PhysicsWorld.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Joint.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsWorld.h"
  32. #include "ProcessUtils.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include <ode/ode.h>
  39. #include "Sort.h"
  40. #include "DebugNew.h"
  41. static const int DEFAULT_FPS = 60;
  42. static const int DEFAULT_MAX_CONTACTS = 20;
  43. static const float DEFAULT_BOUNCE_THRESHOLD = 0.1f;
  44. static unsigned numInstances = 0;
  45. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  46. {
  47. return lhs.distance_ < rhs.distance_;
  48. }
  49. OBJECTTYPESTATIC(PhysicsWorld);
  50. PhysicsWorld::PhysicsWorld(Context* context) :
  51. Component(context),
  52. physicsWorld_(0),
  53. space_(0),
  54. rayGeometry_(0),
  55. contactJoints_(0),
  56. fps_(DEFAULT_FPS),
  57. maxContacts_(DEFAULT_MAX_CONTACTS),
  58. randomSeed_(0),
  59. bounceThreshold_(DEFAULT_BOUNCE_THRESHOLD),
  60. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  61. timeAcc_(0.0f),
  62. interpolation_(true)
  63. {
  64. {
  65. MutexLock lock(GetStaticMutex());
  66. if (!numInstances)
  67. dInitODE();
  68. ++numInstances;
  69. }
  70. // Create the world, the collision space, and contact joint group
  71. physicsWorld_ = dWorldCreate();
  72. space_ = dHashSpaceCreate(0);
  73. contactJoints_ = dJointGroupCreate(0);
  74. // Create ray geometry for physics world raycasts
  75. rayGeometry_ = dCreateRay(0, 0.0f);
  76. // Enable automatic resting of rigid bodies
  77. dWorldSetAutoDisableFlag(physicsWorld_, 1);
  78. contacts_ = new PODVector<dContact>(maxContacts_);
  79. }
  80. PhysicsWorld::~PhysicsWorld()
  81. {
  82. if (scene_)
  83. {
  84. // Force all remaining joints, rigid bodies and collision shapes to release themselves
  85. for (PODVector<Joint*>::Iterator i = joints_.Begin(); i != joints_.End(); ++i)
  86. (*i)->Clear();
  87. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  88. (*i)->ReleaseBody();
  89. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  90. (*i)->Clear();
  91. }
  92. // Remove any cached geometries that still remain
  93. triangleMeshCache_.Clear();
  94. heightfieldCache_.Clear();
  95. // Destroy the global ODE objects
  96. if (contactJoints_)
  97. {
  98. dJointGroupDestroy(contactJoints_);
  99. contactJoints_ = 0;
  100. }
  101. if (rayGeometry_)
  102. {
  103. dGeomDestroy(rayGeometry_);
  104. rayGeometry_ = 0;
  105. }
  106. if (space_)
  107. {
  108. dSpaceDestroy(space_);
  109. space_ = 0;
  110. }
  111. if (contacts_)
  112. {
  113. PODVector<dContact>* contacts = static_cast<PODVector<dContact>*>(contacts_);
  114. delete contacts;
  115. contacts = 0;
  116. }
  117. if (physicsWorld_)
  118. {
  119. dWorldDestroy(physicsWorld_);
  120. physicsWorld_ = 0;
  121. }
  122. // Finally shut down ODE if this was the last instance
  123. {
  124. MutexLock lock(GetStaticMutex());
  125. --numInstances;
  126. if (!numInstances)
  127. dCloseODE();
  128. }
  129. }
  130. void PhysicsWorld::RegisterObject(Context* context)
  131. {
  132. context->RegisterFactory<PhysicsWorld>();
  133. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, Vector3::ZERO, AM_DEFAULT);
  134. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  135. ATTRIBUTE(PhysicsWorld, VAR_INT, "Max Contacts", maxContacts_, DEFAULT_MAX_CONTACTS, AM_DEFAULT);
  136. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  137. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Lin Rest Threshold", GetLinearRestThreshold, SetLinearRestThreshold, float, 0.01f, AM_DEFAULT);
  138. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Lin Damp Threshold", GetLinearDampingThreshold, SetLinearDampingThreshold, float, 0.01f, AM_DEFAULT);
  139. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Lin Damp Scale", GetLinearDampingScale, SetLinearDampingScale, float, 0.0f, AM_DEFAULT);
  140. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Ang Rest Threshold", GetAngularRestThreshold, SetAngularRestThreshold, float, 0.01f, AM_DEFAULT);
  141. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Ang Damp Threshold", GetAngularDampingThreshold, SetAngularDampingThreshold, float, 0.01f, AM_DEFAULT);
  142. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Ang Damp Scale", GetAngularDampingScale, SetAngularDampingScale, float, 0.0f, AM_DEFAULT);
  143. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "ERP Parameter", GetERP, SetERP, float, 0.2f, AM_DEFAULT);
  144. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "CFM Parameter", GetCFM, SetCFM, float, 0.00001f, AM_DEFAULT);
  145. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Contact Surface Layer", GetContactSurfaceLayer, SetContactSurfaceLayer, float, 0.0f, AM_DEFAULT);
  146. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Bounce Threshold", bounceThreshold_, DEFAULT_BOUNCE_THRESHOLD, AM_DEFAULT);
  147. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Network Max Ang Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  148. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Time Accumulator", timeAcc_, 0.0f, AM_FILE | AM_NOEDIT);
  149. ATTRIBUTE(PhysicsWorld, VAR_INT, "Random Seed", randomSeed_, 0, AM_FILE | AM_NOEDIT);
  150. }
  151. void PhysicsWorld::Update(float timeStep)
  152. {
  153. PROFILE(UpdatePhysics);
  154. float internalTimeStep = 1.0f / fps_;
  155. while (timeStep > 0.0f)
  156. {
  157. float currentStep = Min(timeStep, internalTimeStep);
  158. timeAcc_ += currentStep;
  159. timeStep -= currentStep;
  160. if (timeAcc_ >= internalTimeStep)
  161. {
  162. timeAcc_ -= internalTimeStep;
  163. // Send pre-step event
  164. using namespace PhysicsPreStep;
  165. VariantMap eventData;
  166. eventData[P_WORLD] = (void*)this;
  167. eventData[P_TIMESTEP] = internalTimeStep;
  168. SendEvent(E_PHYSICSPRESTEP, eventData);
  169. // Store the previous transforms of the physics objects
  170. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  171. (*i)->PreStep();
  172. /// \todo ODE random number generation is not threadsafe
  173. dRandSetSeed(randomSeed_);
  174. // Collide, step the world, and clear contact joints
  175. {
  176. PROFILE(CheckCollisions);
  177. dSpaceCollide(space_, this, NearCallback);
  178. }
  179. {
  180. PROFILE(StepPhysics);
  181. dWorldQuickStep(physicsWorld_, internalTimeStep);
  182. dJointGroupEmpty(contactJoints_);
  183. previousCollisions_ = currentCollisions_;
  184. currentCollisions_.Clear();
  185. }
  186. randomSeed_ = dRandGetSeed();
  187. // Send accumulated collision events
  188. SendCollisionEvents();
  189. // Send post-step event
  190. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  191. }
  192. }
  193. // Interpolate transforms of physics objects
  194. processedBodies_.Clear();
  195. float t = interpolation_ ? Clamp(timeAcc_ / internalTimeStep, 0.0f, 1.0f) : 1.0f;
  196. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  197. (*i)->PostStep(t, processedBodies_);
  198. }
  199. void PhysicsWorld::SetFps(int fps)
  200. {
  201. fps_ = Max(fps, 1);
  202. }
  203. void PhysicsWorld::SetMaxContacts(unsigned num)
  204. {
  205. maxContacts_ = Max(num, 1);
  206. PODVector<dContact>* contacts = static_cast<PODVector<dContact>*>(contacts_);
  207. contacts->Resize(maxContacts_);
  208. }
  209. void PhysicsWorld::SetGravity(Vector3 gravity)
  210. {
  211. dWorldSetGravity(physicsWorld_, gravity.x_, gravity.y_, gravity.z_);
  212. }
  213. void PhysicsWorld::SetInterpolation(bool enable)
  214. {
  215. interpolation_ = enable;
  216. }
  217. void PhysicsWorld::SetLinearRestThreshold(float threshold)
  218. {
  219. dWorldSetAutoDisableLinearThreshold(physicsWorld_, Max(threshold, 0.0f));
  220. }
  221. void PhysicsWorld::SetLinearDampingThreshold(float threshold)
  222. {
  223. dWorldSetLinearDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  224. }
  225. void PhysicsWorld::SetLinearDampingScale(float scale)
  226. {
  227. dWorldSetLinearDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  228. }
  229. void PhysicsWorld::SetAngularRestThreshold(float threshold)
  230. {
  231. dWorldSetAutoDisableAngularThreshold(physicsWorld_, threshold);
  232. }
  233. void PhysicsWorld::SetAngularDampingThreshold(float threshold)
  234. {
  235. dWorldSetAngularDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  236. }
  237. void PhysicsWorld::SetAngularDampingScale(float scale)
  238. {
  239. dWorldSetAngularDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  240. }
  241. void PhysicsWorld::SetBounceThreshold(float threshold)
  242. {
  243. bounceThreshold_ = Max(threshold, 0.0f);
  244. }
  245. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  246. {
  247. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  248. }
  249. void PhysicsWorld::SetERP(float erp)
  250. {
  251. dWorldSetERP(physicsWorld_, erp);
  252. }
  253. void PhysicsWorld::SetCFM(float cfm)
  254. {
  255. dWorldSetCFM(physicsWorld_, cfm);
  256. }
  257. void PhysicsWorld::SetContactSurfaceLayer(float depth)
  258. {
  259. dWorldSetContactSurfaceLayer(physicsWorld_, depth);
  260. }
  261. void PhysicsWorld::SetTimeAccumulator(float time)
  262. {
  263. timeAcc_ = time;
  264. }
  265. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  266. {
  267. PROFILE(PhysicsRaycast);
  268. result.Clear();
  269. dGeomRaySetLength(rayGeometry_, maxDistance);
  270. dGeomRaySet(rayGeometry_, ray.origin_.x_, ray.origin_.y_, ray.origin_.z_, ray.direction_.x_, ray.direction_.y_, ray.direction_.z_);
  271. dGeomSetCollideBits(rayGeometry_, collisionMask);
  272. dSpaceCollide2(rayGeometry_, (dGeomID)space_, &result, RaycastCallback);
  273. Sort(result.Begin(), result.End(), CompareRaycastResults);
  274. }
  275. Vector3 PhysicsWorld::GetGravity() const
  276. {
  277. dVector3 g;
  278. dWorldGetGravity(physicsWorld_, g);
  279. return Vector3(g[0], g[1], g[2]);
  280. }
  281. float PhysicsWorld::GetLinearRestThreshold() const
  282. {
  283. return dWorldGetAutoDisableLinearThreshold(physicsWorld_);
  284. }
  285. float PhysicsWorld::GetLinearDampingThreshold() const
  286. {
  287. return dWorldGetLinearDampingThreshold(physicsWorld_);
  288. }
  289. float PhysicsWorld::GetLinearDampingScale() const
  290. {
  291. return dWorldGetLinearDamping(physicsWorld_);
  292. }
  293. float PhysicsWorld::GetAngularRestThreshold() const
  294. {
  295. return dWorldGetAutoDisableAngularThreshold(physicsWorld_);
  296. }
  297. float PhysicsWorld::GetAngularDampingThreshold() const
  298. {
  299. return dWorldGetAngularDampingThreshold(physicsWorld_);
  300. }
  301. float PhysicsWorld::GetAngularDampingScale() const
  302. {
  303. return dWorldGetAngularDamping(physicsWorld_);
  304. }
  305. float PhysicsWorld::GetERP() const
  306. {
  307. return dWorldGetERP(physicsWorld_);
  308. }
  309. float PhysicsWorld::GetCFM() const
  310. {
  311. return dWorldGetCFM(physicsWorld_);
  312. }
  313. float PhysicsWorld::GetContactSurfaceLayer() const
  314. {
  315. return dWorldGetContactSurfaceLayer(physicsWorld_);
  316. }
  317. void PhysicsWorld::AddRigidBody(RigidBody* body)
  318. {
  319. rigidBodies_.Push(body);
  320. }
  321. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  322. {
  323. PODVector<RigidBody*>::Iterator i = rigidBodies_.Find(body);
  324. if (i != rigidBodies_.End())
  325. rigidBodies_.Erase(i);
  326. }
  327. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  328. {
  329. collisionShapes_.Push(shape);
  330. }
  331. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  332. {
  333. PODVector<CollisionShape*>::Iterator i = collisionShapes_.Find(shape);
  334. if (i != collisionShapes_.End())
  335. collisionShapes_.Erase(i);
  336. }
  337. void PhysicsWorld::AddJoint(Joint* joint)
  338. {
  339. joints_.Push(joint);
  340. }
  341. void PhysicsWorld::RemoveJoint(Joint* joint)
  342. {
  343. PODVector<Joint*>::Iterator i = joints_.Find(joint);
  344. if (i != joints_.End())
  345. joints_.Erase(i);
  346. }
  347. void PhysicsWorld::SendCollisionEvents()
  348. {
  349. PROFILE(SendCollisionEvents);
  350. VariantMap physicsCollisionData;
  351. VariantMap nodeCollisionData;
  352. VectorBuffer contacts;
  353. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  354. for (Vector<PhysicsCollisionInfo>::ConstIterator i = collisionInfos_.Begin(); i != collisionInfos_.End(); ++i)
  355. {
  356. // Skip if either of the nodes has been removed
  357. if (!i->nodeA_ || !i->nodeB_)
  358. continue;
  359. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)i->nodeA_;
  360. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)i->nodeB_;
  361. physicsCollisionData[PhysicsCollision::P_SHAPEA] = (void*)i->shapeA_;
  362. physicsCollisionData[PhysicsCollision::P_SHAPEB] = (void*)i->shapeB_;
  363. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = i->newCollision_;
  364. contacts.Clear();
  365. for (unsigned j = 0; j < i->contacts_.Size(); ++j)
  366. {
  367. contacts.WriteVector3(i->contacts_[j].position_);
  368. contacts.WriteVector3(i->contacts_[j].normal_);
  369. contacts.WriteFloat(i->contacts_[j].depth_);
  370. contacts.WriteFloat(i->contacts_[j].velocity_);
  371. }
  372. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  373. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  374. // Skip if either of the nodes is null, or has been removed as a response to the event
  375. if (!i->nodeA_ || !i->nodeB_)
  376. continue;
  377. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeA_;
  378. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeB_;
  379. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeB_;
  380. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = i->newCollision_;
  381. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  382. SendEvent(i->nodeA_, E_NODECOLLISION, nodeCollisionData);
  383. // Skip if either of the nodes has been removed as a response to the event
  384. if (!i->nodeA_ || !i->nodeB_)
  385. continue;
  386. contacts.Clear();
  387. for (unsigned j = 0; j < i->contacts_.Size(); ++j)
  388. {
  389. contacts.WriteVector3(i->contacts_[j].position_);
  390. contacts.WriteVector3(-i->contacts_[j].normal_);
  391. contacts.WriteFloat(i->contacts_[j].depth_);
  392. contacts.WriteFloat(i->contacts_[j].velocity_);
  393. }
  394. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeB_;
  395. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeA_;
  396. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeA_;
  397. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  398. SendEvent(i->nodeB_, E_NODECOLLISION, nodeCollisionData);
  399. }
  400. collisionInfos_.Clear();
  401. }
  402. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  403. {
  404. PROFILE(PhysicsDrawDebug);
  405. DebugRenderer* debug = GetComponent<DebugRenderer>();
  406. if (debug)
  407. {
  408. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  409. (*i)->DrawDebugGeometry(debug, depthTest);
  410. for (PODVector<Joint*>::Iterator i = joints_.Begin(); i != joints_.End(); ++i)
  411. (*i)->DrawDebugGeometry(debug, depthTest);
  412. }
  413. }
  414. void PhysicsWorld::CleanupGeometryCache()
  415. {
  416. // Remove cached shapes whose only reference is the cache itself
  417. for (Map<String, SharedPtr<TriangleMeshData> >::Iterator i = triangleMeshCache_.Begin();
  418. i != triangleMeshCache_.End();)
  419. {
  420. Map<String, SharedPtr<TriangleMeshData> >::Iterator current = i++;
  421. if (current->second_.Refs() == 1)
  422. triangleMeshCache_.Erase(current);
  423. }
  424. for (Map<String, SharedPtr<HeightfieldData> >::Iterator i = heightfieldCache_.Begin();
  425. i != heightfieldCache_.End();)
  426. {
  427. Map<String, SharedPtr<HeightfieldData> >::Iterator current = i++;
  428. if (current->second_.Refs() == 1)
  429. heightfieldCache_.Erase(current);
  430. }
  431. }
  432. void PhysicsWorld::OnNodeSet(Node* node)
  433. {
  434. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  435. if (node)
  436. {
  437. scene_ = node->GetScene();
  438. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  439. }
  440. }
  441. void PhysicsWorld::NearCallback(void *userData, dGeomID geomA, dGeomID geomB)
  442. {
  443. dBodyID bodyA = dGeomGetBody(geomA);
  444. dBodyID bodyB = dGeomGetBody(geomB);
  445. // If both geometries are static, no collision
  446. if (!bodyA && !bodyB)
  447. return;
  448. // If the geometries belong to the same body, no collision
  449. if (bodyA == bodyB)
  450. return;
  451. // If the bodies are already connected via other joints, no collision
  452. if (bodyA && bodyB && dAreConnectedExcluding(bodyA, bodyB, dJointTypeContact))
  453. return;
  454. // If both bodies are inactive, no collision
  455. RigidBody* rigidBodyA = bodyA ? static_cast<RigidBody*>(dBodyGetData(bodyA)) : 0;
  456. RigidBody* rigidBodyB = bodyB ? static_cast<RigidBody*>(dBodyGetData(bodyB)) : 0;
  457. if (rigidBodyA && !rigidBodyA->IsActive() && rigidBodyB && !rigidBodyB->IsActive())
  458. return;
  459. PhysicsWorld* world = static_cast<PhysicsWorld*>(userData);
  460. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  461. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  462. Node* nodeA = shapeA->GetNode();
  463. Node* nodeB = shapeB->GetNode();
  464. // Calculate average friction & bounce (physically incorrect)
  465. float friction = (shapeA->GetFriction() + shapeB->GetFriction()) * 0.5f;
  466. float bounce = (shapeA->GetBounce() + shapeB->GetBounce()) * 0.5f;
  467. PODVector<dContact>& contacts = *(static_cast<PODVector<dContact>*>(world->contacts_));
  468. for (unsigned i = 0; i < world->maxContacts_; ++i)
  469. {
  470. contacts[i].surface.mode = dContactApprox1;
  471. contacts[i].surface.mu = friction;
  472. if (bounce > 0.0f)
  473. {
  474. contacts[i].surface.mode |= dContactBounce;
  475. contacts[i].surface.bounce = bounce;
  476. contacts[i].surface.bounce_vel = world->bounceThreshold_;
  477. }
  478. }
  479. unsigned numContacts = dCollide(geomA, geomB, world->maxContacts_, &contacts[0].geom, sizeof(dContact));
  480. if (!numContacts)
  481. return;
  482. Pair<RigidBody*, RigidBody*> bodyPair;
  483. if (rigidBodyA < rigidBodyB)
  484. bodyPair = MakePair(rigidBodyA, rigidBodyB);
  485. else
  486. bodyPair = MakePair(rigidBodyB, rigidBodyA);
  487. PhysicsCollisionInfo collisionInfo;
  488. collisionInfo.nodeA_ = nodeA;
  489. collisionInfo.nodeB_ = nodeB;
  490. collisionInfo.shapeA_ = shapeA;
  491. collisionInfo.shapeB_ = shapeB;
  492. collisionInfo.newCollision_ = world->previousCollisions_.Find(bodyPair) == world->previousCollisions_.End();
  493. collisionInfo.contacts_.Clear();
  494. world->currentCollisions_.Insert(bodyPair);
  495. for (unsigned i = 0; i < numContacts; ++i)
  496. {
  497. // Calculate isotropic friction direction from relative tangent velocity between bodies
  498. // Adapted from http://www.ode.org/old_list_archives/2005-May/015836.html
  499. dVector3 velA;
  500. if (bodyA)
  501. dBodyGetPointVel(bodyA, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velA);
  502. else
  503. velA[0] = velA[1] = velA[2] = 0.0f;
  504. if (bodyB)
  505. {
  506. dVector3 velB;
  507. dBodyGetPointVel(bodyB, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velB);
  508. velA[0] -= velB[0];
  509. velA[1] -= velB[1];
  510. velA[2] -= velB[2];
  511. }
  512. // Normalize & only use our calculated friction if it has enough precision
  513. float length = sqrtf(velA[0] * velA[0] + velA[1] * velA[1] + velA[2] * velA[2]);
  514. if (length > M_EPSILON)
  515. {
  516. float invLen = 1.0f / length;
  517. velA[0] *= invLen;
  518. velA[1] *= invLen;
  519. velA[2] *= invLen;
  520. // Make sure friction is also perpendicular to normal
  521. dCROSS(contacts[i].fdir1, =, velA, contacts[i].geom.normal);
  522. contacts[i].surface.mode |= dContactFDir1;
  523. }
  524. // If neither of the shapes are phantom, create contact joint
  525. if (!shapeA->IsPhantom() && !shapeB->IsPhantom())
  526. {
  527. dJointID contact = dJointCreateContact(world->physicsWorld_, world->contactJoints_, &contacts[i]);
  528. dJointAttach(contact, bodyA, bodyB);
  529. }
  530. // Store contact info
  531. PhysicsContactInfo contactInfo;
  532. contactInfo.position_ = Vector3(contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2]);
  533. contactInfo.normal_ = Vector3(contacts[i].geom.normal[0], contacts[i].geom.normal[1], contacts[i].geom.normal[2]);
  534. contactInfo.depth_ = contacts[i].geom.depth;
  535. contactInfo.velocity_ = length;
  536. collisionInfo.contacts_.Push(contactInfo);
  537. }
  538. // Store collision info to be sent later
  539. world->collisionInfos_.Push(collisionInfo);
  540. }
  541. void PhysicsWorld::RaycastCallback(void *userData, dGeomID geomA, dGeomID geomB)
  542. {
  543. dContact contact;
  544. unsigned numContacts = dCollide(geomA, geomB, 1, &contact.geom, sizeof(dContact));
  545. if (numContacts > 0)
  546. {
  547. PODVector<PhysicsRaycastResult>* result = static_cast<PODVector<PhysicsRaycastResult>*>(userData);
  548. PhysicsRaycastResult newResult;
  549. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  550. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  551. // Check which of the geometries is the raycast ray
  552. if (shapeA)
  553. newResult.collisionShape_ = shapeA;
  554. else if (shapeB)
  555. newResult.collisionShape_ = shapeB;
  556. else
  557. return;
  558. newResult.distance_ = contact.geom.depth;
  559. newResult.position_ = Vector3(contact.geom.pos[0], contact.geom.pos[1], contact.geom.pos[2]);
  560. newResult.normal_ = Vector3(contact.geom.normal[0], contact.geom.normal[1], contact.geom.normal[2]);
  561. result->Push(newResult);
  562. }
  563. }
  564. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  565. {
  566. using namespace SceneSubsystemUpdate;
  567. Update(eventData[P_TIMESTEP].GetFloat());
  568. }
  569. void RegisterPhysicsLibrary(Context* context)
  570. {
  571. CollisionShape::RegisterObject(context);
  572. Joint::RegisterObject(context);
  573. RigidBody::RegisterObject(context);
  574. PhysicsWorld::RegisterObject(context);
  575. }