ = false;
  399. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  400. sceneViewBox_.defined_ = false;
  401. Matrix3x4 view(camera_->GetInverseWorldTransform());
  402. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  403. {
  404. Drawable* drawable = tempDrawables[i];
  405. unsigned char flags = drawable->GetDrawableFlags();
  406. if (flags & DRAWABLE_ZONE || !drawable->IsInView(frame_))
  407. continue;
  408. if (flags & DRAWABLE_GEOMETRY)
  409. {
  410. // Expand the scene bounding boxes. However, do not take "infinite" objects such as the skybox into account,
  411. // as the bounding boxes are also used for shadow focusing
  412. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  413. BoundingBox geomViewBox = geomBox.Transformed(view);
  414. if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
  415. {
  416. sceneBox_.Merge(geomBox);
  417. sceneViewBox_.Merge(geomViewBox);
  418. }
  419. // Store depth info for split directional light queries
  420. GeometryDepthBounds bounds;
  421. bounds.min_ = geomViewBox.min_.z_;
  422. bounds.max_ = geomViewBox.max_.z_;
  423. geometryDepthBounds_.Push(bounds);
  424. geometries_.Push(drawable);
  425. allGeometries_.Push(drawable);
  426. }
  427. else if (flags & DRAWABLE_LIGHT)
  428. {
  429. Light* light = static_cast<Light*>(drawable);
  430. // Skip lights with no intensity
  431. if (light->GetColor().Intensity() > 0.0f)
  432. lights_.Push(light);
  433. }
  434. }
  435. // Sort the lights to brightest/closest first
  436. for (unsigned i = 0; i < lights_.Size(); ++i)
  437. {
  438. Light* light = lights_[i];
  439. light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
  440. }
  441. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  442. }
  443. void View::GetBatches()
  444. {
  445. WorkQueue* queue = GetSubsystem<WorkQueue>();
  446. // Process lit geometries and shadow casters for each light
  447. {
  448. PROFILE_MULTIPLE(ProcessLights, lights_.Size());
  449. lightQueryResults_.Resize(lights_.Size());
  450. WorkItem item;
  451. item.workFunction_ = ProcessLightWork;
  452. item.aux_ = this;
  453. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  454. {
  455. LightQueryResult& query = lightQueryResults_[i];
  456. query.light_ = lights_[i];
  457. item.start_ = &query;
  458. queue->AddWorkItem(item);
  459. }
  460. // Ensure all lights have been processed before proceeding
  461. queue->Complete();
  462. }
  463. // Build light queues and lit batches
  464. {
  465. maxLightsDrawables_.Clear();
  466. lightQueueMapping_.Clear();
  467. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  468. {
  469. const LightQueryResult& query = *i;
  470. // If light has no affected geometries, no need to process further
  471. if (query.litGeometries_.Empty())
  472. continue;
  473. PROFILE(GetLightBatches);
  474. Light* light = query.light_;
  475. // Per-pixel light
  476. if (!light->GetPerVertex())
  477. {
  478. unsigned shadowSplits = query.numSplits_;
  479. // Initialize light queue. Store light-to-queue mapping so that the queue can be found later
  480. lightQueues_.Resize(lightQueues_.Size() + 1);
  481. LightBatchQueue& lightQueue = lightQueues_.Back();
  482. lightQueueMapping_[light] = &lightQueue;
  483. lightQueue.light_ = light;
  484. lightQueue.litBatches_.Clear();
  485. lightQueue.volumeBatches_.Clear();
  486. // Allocate shadow map now
  487. lightQueue.shadowMap_ = 0;
  488. if (shadowSplits > 0)
  489. {
  490. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  491. // If did not manage to get a shadow map, convert the light to unshadowed
  492. if (!lightQueue.shadowMap_)
  493. shadowSplits = 0;
  494. }
  495. // Setup shadow batch queues
  496. lightQueue.shadowSplits_.Resize(shadowSplits);
  497. for (unsigned j = 0; j < shadowSplits; ++j)
  498. {
  499. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  500. Camera* shadowCamera = query.shadowCameras_[j];
  501. shadowQueue.shadowCamera_ = shadowCamera;
  502. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  503. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  504. // Setup the shadow split viewport and finalize shadow camera parameters
  505. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  506. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  507. // Loop through shadow casters
  508. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  509. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  510. {
  511. Drawable* drawable = *k;
  512. if (!drawable->IsInView(frame_, false))
  513. {
  514. drawable->MarkInView(frame_, false);
  515. allGeometries_.Push(drawable);
  516. }
  517. unsigned numBatches = drawable->GetNumBatches();
  518. for (unsigned l = 0; l < numBatches; ++l)
  519. {
  520. Batch shadowBatch;
  521. drawable->GetBatch(shadowBatch, frame_, l);
  522. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  523. if (!shadowBatch.geometry_ || !tech)
  524. continue;
  525. Pass* pass = tech->GetPass(PASS_SHADOW);
  526. // Skip if material has no shadow pass
  527. if (!pass)
  528. continue;
  529. // Fill the rest of the batch
  530. shadowBatch.camera_ = shadowCamera;
  531. shadowBatch.zone_ = GetZone(drawable);
  532. shadowBatch.lightQueue_ = &lightQueue;
  533. FinalizeBatch(shadowBatch, tech, pass);
  534. shadowQueue.shadowBatches_.AddBatch(shadowBatch);
  535. }
  536. }
  537. }
  538. // Process lit geometries
  539. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  540. {
  541. Drawable* drawable = *j;
  542. drawable->AddLight(light);
  543. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  544. if (!drawable->GetMaxLights())
  545. GetLitBatches(drawable, lightQueue);
  546. else
  547. maxLightsDrawables_.Insert(drawable);
  548. }
  549. // In light pre-pass mode, store the light volume batch now
  550. if (lightPrepass_)
  551. {
  552. Batch volumeBatch;
  553. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  554. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  555. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  556. volumeBatch.camera_ = camera_;
  557. volumeBatch.lightQueue_ = &lightQueue;
  558. volumeBatch.distance_ = light->GetDistance();
  559. volumeBatch.material_ = 0;
  560. volumeBatch.pass_ = 0;
  561. volumeBatch.zone_ = 0;
  562. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  563. lightQueue.volumeBatches_.Push(volumeBatch);
  564. }
  565. }
  566. // Per-vertex light
  567. else
  568. {
  569. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  570. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  571. {
  572. Drawable* drawable = *j;
  573. drawable->AddVertexLight(light);
  574. }
  575. }
  576. }
  577. }
  578. // Process drawables with limited per-pixel light count
  579. if (maxLightsDrawables_.Size())
  580. {
  581. PROFILE(GetMaxLightsBatches);
  582. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  583. {
  584. Drawable* drawable = *i;
  585. drawable->LimitLights();
  586. const PODVector<Light*>& lights = drawable->GetLights();
  587. for (unsigned i = 0; i < lights.Size(); ++i)
  588. {
  589. Light* light = lights[i];
  590. // Find the correct light queue again
  591. Map<Light*, LightBatchQueue*>::Iterator j = lightQueueMapping_.Find(light);
  592. if (j != lightQueueMapping_.End())
  593. GetLitBatches(drawable, *(j->second_));
  594. }
  595. }
  596. }
  597. // Build base pass batches
  598. {
  599. PROFILE(GetBaseBatches);
  600. hasZeroLightMask_ = false;
  601. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  602. {
  603. Drawable* drawable = *i;
  604. unsigned numBatches = drawable->GetNumBatches();
  605. bool vertexLightsProcessed = false;
  606. for (unsigned j = 0; j < numBatches; ++j)
  607. {
  608. Batch baseBatch;
  609. drawable->GetBatch(baseBatch, frame_, j);
  610. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  611. if (!baseBatch.geometry_ || !tech)
  612. continue;
  613. // Check here if the material technique refers to a rendertarget texture with camera(s) attached
  614. // Only check this for the main view (null rendertarget)
  615. if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
  616. CheckMaterialForAuxView(baseBatch.material_);
  617. // Fill the rest of the batch
  618. baseBatch.camera_ = camera_;
  619. baseBatch.zone_ = GetZone(drawable);
  620. baseBatch.isBase_ = true;
  621. Pass* pass = 0;
  622. // In light prepass mode check for G-buffer and material passes first
  623. if (lightPrepass_)
  624. {
  625. pass = tech->GetPass(PASS_GBUFFER);
  626. if (pass)
  627. {
  628. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  629. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  630. hasZeroLightMask_ = true;
  631. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  632. baseBatch.lightMask_ = GetLightMask(drawable);
  633. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  634. gbufferQueue_.AddBatch(baseBatch);
  635. pass = tech->GetPass(PASS_MATERIAL);
  636. }
  637. }
  638. // Next check for forward base pass
  639. if (!pass)
  640. {
  641. // Skip if a lit base pass already exists
  642. if (j < 32 && drawable->HasBasePass(j))
  643. continue;
  644. pass = tech->GetPass(PASS_BASE);
  645. }
  646. if (pass)
  647. {
  648. // Check for vertex lights (both forward unlit and light pre-pass material pass)
  649. const PODVector<Light*>& vertexLights = drawable->GetVertexLights();
  650. if (!vertexLights.Empty())
  651. {
  652. // In light pre-pass mode, check if this is an opaque object that has converted its lights to per-vertex
  653. // due to overflowing the pixel light count. These need to be skipped as the per-pixel accumulation
  654. // already renders the light
  655. /// \todo Sub-geometries might need different interpretation if opaque & alpha are mixed
  656. if (!vertexLightsProcessed)
  657. {
  658. drawable->LimitVertexLights(lightPrepass_ && pass->GetBlendMode() == BLEND_REPLACE);
  659. vertexLightsProcessed = true;
  660. }
  661. // The vertex light vector possibly became empty, so re-check
  662. if (!vertexLights.Empty())
  663. {
  664. // Find a vertex light queue. If not found, create new
  665. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  666. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  667. if (i == vertexLightQueues_.End())
  668. {
  669. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  670. i->second_.light_ = 0;
  671. i->second_.shadowMap_ = 0;
  672. i->second_.vertexLights_ = vertexLights;
  673. }
  674. baseBatch.lightQueue_ = &(i->second_);
  675. }
  676. }
  677. if (pass->GetBlendMode() == BLEND_REPLACE)
  678. {
  679. FinalizeBatch(baseBatch, tech, pass);
  680. baseQueue_.AddBatch(baseBatch);
  681. }
  682. else
  683. {
  684. // Transparent batches can not be instanced
  685. FinalizeBatch(baseBatch, tech, pass, false);
  686. alphaQueue_.AddBatch(baseBatch);
  687. }
  688. continue;
  689. }
  690. // If no base pass, finally check for pre-alpha / post-alpha custom passes
  691. pass = tech->GetPass(PASS_PREALPHA);
  692. if (pass)
  693. {
  694. FinalizeBatch(baseBatch, tech, pass);
  695. preAlphaQueue_.AddBatch(baseBatch);
  696. continue;
  697. }
  698. pass = tech->GetPass(PASS_POSTALPHA);
  699. if (pass)
  700. {
  701. // Post-alpha pass is treated similarly as alpha, and is not instanced
  702. FinalizeBatch(baseBatch, tech, pass, false);
  703. postAlphaQueue_.AddBatch(baseBatch);
  704. continue;
  705. }
  706. }
  707. }
  708. }
  709. }
  710. void View::UpdateGeometries()
  711. {
  712. PROFILE(UpdateGeometries);
  713. WorkQueue* queue = GetSubsystem<WorkQueue>();
  714. // Sort batches
  715. {
  716. WorkItem item;
  717. item.workFunction_ = SortBatchQueueFrontToBackWork;
  718. item.start_ = &baseQueue_;
  719. queue->AddWorkItem(item);
  720. item.start_ = &preAlphaQueue_;
  721. queue->AddWorkItem(item);
  722. if (lightPrepass_)
  723. {
  724. item.start_ = &gbufferQueue_;
  725. queue->AddWorkItem(item);
  726. }
  727. item.workFunction_ = SortBatchQueueBackToFrontWork;
  728. item.start_ = &alphaQueue_;
  729. queue->AddWorkItem(item);
  730. item.start_ = &postAlphaQueue_;
  731. queue->AddWorkItem(item);
  732. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  733. {
  734. item.workFunction_ = SortLightQueueWork;
  735. item.start_ = &(*i);
  736. queue->AddWorkItem(item);
  737. }
  738. }
  739. // Update geometries. Split into threaded and non-threaded updates.
  740. {
  741. nonThreadedGeometries_.Clear();
  742. threadedGeometries_.Clear();
  743. for (PODVector<Drawable*>::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i)
  744. {
  745. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  746. if (type == UPDATE_MAIN_THREAD)
  747. nonThreadedGeometries_.Push(*i);
  748. else if (type == UPDATE_WORKER_THREAD)
  749. threadedGeometries_.Push(*i);
  750. }
  751. if (threadedGeometries_.Size())
  752. {
  753. WorkItem item;
  754. item.workFunction_ = UpdateDrawableGeometriesWork;
  755. item.aux_ = const_cast<FrameInfo*>(&frame_);
  756. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  757. while (start != threadedGeometries_.End())
  758. {
  759. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  760. if (end - start > DRAWABLES_PER_WORK_ITEM)
  761. end = start + DRAWABLES_PER_WORK_ITEM;
  762. item.start_ = &(*start);
  763. item.end_ = &(*end);
  764. queue->AddWorkItem(item);
  765. start = end;
  766. }
  767. }
  768. // While the work queue is processed, update non-threaded geometries
  769. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  770. (*i)->UpdateGeometry(frame_);
  771. }
  772. // Finally ensure all threaded work has completed
  773. queue->Complete();
  774. }
  775. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  776. {
  777. Light* light = lightQueue.light_;
  778. Light* firstLight = drawable->GetFirstLight();
  779. Zone* zone = GetZone(drawable);
  780. // Shadows on transparencies can only be rendered if shadow maps are not reused
  781. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  782. bool hasVertexLights = drawable->GetVertexLights().Size() > 0;
  783. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  784. unsigned numBatches = drawable->GetNumBatches();
  785. for (unsigned i = 0; i < numBatches; ++i)
  786. {
  787. Batch litBatch;
  788. drawable->GetBatch(litBatch, frame_, i);
  789. Technique* tech = GetTechnique(drawable, litBatch.material_);
  790. if (!litBatch.geometry_ || !tech)
  791. continue;
  792. // Do not create pixel lit forward passes for materials that render into the G-buffer
  793. if (lightPrepass_ && tech->HasPass(PASS_GBUFFER))
  794. continue;
  795. Pass* pass = 0;
  796. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  797. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  798. if (i < 32 && light == firstLight && !hasVertexLights && !hasAmbientGradient && !drawable->HasBasePass(i))
  799. {
  800. pass = tech->GetPass(PASS_LITBASE);
  801. if (pass)
  802. {
  803. litBatch.isBase_ = true;
  804. drawable->SetBasePass(i);
  805. }
  806. }
  807. // If no lit base pass, get ordinary light pass
  808. if (!pass)
  809. pass = tech->GetPass(PASS_LIGHT);
  810. // Skip if material does not receive light at all
  811. if (!pass)
  812. continue;
  813. // Fill the rest of the batch
  814. litBatch.camera_ = camera_;
  815. litBatch.lightQueue_ = &lightQueue;
  816. litBatch.zone_ = GetZone(drawable);
  817. // Check from the ambient pass whether the object is opaque or transparent
  818. Pass* ambientPass = tech->GetPass(PASS_BASE);
  819. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  820. {
  821. FinalizeBatch(litBatch, tech, pass);
  822. lightQueue.litBatches_.AddBatch(litBatch);
  823. }
  824. else
  825. {
  826. // Transparent batches can not be instanced
  827. FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows);
  828. alphaQueue_.AddBatch(litBatch);
  829. }
  830. }
  831. }
  832. void View::RenderBatchesForward()
  833. {
  834. // Reset the light optimization stencil reference value
  835. lightStencilValue_ = 1;
  836. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  837. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  838. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  839. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  840. // If not reusing shadowmaps, render all of them first
  841. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  842. {
  843. PROFILE(RenderShadowMaps);
  844. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  845. {
  846. if (i->shadowMap_)
  847. RenderShadowMap(*i);
  848. }
  849. }
  850. graphics_->SetRenderTarget(0, renderTarget);
  851. graphics_->SetDepthStencil(depthStencil);
  852. graphics_->SetViewport(viewRect_);
  853. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, farClipZone_->GetFogColor());
  854. if (!baseQueue_.IsEmpty())
  855. {
  856. // Render opaque object unlit base pass
  857. PROFILE(RenderBase);
  858. RenderBatchQueue(baseQueue_);
  859. }
  860. if (!lightQueues_.Empty())
  861. {
  862. // Render shadow maps + opaque objects' additive lighting
  863. PROFILE(RenderLights);
  864. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  865. {
  866. // If reusing shadowmaps, render each of them before the lit batches
  867. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  868. {
  869. RenderShadowMap(*i);
  870. graphics_->SetRenderTarget(0, renderTarget);
  871. graphics_->SetDepthStencil(depthStencil);
  872. graphics_->SetViewport(viewRect_);
  873. }
  874. RenderLightBatchQueue(i->litBatches_, i->light_);
  875. }
  876. }
  877. graphics_->SetScissorTest(false);
  878. graphics_->SetStencilTest(false);
  879. graphics_->SetRenderTarget(0, renderTarget);
  880. graphics_->SetDepthStencil(depthStencil);
  881. graphics_->SetViewport(viewRect_);
  882. if (!preAlphaQueue_.IsEmpty())
  883. {
  884. // Render pre-alpha custom pass
  885. PROFILE(RenderPreAlpha);
  886. RenderBatchQueue(preAlphaQueue_);
  887. }
  888. if (!alphaQueue_.IsEmpty())
  889. {
  890. // Render transparent objects (both base passes & additive lighting)
  891. PROFILE(RenderAlpha);
  892. RenderBatchQueue(alphaQueue_, true);
  893. }
  894. if (!postAlphaQueue_.IsEmpty())
  895. {
  896. // Render pre-alpha custom pass
  897. PROFILE(RenderPostAlpha);
  898. RenderBatchQueue(postAlphaQueue_);
  899. }
  900. // Resolve multisampled backbuffer now if necessary
  901. if (resolve)
  902. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  903. }
  904. void View::RenderBatchesLightPrepass()
  905. {
  906. // If not reusing shadowmaps, render all of them first
  907. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  908. {
  909. PROFILE(RenderShadowMaps);
  910. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  911. {
  912. if (i->shadowMap_)
  913. RenderShadowMap(*i);
  914. }
  915. }
  916. bool hwDepth = graphics_->GetHardwareDepthSupport();
  917. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  918. Texture2D* lightBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  919. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  920. Graphics::GetLinearDepthFormat());
  921. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  922. RenderSurface* depthStencil;
  923. // Hardware depth support: render to RGBA normal buffer and read hardware depth
  924. if (hwDepth)
  925. {
  926. depthStencil = depthBuffer->GetRenderSurface();
  927. graphics_->SetRenderTarget(0, normalBuffer);
  928. }
  929. // No hardware depth support: render to RGBA normal buffer and R32F depth
  930. else
  931. {
  932. depthStencil = renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  933. graphics_->SetRenderTarget(0, normalBuffer);
  934. graphics_->SetRenderTarget(1, depthBuffer);
  935. }
  936. graphics_->SetDepthStencil(depthStencil);
  937. graphics_->SetViewport(viewRect_);
  938. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  939. if (!gbufferQueue_.IsEmpty())
  940. {
  941. // Render G-buffer batches
  942. PROFILE(RenderGBuffer);
  943. RenderBatchQueue(gbufferQueue_);
  944. }
  945. // Clear the light accumulation buffer. However, skip the clear if the first light is a directional light with full mask
  946. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  947. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  948. graphics_->ResetRenderTarget(1);
  949. graphics_->SetRenderTarget(0, lightBuffer);
  950. graphics_->SetDepthStencil(depthStencil);
  951. graphics_->SetViewport(viewRect_);
  952. if (!optimizeLightBuffer)
  953. graphics_->Clear(CLEAR_COLOR);
  954. if (!lightQueues_.Empty())
  955. {
  956. // Render shadow maps + light volumes
  957. PROFILE(RenderLights);
  958. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  959. {
  960. // If reusing shadowmaps, render each of them before the lit batches
  961. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  962. {
  963. RenderShadowMap(*i);
  964. graphics_->SetRenderTarget(0, lightBuffer);
  965. graphics_->SetDepthStencil(depthStencil);
  966. graphics_->SetViewport(viewRect_);
  967. }
  968. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  969. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  970. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  971. {
  972. SetupLightVolumeBatch(i->volumeBatches_[j]);
  973. i->volumeBatches_[j].Draw(graphics_, renderer_);
  974. }
  975. }
  976. }
  977. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  978. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  979. // Clear destination rendertarget with fog color
  980. graphics_->SetAlphaTest(false);
  981. graphics_->SetBlendMode(BLEND_REPLACE);
  982. graphics_->SetColorWrite(true);
  983. graphics_->SetDepthTest(CMP_ALWAYS);
  984. graphics_->SetDepthWrite(false);
  985. graphics_->SetScissorTest(false);
  986. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  987. graphics_->SetRenderTarget(0, renderTarget);
  988. graphics_->SetDepthStencil(depthStencil);
  989. graphics_->SetViewport(viewRect_);
  990. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  991. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  992. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  993. DrawFullscreenQuad(camera_, false);
  994. if (!baseQueue_.IsEmpty())
  995. {
  996. // Render opaque objects with deferred lighting result
  997. PROFILE(RenderBase);
  998. graphics_->SetTexture(TU_LIGHTBUFFER, lightBuffer);
  999. RenderBatchQueue(baseQueue_);
  1000. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1001. }
  1002. if (!preAlphaQueue_.IsEmpty())
  1003. {
  1004. // Render pre-alpha custom pass
  1005. PROFILE(RenderPreAlpha);
  1006. RenderBatchQueue(preAlphaQueue_);
  1007. }
  1008. if (!alphaQueue_.IsEmpty())
  1009. {
  1010. // Render transparent objects (both base passes & additive lighting)
  1011. PROFILE(RenderAlpha);
  1012. RenderBatchQueue(alphaQueue_, true);
  1013. }
  1014. if (!postAlphaQueue_.IsEmpty())
  1015. {
  1016. // Render pre-alpha custom pass
  1017. PROFILE(RenderPostAlpha);
  1018. RenderBatchQueue(postAlphaQueue_);
  1019. }
  1020. }
  1021. void View::AllocateScreenBuffers()
  1022. {
  1023. unsigned neededBuffers = 0;
  1024. #ifdef USE_OPENGL
  1025. // Due to FBO limitations, in OpenGL light pre-pass mode need to render to texture first and then blit to the backbuffer
  1026. if (lightPrepass_ && !renderTarget_)
  1027. neededBuffers = 1;
  1028. #endif
  1029. unsigned postProcessPasses = 0;
  1030. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1031. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1032. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1033. if (postProcessPasses)
  1034. neededBuffers = Min((int)postProcessPasses, 2);
  1035. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1036. for (unsigned i = 0; i < neededBuffers; ++i)
  1037. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBFormat(), true));
  1038. }
  1039. void View::BlitFramebuffer()
  1040. {
  1041. // Blit the final image to destination rendertarget
  1042. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1043. graphics_->SetAlphaTest(false);
  1044. graphics_->SetBlendMode(BLEND_REPLACE);
  1045. graphics_->SetDepthTest(CMP_ALWAYS);
  1046. graphics_->SetDepthWrite(true);
  1047. graphics_->SetScissorTest(false);
  1048. graphics_->SetStencilTest(false);
  1049. graphics_->SetRenderTarget(0, renderTarget_);
  1050. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1051. graphics_->SetViewport(viewRect_);
  1052. String shaderName = "CopyFramebuffer";
  1053. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1054. float rtWidth = (float)rtSize_.x_;
  1055. float rtHeight = (float)rtSize_.y_;
  1056. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1057. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1058. #ifdef USE_OPENGL
  1059. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1060. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1061. #else
  1062. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1063. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1064. #endif
  1065. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1066. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1067. DrawFullscreenQuad(camera_, false);
  1068. }
  1069. void View::RunPostProcesses()
  1070. {
  1071. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1072. // Ping-pong buffer indices for read and write
  1073. unsigned readRtIndex = 0;
  1074. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1075. graphics_->SetAlphaTest(false);
  1076. graphics_->SetBlendMode(BLEND_REPLACE);
  1077. graphics_->SetDepthTest(CMP_ALWAYS);
  1078. graphics_->SetScissorTest(false);
  1079. graphics_->SetStencilTest(false);
  1080. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1081. {
  1082. PostProcess* effect = postProcesses_[i];
  1083. // For each effect, rendertargets can be re-used. Allocate them now
  1084. renderer_->SaveScreenBufferAllocations();
  1085. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1086. HashMap<StringHash, Texture2D*> renderTargets;
  1087. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1088. renderTargetInfos.End(); ++j)
  1089. {
  1090. unsigned width = j->second_.size_.x_;
  1091. unsigned height = j->second_.size_.y_;
  1092. if (j->second_.sizeDivisor_)
  1093. {
  1094. width = viewSize_.x_ / width;
  1095. height = viewSize_.y_ / height;
  1096. }
  1097. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1098. }
  1099. // Run each effect pass
  1100. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1101. {
  1102. PostProcessPass* pass = effect->GetPass(j);
  1103. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1104. bool swapBuffers = false;
  1105. // Write depth on the last pass only
  1106. graphics_->SetDepthWrite(lastPass);
  1107. // Set output rendertarget
  1108. RenderSurface* rt = 0;
  1109. String output = pass->GetOutput().ToLower();
  1110. if (output == "viewport")
  1111. {
  1112. if (!lastPass)
  1113. {
  1114. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1115. swapBuffers = true;
  1116. }
  1117. else
  1118. rt = renderTarget_;
  1119. graphics_->SetRenderTarget(0, rt);
  1120. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1121. graphics_->SetViewport(viewRect_);
  1122. }
  1123. else
  1124. {
  1125. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1126. if (k != renderTargets.End())
  1127. rt = k->second_->GetRenderSurface();
  1128. else
  1129. continue; // Skip pass if rendertarget can not be found
  1130. graphics_->SetRenderTarget(0, rt);
  1131. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1132. }
  1133. // Set shaders, shader parameters and textures
  1134. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1135. renderer_->GetPixelShader(pass->GetPixelShader()));
  1136. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1137. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1138. graphics_->SetShaderParameter(k->first_, k->second_);
  1139. float rtWidth = (float)rtSize_.x_;
  1140. float rtHeight = (float)rtSize_.y_;
  1141. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1142. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1143. #ifdef USE_OPENGL
  1144. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1145. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1146. #else
  1147. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1148. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1149. #endif
  1150. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1151. graphics_->SetShaderParameter(PSP_SAMPLEOFFSETS, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1152. const String* textureNames = pass->GetTextures();
  1153. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1154. {
  1155. if (!textureNames[k].Empty())
  1156. {
  1157. // Texture may either refer to a rendertarget or to a texture resource
  1158. if (!textureNames[k].Compare("viewport", false))
  1159. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1160. else
  1161. {
  1162. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1163. if (l != renderTargets.End())
  1164. graphics_->SetTexture(k, l->second_);
  1165. else
  1166. {
  1167. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1168. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1169. if (texture)
  1170. graphics_->SetTexture(k, texture);
  1171. else
  1172. pass->SetTexture((TextureUnit)k, String());
  1173. }
  1174. }
  1175. }
  1176. }
  1177. DrawFullscreenQuad(camera_, false);
  1178. // Swap the ping-pong buffer sides now if necessary
  1179. if (swapBuffers)
  1180. Swap(readRtIndex, writeRtIndex);
  1181. }
  1182. // Forget the rendertargets allocated during this effect
  1183. renderer_->RestoreScreenBufferAllocations();
  1184. }
  1185. }
  1186. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1187. {
  1188. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1189. float halfViewSize = camera->GetHalfViewSize();
  1190. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1191. Vector3 cameraPos = camera->GetWorldPosition();
  1192. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1193. {
  1194. Drawable* occluder = *i;
  1195. bool erase = false;
  1196. if (!occluder->IsInView(frame_, false))
  1197. occluder->UpdateDistance(frame_);
  1198. // Check occluder's draw distance (in main camera view)
  1199. float maxDistance = occluder->GetDrawDistance();
  1200. if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
  1201. erase = true;
  1202. else
  1203. {
  1204. // Check that occluder is big enough on the screen
  1205. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1206. float diagonal = (box.max_ - box.min_).LengthFast();
  1207. float compare;
  1208. if (!camera->IsOrthographic())
  1209. compare = diagonal * halfViewSize / occluder->GetDistance();
  1210. else
  1211. compare = diagonal * invOrthoSize;
  1212. if (compare < occluderSizeThreshold_)
  1213. erase = true;
  1214. else
  1215. {
  1216. // Store amount of triangles divided by screen size as a sorting key
  1217. // (best occluders are big and have few triangles)
  1218. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1219. }
  1220. }
  1221. if (erase)
  1222. i = occluders.Erase(i);
  1223. else
  1224. ++i;
  1225. }
  1226. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1227. if (occluders.Size())
  1228. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1229. }
  1230. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1231. {
  1232. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1233. buffer->Clear();
  1234. for (unsigned i = 0; i < occluders.Size(); ++i)
  1235. {
  1236. Drawable* occluder = occluders[i];
  1237. if (i > 0)
  1238. {
  1239. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1240. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1241. continue;
  1242. }
  1243. // Check for running out of triangles
  1244. if (!occluder->DrawOcclusion(buffer))
  1245. break;
  1246. }
  1247. buffer->BuildDepthHierarchy();
  1248. }
  1249. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1250. {
  1251. Light* light = query.light_;
  1252. LightType type = light->GetLightType();
  1253. // Check if light should be shadowed
  1254. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1255. // If shadow distance non-zero, check it
  1256. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1257. isShadowed = false;
  1258. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1259. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1260. query.litGeometries_.Clear();
  1261. switch (type)
  1262. {
  1263. case LIGHT_DIRECTIONAL:
  1264. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1265. {
  1266. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1267. query.litGeometries_.Push(geometries_[i]);
  1268. }
  1269. break;
  1270. case LIGHT_SPOT:
  1271. {
  1272. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1273. octree_->GetDrawables(octreeQuery);
  1274. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1275. {
  1276. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1277. query.litGeometries_.Push(tempDrawables[i]);
  1278. }
  1279. }
  1280. break;
  1281. case LIGHT_POINT:
  1282. {
  1283. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()),
  1284. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1285. octree_->GetDrawables(octreeQuery);
  1286. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1287. {
  1288. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1289. query.litGeometries_.Push(tempDrawables[i]);
  1290. }
  1291. }
  1292. break;
  1293. }
  1294. // If no lit geometries or not shadowed, no need to process shadow cameras
  1295. if (query.litGeometries_.Empty() || !isShadowed)
  1296. {
  1297. query.numSplits_ = 0;
  1298. return;
  1299. }
  1300. // Determine number of shadow cameras and setup their initial positions
  1301. SetupShadowCameras(query);
  1302. // Process each split for shadow casters
  1303. query.shadowCasters_.Clear();
  1304. for (unsigned i = 0; i < query.numSplits_; ++i)
  1305. {
  1306. Camera* shadowCamera = query.shadowCameras_[i];
  1307. Frustum shadowCameraFrustum = shadowCamera->GetFrustum();
  1308. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1309. // For point light check that the face is visible: if not, can skip the split
  1310. if (type == LIGHT_POINT)
  1311. {
  1312. BoundingBox shadowCameraBox(shadowCameraFrustum);
  1313. if (frustum_.IsInsideFast(shadowCameraBox) == OUTSIDE)
  1314. continue;
  1315. }
  1316. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1317. if (type == LIGHT_DIRECTIONAL)
  1318. {
  1319. if (sceneViewBox_.min_.z_ > query.shadowFarSplits_[i])
  1320. continue;
  1321. if (sceneViewBox_.max_.z_ < query.shadowNearSplits_[i])
  1322. continue;
  1323. }
  1324. // For spot light (which has only one shadow split) we can optimize by reusing the query for
  1325. // lit geometries, whose result still exists in tempDrawables
  1326. if (type != LIGHT_SPOT)
  1327. {
  1328. FrustumOctreeQuery octreeQuery(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1329. camera_->GetViewMask(), true);
  1330. octree_->GetDrawables(octreeQuery);
  1331. }
  1332. // Check which shadow casters actually contribute to the shadowing
  1333. ProcessShadowCasters(query, tempDrawables, i);
  1334. }
  1335. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1336. // only cost has been the shadow camera setup & queries
  1337. if (query.shadowCasters_.Empty())
  1338. query.numSplits_ = 0;
  1339. }
  1340. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1341. {
  1342. Light* light = query.light_;
  1343. Matrix3x4 lightView;
  1344. Matrix4 lightProj;
  1345. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1346. lightView = shadowCamera->GetInverseWorldTransform();
  1347. lightProj = shadowCamera->GetProjection();
  1348. bool dirLight = shadowCamera->IsOrthographic();
  1349. query.shadowCasterBox_[splitIndex].defined_ = false;
  1350. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1351. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1352. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1353. Frustum lightViewFrustum;
  1354. if (!dirLight)
  1355. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1356. else
  1357. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, query.shadowNearSplits_[splitIndex]),
  1358. Min(sceneViewBox_.max_.z_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1359. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1360. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1361. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1362. return;
  1363. BoundingBox lightViewBox;
  1364. BoundingBox lightProjBox;
  1365. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1366. {
  1367. Drawable* drawable = *i;
  1368. // In case this is a spot light query result reused for optimization, we may have non-shadowcasters included.
  1369. // Check for that first
  1370. if (!drawable->GetCastShadows())
  1371. continue;
  1372. // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
  1373. // times. However, this should not cause problems as no scene modification happens at this point.
  1374. if (!drawable->IsInView(frame_, false))
  1375. drawable->UpdateDistance(frame_);
  1376. // Check shadow distance
  1377. float maxShadowDistance = drawable->GetShadowDistance();
  1378. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1379. continue;
  1380. // Check shadow mask
  1381. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1382. continue;
  1383. // Project shadow caster bounding box to light view space for visibility check
  1384. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1385. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1386. {
  1387. // Merge to shadow caster bounding box and add to the list
  1388. if (dirLight)
  1389. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1390. else
  1391. {
  1392. lightProjBox = lightViewBox.Projected(lightProj);
  1393. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1394. }
  1395. query.shadowCasters_.Push(drawable);
  1396. }
  1397. }
  1398. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1399. }
  1400. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1401. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1402. {
  1403. if (shadowCamera->IsOrthographic())
  1404. {
  1405. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1406. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1407. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1408. }
  1409. else
  1410. {
  1411. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1412. if (drawable->IsInView(frame_))
  1413. return true;
  1414. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1415. Vector3 center = lightViewBox.Center();
  1416. Ray extrusionRay(center, center.Normalized());
  1417. float extrusionDistance = shadowCamera->GetFarClip();
  1418. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  1419. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1420. float sizeFactor = extrusionDistance / originalDistance;
  1421. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1422. // than necessary, so the test will be conservative
  1423. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1424. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1425. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1426. lightViewBox.Merge(extrudedBox);
  1427. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1428. }
  1429. }
  1430. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1431. {
  1432. unsigned width = shadowMap->GetWidth();
  1433. unsigned height = shadowMap->GetHeight();
  1434. int maxCascades = renderer_->GetMaxShadowCascades();
  1435. // Due to instruction count limits, light prepass in SM2.0 can only support up to 3 cascades
  1436. #ifndef USE_OPENGL
  1437. if (lightPrepass_ && !graphics_->GetSM3Support())
  1438. maxCascades = Max(maxCascades, 3);
  1439. #endif
  1440. switch (light->GetLightType())
  1441. {
  1442. case LIGHT_DIRECTIONAL:
  1443. if (maxCascades == 1)
  1444. return IntRect(0, 0, width, height);
  1445. else if (maxCascades == 2)
  1446. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1447. else
  1448. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1449. (splitIndex / 2 + 1) * height / 2);
  1450. case LIGHT_SPOT:
  1451. return IntRect(0, 0, width, height);
  1452. case LIGHT_POINT:
  1453. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1454. (splitIndex / 2 + 1) * height / 3);
  1455. }
  1456. return IntRect();
  1457. }
  1458. void View::OptimizeLightByScissor(Light* light)
  1459. {
  1460. if (light && light->GetLightType() != LIGHT_DIRECTIONAL)
  1461. graphics_->SetScissorTest(true, GetLightScissor(light));
  1462. else
  1463. graphics_->SetScissorTest(false);
  1464. }
  1465. void View::OptimizeLightByStencil(Light* light)
  1466. {
  1467. if (light)
  1468. {
  1469. LightType type = light->GetLightType();
  1470. if (type == LIGHT_DIRECTIONAL)
  1471. {
  1472. graphics_->SetStencilTest(false);
  1473. return;
  1474. }
  1475. Geometry* geometry = renderer_->GetLightGeometry(light);
  1476. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1477. Matrix4 projection(camera_->GetProjection());
  1478. float lightDist;
  1479. if (type == LIGHT_POINT)
  1480. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
  1481. else
  1482. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  1483. // If the camera is actually inside the light volume, do not draw to stencil as it would waste fillrate
  1484. if (lightDist < M_EPSILON)
  1485. {
  1486. graphics_->SetStencilTest(false);
  1487. return;
  1488. }
  1489. // If the stencil value has wrapped, clear the whole stencil first
  1490. if (!lightStencilValue_)
  1491. {
  1492. graphics_->Clear(CLEAR_STENCIL);
  1493. lightStencilValue_ = 1;
  1494. }
  1495. // If possible, render the stencil volume front faces. However, close to the near clip plane render back faces instead
  1496. // to avoid clipping.
  1497. if (lightDist < camera_->GetNearClip() * 2.0f)
  1498. {
  1499. renderer_->SetCullMode(CULL_CW, camera_);
  1500. graphics_->SetDepthTest(CMP_GREATER);
  1501. }
  1502. else
  1503. {
  1504. renderer_->SetCullMode(CULL_CCW, camera_);
  1505. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1506. }
  1507. graphics_->SetColorWrite(false);
  1508. graphics_->SetDepthWrite(false);
  1509. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, lightStencilValue_);
  1510. graphics_->SetShaders(renderer_->GetStencilVS(), renderer_->GetStencilPS());
  1511. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1512. graphics_->SetShaderParameter(VSP_MODEL, light->GetVolumeTransform(camera_));
  1513. geometry->Draw(graphics_);
  1514. graphics_->ClearTransformSources();
  1515. graphics_->SetColorWrite(true);
  1516. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, lightStencilValue_);
  1517. // Increase stencil value for next light
  1518. ++lightStencilValue_;
  1519. }
  1520. else
  1521. graphics_->SetStencilTest(false);
  1522. }
  1523. const Rect& View::GetLightScissor(Light* light)
  1524. {
  1525. HashMap<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1526. if (i != lightScissorCache_.End())
  1527. return i->second_;
  1528. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1529. Matrix4 projection(camera_->GetProjection());
  1530. switch (light->GetLightType())
  1531. {
  1532. case LIGHT_POINT:
  1533. {
  1534. BoundingBox viewBox(light->GetWorldBoundingBox().Transformed(view));
  1535. return lightScissorCache_[light] = viewBox.Projected(projection);
  1536. }
  1537. case LIGHT_SPOT:
  1538. {
  1539. Frustum viewFrustum(light->GetFrustum().Transformed(view));
  1540. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1541. }
  1542. default:
  1543. return lightScissorCache_[light] = Rect::FULL;
  1544. }
  1545. }
  1546. void View::SetupShadowCameras(LightQueryResult& query)
  1547. {
  1548. Light* light = query.light_;
  1549. LightType type = light->GetLightType();
  1550. int splits = 0;
  1551. if (type == LIGHT_DIRECTIONAL)
  1552. {
  1553. const CascadeParameters& cascade = light->GetShadowCascade();
  1554. float nearSplit = camera_->GetNearClip();
  1555. float farSplit;
  1556. while (splits < renderer_->GetMaxShadowCascades())
  1557. {
  1558. // If split is completely beyond camera far clip, we are done
  1559. if (nearSplit > camera_->GetFarClip())
  1560. break;
  1561. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1562. if (farSplit <= nearSplit)
  1563. break;
  1564. // Setup the shadow camera for the split
  1565. Camera* shadowCamera = renderer_->GetShadowCamera();
  1566. query.shadowCameras_[splits] = shadowCamera;
  1567. query.shadowNearSplits_[splits] = nearSplit;
  1568. query.shadowFarSplits_[splits] = farSplit;
  1569. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1570. nearSplit = farSplit;
  1571. ++splits;
  1572. }
  1573. }
  1574. if (type == LIGHT_SPOT)
  1575. {
  1576. Camera* shadowCamera = renderer_->GetShadowCamera();
  1577. query.shadowCameras_[0] = shadowCamera;
  1578. Node* cameraNode = shadowCamera->GetNode();
  1579. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1580. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1581. shadowCamera->SetFarClip(light->GetRange());
  1582. shadowCamera->SetFov(light->GetFov());
  1583. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1584. splits = 1;
  1585. }
  1586. if (type == LIGHT_POINT)
  1587. {
  1588. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1589. {
  1590. Camera* shadowCamera = renderer_->GetShadowCamera();
  1591. query.shadowCameras_[i] = shadowCamera;
  1592. Node* cameraNode = shadowCamera->GetNode();
  1593. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1594. cameraNode->SetPosition(light->GetWorldPosition());
  1595. cameraNode->SetDirection(directions[i]);
  1596. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1597. shadowCamera->SetFarClip(light->GetRange());
  1598. shadowCamera->SetFov(90.0f);
  1599. shadowCamera->SetAspectRatio(1.0f);
  1600. }
  1601. splits = MAX_CUBEMAP_FACES;
  1602. }
  1603. query.numSplits_ = splits;
  1604. }
  1605. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1606. {
  1607. Node* cameraNode = shadowCamera->GetNode();
  1608. float extrusionDistance = camera_->GetFarClip();
  1609. const FocusParameters& parameters = light->GetShadowFocus();
  1610. // Calculate initial position & rotation
  1611. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1612. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1613. cameraNode->SetTransform(pos, light->GetWorldRotation());
  1614. // Calculate main camera shadowed frustum in light's view space
  1615. farSplit = Min(farSplit, camera_->GetFarClip());
  1616. // Use the scene Z bounds to limit frustum size if applicable
  1617. if (parameters.focus_)
  1618. {
  1619. nearSplit = Max(sceneViewBox_.min_.z_, nearSplit);
  1620. farSplit = Min(sceneViewBox_.max_.z_, farSplit);
  1621. }
  1622. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1623. Polyhedron frustumVolume;
  1624. frustumVolume.Define(splitFrustum);
  1625. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1626. if (parameters.focus_)
  1627. {
  1628. BoundingBox litGeometriesBox;
  1629. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1630. {
  1631. // Skip "infinite" objects like the skybox
  1632. const BoundingBox& geomBox = geometries_[i]->GetWorldBoundingBox();
  1633. if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
  1634. {
  1635. if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit &&
  1636. (GetLightMask(geometries_[i]) & light->GetLightMask()))
  1637. litGeometriesBox.Merge(geomBox);
  1638. }
  1639. }
  1640. if (litGeometriesBox.defined_)
  1641. {
  1642. frustumVolume.Clip(litGeometriesBox);
  1643. // If volume became empty, restore it to avoid zero size
  1644. if (frustumVolume.Empty())
  1645. frustumVolume.Define(splitFrustum);
  1646. }
  1647. }
  1648. // Transform frustum volume to light space
  1649. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1650. frustumVolume.Transform(lightView);
  1651. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1652. BoundingBox shadowBox;
  1653. if (!parameters.nonUniform_)
  1654. shadowBox.Define(Sphere(frustumVolume));
  1655. else
  1656. shadowBox.Define(frustumVolume);
  1657. shadowCamera->SetOrthographic(true);
  1658. shadowCamera->SetAspectRatio(1.0f);
  1659. shadowCamera->SetNearClip(0.0f);
  1660. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1661. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1662. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1663. }
  1664. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1665. const BoundingBox& shadowCasterBox)
  1666. {
  1667. const FocusParameters& parameters = light->GetShadowFocus();
  1668. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1669. LightType type = light->GetLightType();
  1670. if (type == LIGHT_DIRECTIONAL)
  1671. {
  1672. BoundingBox shadowBox;
  1673. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1674. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1675. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1676. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1677. // Requantize and snap to shadow map texels
  1678. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1679. }
  1680. if (type == LIGHT_SPOT)
  1681. {
  1682. if (parameters.focus_)
  1683. {
  1684. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1685. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1686. float viewSize = Max(viewSizeX, viewSizeY);
  1687. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1688. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1689. float quantize = parameters.quantize_ * invOrthoSize;
  1690. float minView = parameters.minView_ * invOrthoSize;
  1691. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1692. if (viewSize < 1.0f)
  1693. shadowCamera->SetZoom(1.0f / viewSize);
  1694. }
  1695. }
  1696. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1697. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1698. if (shadowCamera->GetZoom() >= 1.0f)
  1699. {
  1700. if (light->GetLightType() != LIGHT_POINT)
  1701. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1702. else
  1703. {
  1704. #ifdef USE_OPENGL
  1705. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1706. #else
  1707. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1708. #endif
  1709. }
  1710. }
  1711. }
  1712. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1713. const BoundingBox& viewBox)
  1714. {
  1715. Node* cameraNode = shadowCamera->GetNode();
  1716. const FocusParameters& parameters = light->GetShadowFocus();
  1717. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1718. float minX = viewBox.min_.x_;
  1719. float minY = viewBox.min_.y_;
  1720. float maxX = viewBox.max_.x_;
  1721. float maxY = viewBox.max_.y_;
  1722. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1723. Vector2 viewSize(maxX - minX, maxY - minY);
  1724. // Quantize size to reduce swimming
  1725. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1726. if (parameters.nonUniform_)
  1727. {
  1728. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1729. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1730. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1731. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1732. }
  1733. else if (parameters.focus_)
  1734. {
  1735. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1736. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1737. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1738. viewSize.y_ = viewSize.x_;
  1739. }
  1740. shadowCamera->SetOrthoSize(viewSize);
  1741. // Center shadow camera to the view space bounding box
  1742. Vector3 pos(shadowCamera->GetWorldPosition());
  1743. Quaternion rot(shadowCamera->GetWorldRotation());
  1744. Vector3 adjust(center.x_, center.y_, 0.0f);
  1745. cameraNode->Translate(rot * adjust);
  1746. // If the shadow map viewport is known, snap to whole texels
  1747. if (shadowMapWidth > 0.0f)
  1748. {
  1749. Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
  1750. // Take into account that shadow map border will not be used
  1751. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1752. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1753. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1754. cameraNode->Translate(rot * snap);
  1755. }
  1756. }
  1757. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1758. {
  1759. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1760. int bestPriority = M_MIN_INT;
  1761. Zone* newZone = 0;
  1762. // If bounding box center is in view, can use the visible zones. Else must query via the octree
  1763. if (frustum_.IsInside(center))
  1764. {
  1765. // First check if the last zone remains a conclusive result
  1766. Zone* lastZone = drawable->GetLastZone();
  1767. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1768. lastZone->GetPriority() >= highestZonePriority_)
  1769. newZone = lastZone;
  1770. else
  1771. {
  1772. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1773. {
  1774. int priority = (*i)->GetPriority();
  1775. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1776. {
  1777. newZone = *i;
  1778. bestPriority = priority;
  1779. }
  1780. }
  1781. }
  1782. }
  1783. else
  1784. {
  1785. PODVector<Zone*>& tempZones = tempZones_[threadIndex];
  1786. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>&>(tempZones), center, DRAWABLE_ZONE);
  1787. octree_->GetDrawables(query);
  1788. bestPriority = M_MIN_INT;
  1789. for (PODVector<Zone*>::Iterator i = tempZones.Begin(); i != tempZones.End(); ++i)
  1790. {
  1791. int priority = (*i)->GetPriority();
  1792. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1793. {
  1794. newZone = *i;
  1795. bestPriority = priority;
  1796. }
  1797. }
  1798. }
  1799. drawable->SetZone(newZone);
  1800. }
  1801. Zone* View::GetZone(Drawable* drawable)
  1802. {
  1803. if (cameraZoneOverride_)
  1804. return cameraZone_;
  1805. Zone* drawableZone = drawable->GetZone();
  1806. return drawableZone ? drawableZone : cameraZone_;
  1807. }
  1808. unsigned View::GetLightMask(Drawable* drawable)
  1809. {
  1810. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1811. }
  1812. unsigned View::GetShadowMask(Drawable* drawable)
  1813. {
  1814. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1815. }
  1816. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1817. {
  1818. unsigned long long hash = 0;
  1819. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1820. hash += (unsigned long long)(*i);
  1821. return hash;
  1822. }
  1823. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1824. {
  1825. if (!material)
  1826. material = renderer_->GetDefaultMaterial();
  1827. if (!material)
  1828. return 0;
  1829. float lodDistance = drawable->GetLodDistance();
  1830. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1831. if (techniques.Empty())
  1832. return 0;
  1833. // Check for suitable technique. Techniques should be ordered like this:
  1834. // Most distant & highest quality
  1835. // Most distant & lowest quality
  1836. // Second most distant & highest quality
  1837. // ...
  1838. for (unsigned i = 0; i < techniques.Size(); ++i)
  1839. {
  1840. const TechniqueEntry& entry = techniques[i];
  1841. Technique* technique = entry.technique_;
  1842. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1843. continue;
  1844. if (lodDistance >= entry.lodDistance_)
  1845. return technique;
  1846. }
  1847. // If no suitable technique found, fallback to the last
  1848. return techniques.Back().technique_;
  1849. }
  1850. void View::CheckMaterialForAuxView(Material* material)
  1851. {
  1852. const SharedPtr<Texture>* textures = material->GetTextures();
  1853. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1854. {
  1855. // Have to check cube & 2D textures separately
  1856. Texture* texture = textures[i];
  1857. if (texture)
  1858. {
  1859. if (texture->GetType() == Texture2D::GetTypeStatic())
  1860. {
  1861. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1862. RenderSurface* target = tex2D->GetRenderSurface();
  1863. if (target)
  1864. {
  1865. Viewport* viewport = target->GetViewport();
  1866. if (viewport->GetScene() && viewport->GetCamera())
  1867. renderer_->AddView(target, viewport);
  1868. }
  1869. }
  1870. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1871. {
  1872. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1873. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1874. {
  1875. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1876. if (target)
  1877. {
  1878. Viewport* viewport = target->GetViewport();
  1879. if (viewport->GetScene() && viewport->GetCamera())
  1880. renderer_->AddView(target, viewport);
  1881. }
  1882. }
  1883. }
  1884. }
  1885. }
  1886. // Set frame number so that we can early-out next time we come across this material on the same frame
  1887. material->MarkForAuxView(frame_.frameNumber_);
  1888. }
  1889. void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows)
  1890. {
  1891. // Convert to instanced if possible
  1892. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  1893. batch.geometryType_ = GEOM_INSTANCED;
  1894. batch.pass_ = pass;
  1895. renderer_->SetBatchShaders(batch, tech, pass, allowShadows);
  1896. batch.CalculateSortKey();
  1897. }
  1898. void View::PrepareInstancingBuffer()
  1899. {
  1900. PROFILE(PrepareInstancingBuffer);
  1901. unsigned totalInstances = 0;
  1902. totalInstances += baseQueue_.GetNumInstances(renderer_);
  1903. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  1904. if (lightPrepass_)
  1905. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  1906. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1907. {
  1908. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1909. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  1910. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  1911. }
  1912. // If fail to set buffer size, fall back to per-group locking
  1913. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  1914. {
  1915. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  1916. unsigned freeIndex = 0;
  1917. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  1918. if (lockedData)
  1919. {
  1920. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1921. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1922. if (lightPrepass_)
  1923. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1924. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1925. {
  1926. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1927. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1928. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1929. }
  1930. instancingBuffer->Unlock();
  1931. }
  1932. }
  1933. }
  1934. void View::SetupLightVolumeBatch(Batch& batch)
  1935. {
  1936. Light* light = batch.lightQueue_->light_;
  1937. LightType type = light->GetLightType();
  1938. float lightDist;
  1939. // Use replace blend mode for the first light volume, and additive for the rest
  1940. graphics_->SetAlphaTest(false);
  1941. graphics_->SetBlendMode(light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  1942. graphics_->SetDepthWrite(false);
  1943. if (type != LIGHT_DIRECTIONAL)
  1944. {
  1945. if (type == LIGHT_POINT)
  1946. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
  1947. else
  1948. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  1949. // Draw front faces if not inside light volume
  1950. if (lightDist < camera_->GetNearClip() * 2.0f)
  1951. {
  1952. renderer_->SetCullMode(CULL_CW, camera_);
  1953. graphics_->SetDepthTest(CMP_GREATER);
  1954. }
  1955. else
  1956. {
  1957. renderer_->SetCullMode(CULL_CCW, camera_);
  1958. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1959. }
  1960. }
  1961. else
  1962. {
  1963. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  1964. // refresh the directional light's model transform before rendering
  1965. light->GetVolumeTransform(camera_);
  1966. graphics_->SetCullMode(CULL_NONE);
  1967. graphics_->SetDepthTest(CMP_ALWAYS);
  1968. }
  1969. graphics_->SetScissorTest(false);
  1970. graphics_->SetStencilTest(true, CMP_LESS, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  1971. }
  1972. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  1973. {
  1974. Light quadDirLight(context_);
  1975. quadDirLight.SetLightType(LIGHT_DIRECTIONAL);
  1976. Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
  1977. graphics_->SetCullMode(CULL_NONE);
  1978. graphics_->SetShaderParameter(VSP_MODEL, model);
  1979. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  1980. graphics_->ClearTransformSources();
  1981. renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
  1982. }
  1983. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor)
  1984. {
  1985. graphics_->SetScissorTest(false);
  1986. // During G-buffer rendering, mark opaque pixels to stencil buffer
  1987. bool isGBuffer = &queue == &gbufferQueue_;
  1988. if (!isGBuffer)
  1989. graphics_->SetStencilTest(false);
  1990. // Base instanced
  1991. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
  1992. queue.sortedBaseBatchGroups_.End(); ++i)
  1993. {
  1994. BatchGroup* group = *i;
  1995. if (isGBuffer)
  1996. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  1997. group->Draw(graphics_, renderer_);
  1998. }
  1999. // Base non-instanced
  2000. for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
  2001. {
  2002. Batch* batch = *i;
  2003. if (isGBuffer)
  2004. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  2005. batch->Draw(graphics_, renderer_);
  2006. }
  2007. // Non-base instanced
  2008. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  2009. {
  2010. BatchGroup* group = *i;
  2011. if (useScissor && group->lightQueue_)
  2012. OptimizeLightByScissor(group->lightQueue_->light_);
  2013. if (isGBuffer)
  2014. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  2015. group->Draw(graphics_, renderer_);
  2016. }
  2017. // Non-base non-instanced
  2018. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  2019. {
  2020. Batch* batch = *i;
  2021. if (useScissor)
  2022. {
  2023. if (!batch->isBase_ && batch->lightQueue_)
  2024. OptimizeLightByScissor(batch->lightQueue_->light_);
  2025. else
  2026. graphics_->SetScissorTest(false);
  2027. }
  2028. if (isGBuffer)
  2029. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  2030. batch->Draw(graphics_, renderer_);
  2031. }
  2032. }
  2033. void View::RenderLightBatchQueue(const BatchQueue& queue, Light* light)
  2034. {
  2035. graphics_->SetScissorTest(false);
  2036. graphics_->SetStencilTest(false);
  2037. // Base instanced
  2038. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
  2039. queue.sortedBaseBatchGroups_.End(); ++i)
  2040. {
  2041. BatchGroup* group = *i;
  2042. group->Draw(graphics_, renderer_);
  2043. }
  2044. // Base non-instanced
  2045. for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
  2046. {
  2047. Batch* batch = *i;
  2048. batch->Draw(graphics_, renderer_);
  2049. }
  2050. // All base passes have been drawn. Optimize at this point by both stencil volume and scissor
  2051. // However, if there are no non-base batches, just exit
  2052. if (queue.sortedBatchGroups_.Empty() && queue.sortedBatches_.Empty())
  2053. return;
  2054. OptimizeLightByStencil(light);
  2055. OptimizeLightByScissor(light);
  2056. // Non-base instanced
  2057. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  2058. {
  2059. BatchGroup* group = *i;
  2060. group->Draw(graphics_, renderer_);
  2061. }
  2062. // Non-base non-instanced
  2063. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  2064. {
  2065. Batch* batch = *i;
  2066. batch->Draw(graphics_, renderer_);
  2067. }
  2068. }
  2069. void View::RenderShadowMap(const LightBatchQueue& queue)
  2070. {
  2071. PROFILE(RenderShadowMap);
  2072. Texture2D* shadowMap = queue.shadowMap_;
  2073. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2074. graphics_->SetColorWrite(false);
  2075. graphics_->SetStencilTest(false);
  2076. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2077. graphics_->SetDepthStencil(shadowMap);
  2078. graphics_->Clear(CLEAR_DEPTH);
  2079. // Set shadow depth bias
  2080. BiasParameters parameters = queue.light_->GetShadowBias();
  2081. // Adjust the light's constant depth bias according to global shadow map resolution
  2082. /// \todo Should remove this adjustment and find a more flexible solution
  2083. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2084. if (shadowMapSize <= 512)
  2085. parameters.constantBias_ *= 2.0f;
  2086. else if (shadowMapSize >= 2048)
  2087. parameters.constantBias_ *= 0.5f;
  2088. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2089. // Render each of the splits
  2090. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2091. {
  2092. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2093. if (!shadowQueue.shadowBatches_.IsEmpty())
  2094. {
  2095. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2096. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  2097. // However, do not do this for point lights, which need to render continuously across cube faces
  2098. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  2099. if (queue.light_->GetLightType() != LIGHT_POINT)
  2100. {
  2101. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  2102. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  2103. graphics_->SetScissorTest(true, zoomRect, false);
  2104. }
  2105. else
  2106. graphics_->SetScissorTest(false);
  2107. // Draw instanced and non-instanced shadow casters
  2108. RenderBatchQueue(shadowQueue.shadowBatches_);
  2109. }
  2110. }
  2111. graphics_->SetColorWrite(true);
  2112. graphics_->SetDepthBias(0.0f, 0.0f);
  2113. }
  2114. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2115. {
  2116. // If using the backbuffer, return the backbuffer depth-stencil
  2117. if (!renderTarget)
  2118. return 0;
  2119. // Then check for linked depth-stencil
  2120. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2121. // Finally get one from Renderer
  2122. if (!depthStencil)
  2123. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2124. return depthStencil;
  2125. }