View.cpp 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "Camera.h"
  24. #include "DebugRenderer.h"
  25. #include "Geometry.h"
  26. #include "Graphics.h"
  27. #include "GraphicsImpl.h"
  28. #include "Log.h"
  29. #include "Material.h"
  30. #include "OcclusionBuffer.h"
  31. #include "Octree.h"
  32. #include "Renderer.h"
  33. #include "RenderPath.h"
  34. #include "ResourceCache.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderVariation.h"
  38. #include "Skybox.h"
  39. #include "Technique.h"
  40. #include "Texture2D.h"
  41. #include "TextureCube.h"
  42. #include "VertexBuffer.h"
  43. #include "View.h"
  44. #include "WorkQueue.h"
  45. #include "Zone.h"
  46. #include "DebugNew.h"
  47. namespace Urho3D
  48. {
  49. static const Vector3* directions[] =
  50. {
  51. &Vector3::RIGHT,
  52. &Vector3::LEFT,
  53. &Vector3::UP,
  54. &Vector3::DOWN,
  55. &Vector3::FORWARD,
  56. &Vector3::BACK
  57. };
  58. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  60. /// %Frustum octree query for shadowcasters.
  61. class ShadowCasterOctreeQuery : public FrustumOctreeQuery
  62. {
  63. public:
  64. /// Construct with frustum and query parameters.
  65. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  66. unsigned viewMask = DEFAULT_VIEWMASK) :
  67. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  68. {
  69. }
  70. /// Intersection test for drawables.
  71. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  72. {
  73. while (start != end)
  74. {
  75. Drawable* drawable = *start++;
  76. if (drawable->GetCastShadows() && (drawable->GetDrawableFlags() & drawableFlags_) &&
  77. (drawable->GetViewMask() & viewMask_))
  78. {
  79. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  80. result_.Push(drawable);
  81. }
  82. }
  83. }
  84. };
  85. /// %Frustum octree query for zones and occluders.
  86. class ZoneOccluderOctreeQuery : public FrustumOctreeQuery
  87. {
  88. public:
  89. /// Construct with frustum and query parameters.
  90. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  91. unsigned viewMask = DEFAULT_VIEWMASK) :
  92. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask)
  93. {
  94. }
  95. /// Intersection test for drawables.
  96. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  97. {
  98. while (start != end)
  99. {
  100. Drawable* drawable = *start++;
  101. unsigned char flags = drawable->GetDrawableFlags();
  102. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && (drawable->GetViewMask() &
  103. viewMask_))
  104. {
  105. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  106. result_.Push(drawable);
  107. }
  108. }
  109. }
  110. };
  111. /// %Frustum octree query with occlusion.
  112. class OccludedFrustumOctreeQuery : public FrustumOctreeQuery
  113. {
  114. public:
  115. /// Construct with frustum, occlusion buffer and query parameters.
  116. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  117. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  118. FrustumOctreeQuery(result, frustum, drawableFlags, viewMask),
  119. buffer_(buffer)
  120. {
  121. }
  122. /// Intersection test for an octant.
  123. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  124. {
  125. if (inside)
  126. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  127. else
  128. {
  129. Intersection result = frustum_.IsInside(box);
  130. if (result != OUTSIDE && !buffer_->IsVisible(box))
  131. result = OUTSIDE;
  132. return result;
  133. }
  134. }
  135. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  136. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  137. {
  138. while (start != end)
  139. {
  140. Drawable* drawable = *start++;
  141. if ((drawable->GetDrawableFlags() & drawableFlags_) && (drawable->GetViewMask() & viewMask_))
  142. {
  143. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  144. result_.Push(drawable);
  145. }
  146. }
  147. }
  148. /// Occlusion buffer.
  149. OcclusionBuffer* buffer_;
  150. };
  151. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  152. {
  153. View* view = reinterpret_cast<View*>(item->aux_);
  154. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  155. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  156. OcclusionBuffer* buffer = view->occlusionBuffer_;
  157. const Matrix3x4& viewMatrix = view->camera_->GetView();
  158. Vector3 viewZ = Vector3(viewMatrix.m20_, viewMatrix.m21_, viewMatrix.m22_);
  159. Vector3 absViewZ = viewZ.Abs();
  160. while (start != end)
  161. {
  162. Drawable* drawable = *start++;
  163. drawable->UpdateBatches(view->frame_);
  164. // If draw distance non-zero, check it
  165. float maxDistance = drawable->GetDrawDistance();
  166. if ((maxDistance <= 0.0f || drawable->GetDistance() <= maxDistance) && (!buffer || !drawable->IsOccludee() ||
  167. buffer->IsVisible(drawable->GetWorldBoundingBox())))
  168. {
  169. drawable->MarkInView(view->frame_);
  170. // For geometries, clear lights and calculate view space Z range
  171. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  172. {
  173. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  174. Vector3 center = geomBox.Center();
  175. float viewCenterZ = viewZ.DotProduct(center) + viewMatrix.m23_;
  176. Vector3 edge = geomBox.Size() * 0.5f;
  177. float viewEdgeZ = absViewZ.DotProduct(edge);
  178. drawable->SetMinMaxZ(viewCenterZ - viewEdgeZ, viewCenterZ + viewEdgeZ);
  179. drawable->ClearLights();
  180. }
  181. }
  182. }
  183. }
  184. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  185. {
  186. View* view = reinterpret_cast<View*>(item->aux_);
  187. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  188. view->ProcessLight(*query, threadIndex);
  189. }
  190. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  191. {
  192. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  193. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  194. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  195. while (start != end)
  196. {
  197. Drawable* drawable = *start++;
  198. drawable->UpdateGeometry(frame);
  199. }
  200. }
  201. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  202. {
  203. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  204. queue->SortFrontToBack();
  205. }
  206. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  207. {
  208. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  209. queue->SortBackToFront();
  210. }
  211. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  212. {
  213. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  214. start->litBatches_.SortFrontToBack();
  215. }
  216. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  217. {
  218. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  219. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  220. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  221. }
  222. View::View(Context* context) :
  223. Object(context),
  224. graphics_(GetSubsystem<Graphics>()),
  225. renderer_(GetSubsystem<Renderer>()),
  226. scene_(0),
  227. octree_(0),
  228. camera_(0),
  229. cameraZone_(0),
  230. farClipZone_(0),
  231. renderTarget_(0),
  232. tempDrawables_(GetSubsystem<WorkQueue>()->GetNumThreads() + 1) // Create octree query vector for each thread
  233. {
  234. frame_.camera_ = 0;
  235. }
  236. View::~View()
  237. {
  238. }
  239. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  240. {
  241. Scene* scene = viewport->GetScene();
  242. Camera* camera = viewport->GetCamera();
  243. if (!scene || !camera || !camera->IsEnabledEffective())
  244. return false;
  245. // If scene is loading asynchronously, it is incomplete and should not be rendered
  246. if (scene->IsAsyncLoading())
  247. return false;
  248. Octree* octree = scene->GetComponent<Octree>();
  249. if (!octree)
  250. return false;
  251. // Do not accept view if camera projection is illegal
  252. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  253. if (!camera->IsProjectionValid())
  254. return false;
  255. scene_ = scene;
  256. octree_ = octree;
  257. camera_ = camera;
  258. cameraNode_ = camera->GetNode();
  259. renderTarget_ = renderTarget;
  260. renderPath_ = viewport->GetRenderPath();
  261. gBufferPassName_ = StringHash();
  262. basePassName_ = PASS_BASE;
  263. alphaPassName_ = PASS_ALPHA;
  264. lightPassName_ = PASS_LIGHT;
  265. litBasePassName_ = PASS_LITBASE;
  266. litAlphaPassName_ = PASS_LITALPHA;
  267. // Make sure that all necessary batch queues exist
  268. scenePasses_.Clear();
  269. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  270. {
  271. const RenderPathCommand& command = renderPath_->commands_[i];
  272. if (!command.enabled_)
  273. continue;
  274. if (command.type_ == CMD_SCENEPASS)
  275. {
  276. ScenePassInfo info;
  277. info.pass_ = command.pass_;
  278. info.allowInstancing_ = command.sortMode_ != SORT_BACKTOFRONT;
  279. info.markToStencil_ = command.markToStencil_;
  280. info.useScissor_ = command.useScissor_;
  281. info.vertexLights_ = command.vertexLights_;
  282. // Check scenepass metadata for defining custom passes which interact with lighting
  283. String metadata = command.metadata_.Trimmed().ToLower();
  284. if (!metadata.Empty())
  285. {
  286. if (metadata == "gbuffer")
  287. gBufferPassName_ = command.pass_;
  288. else if (metadata == "base")
  289. {
  290. basePassName_ = command.pass_;
  291. litBasePassName_ = "lit" + command.pass_;
  292. }
  293. else if (metadata == "alpha")
  294. {
  295. alphaPassName_ = command.pass_;
  296. litAlphaPassName_ = "lit" + command.pass_;
  297. }
  298. }
  299. HashMap<StringHash, BatchQueue>::Iterator j = batchQueues_.Find(command.pass_);
  300. if (j == batchQueues_.End())
  301. j = batchQueues_.Insert(Pair<StringHash, BatchQueue>(command.pass_, BatchQueue()));
  302. info.batchQueue_ = &j->second_;
  303. scenePasses_.Push(info);
  304. }
  305. else if (command.type_ == CMD_FORWARDLIGHTS)
  306. {
  307. if (!command.pass_.Trimmed().Empty())
  308. lightPassName_ = command.pass_;
  309. }
  310. }
  311. // Get light volume shaders according to the renderpath, if it needs them
  312. deferred_ = false;
  313. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  314. {
  315. const RenderPathCommand& command = renderPath_->commands_[i];
  316. if (!command.enabled_)
  317. continue;
  318. if (command.type_ == CMD_LIGHTVOLUMES)
  319. {
  320. renderer_->GetLightVolumeShaders(lightVS_, lightPS_, command.vertexShaderName_, command.pixelShaderName_);
  321. deferred_ = true;
  322. }
  323. }
  324. if (!deferred_)
  325. {
  326. lightVS_.Clear();
  327. lightPS_.Clear();
  328. }
  329. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  330. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  331. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  332. const IntRect& rect = viewport->GetRect();
  333. if (rect != IntRect::ZERO)
  334. {
  335. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  336. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  337. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  338. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  339. }
  340. else
  341. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  342. viewSize_ = viewRect_.Size();
  343. rtSize_ = IntVector2(rtWidth, rtHeight);
  344. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  345. #ifdef USE_OPENGL
  346. if (renderTarget_)
  347. {
  348. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  349. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  350. }
  351. #endif
  352. drawShadows_ = renderer_->GetDrawShadows();
  353. materialQuality_ = renderer_->GetMaterialQuality();
  354. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  355. minInstances_ = renderer_->GetMinInstances();
  356. // Set possible quality overrides from the camera
  357. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  358. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  359. materialQuality_ = QUALITY_LOW;
  360. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  361. drawShadows_ = false;
  362. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  363. maxOccluderTriangles_ = 0;
  364. return true;
  365. }
  366. void View::Update(const FrameInfo& frame)
  367. {
  368. if (!camera_ || !octree_)
  369. return;
  370. frame_.camera_ = camera_;
  371. frame_.timeStep_ = frame.timeStep_;
  372. frame_.frameNumber_ = frame.frameNumber_;
  373. frame_.viewSize_ = viewSize_;
  374. int maxSortedInstances = renderer_->GetMaxSortedInstances();
  375. // Clear screen buffers, geometry, light, occluder & batch lists
  376. screenBuffers_.Clear();
  377. renderTargets_.Clear();
  378. geometries_.Clear();
  379. shadowGeometries_.Clear();
  380. lights_.Clear();
  381. zones_.Clear();
  382. occluders_.Clear();
  383. vertexLightQueues_.Clear();
  384. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  385. i->second_.Clear(maxSortedInstances);
  386. // Set automatic aspect ratio if required
  387. if (camera_->GetAutoAspectRatio())
  388. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  389. GetDrawables();
  390. GetBatches();
  391. }
  392. void View::Render()
  393. {
  394. if (!octree_ || !camera_)
  395. return;
  396. // Actually update geometry data now
  397. UpdateGeometries();
  398. // Allocate screen buffers as necessary
  399. AllocateScreenBuffers();
  400. // Initialize screenbuffer indices to use for read and write (pingponging)
  401. writeBuffer_ = 0;
  402. readBuffer_ = 0;
  403. // Forget parameter sources from the previous view
  404. graphics_->ClearParameterSources();
  405. // If stream offset is supported, write all instance transforms to a single large buffer
  406. // Else we must lock the instance buffer for each batch group
  407. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  408. PrepareInstancingBuffer();
  409. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  410. // again to ensure correct projection will be used
  411. if (camera_->GetAutoAspectRatio())
  412. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  413. // Bind the face selection and indirection cube maps for point light shadows
  414. if (renderer_->GetDrawShadows())
  415. {
  416. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  417. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  418. }
  419. // Set "view texture" to prevent destination texture sampling during all renderpasses
  420. if (renderTarget_)
  421. {
  422. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  423. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  424. // as a render texture produced on Direct3D9
  425. #ifdef USE_OPENGL
  426. camera_->SetFlipVertical(true);
  427. #endif
  428. }
  429. // Render
  430. ExecuteRenderPathCommands();
  431. #ifdef USE_OPENGL
  432. camera_->SetFlipVertical(false);
  433. #endif
  434. graphics_->SetDepthBias(0.0f, 0.0f);
  435. graphics_->SetScissorTest(false);
  436. graphics_->SetStencilTest(false);
  437. graphics_->SetViewTexture(0);
  438. graphics_->ResetStreamFrequencies();
  439. // Run framebuffer blitting if necessary
  440. if (screenBuffers_.Size() && currentRenderTarget_ != renderTarget_)
  441. BlitFramebuffer(static_cast<Texture2D*>(currentRenderTarget_->GetParentTexture()), renderTarget_, true);
  442. // If this is a main view, draw the associated debug geometry now
  443. if (!renderTarget_)
  444. {
  445. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  446. if (debug)
  447. {
  448. debug->SetView(camera_);
  449. debug->Render();
  450. }
  451. }
  452. // "Forget" the scene, camera, octree and zone after rendering
  453. scene_ = 0;
  454. camera_ = 0;
  455. octree_ = 0;
  456. cameraZone_ = 0;
  457. farClipZone_ = 0;
  458. occlusionBuffer_ = 0;
  459. frame_.camera_ = 0;
  460. }
  461. Graphics* View::GetGraphics() const
  462. {
  463. return graphics_;
  464. }
  465. Renderer* View::GetRenderer() const
  466. {
  467. return renderer_;
  468. }
  469. void View::GetDrawables()
  470. {
  471. PROFILE(GetDrawables);
  472. WorkQueue* queue = GetSubsystem<WorkQueue>();
  473. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  474. // Get zones and occluders first
  475. {
  476. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE, camera_->GetViewMask());
  477. octree_->GetDrawables(query);
  478. }
  479. highestZonePriority_ = M_MIN_INT;
  480. int bestPriority = M_MIN_INT;
  481. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  482. // Get default zone first in case we do not have zones defined
  483. Zone* defaultZone = renderer_->GetDefaultZone();
  484. cameraZone_ = farClipZone_ = defaultZone;
  485. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  486. {
  487. Drawable* drawable = *i;
  488. unsigned char flags = drawable->GetDrawableFlags();
  489. if (flags & DRAWABLE_ZONE)
  490. {
  491. Zone* zone = static_cast<Zone*>(drawable);
  492. zones_.Push(zone);
  493. int priority = zone->GetPriority();
  494. if (priority > highestZonePriority_)
  495. highestZonePriority_ = priority;
  496. if (priority > bestPriority && zone->IsInside(cameraPos))
  497. {
  498. cameraZone_ = zone;
  499. bestPriority = priority;
  500. }
  501. }
  502. else
  503. occluders_.Push(drawable);
  504. }
  505. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  506. cameraZoneOverride_ = cameraZone_->GetOverride();
  507. if (!cameraZoneOverride_)
  508. {
  509. Vector3 farClipPos = cameraPos + cameraNode_->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  510. bestPriority = M_MIN_INT;
  511. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  512. {
  513. int priority = (*i)->GetPriority();
  514. if (priority > bestPriority && (*i)->IsInside(farClipPos))
  515. {
  516. farClipZone_ = *i;
  517. bestPriority = priority;
  518. }
  519. }
  520. }
  521. if (farClipZone_ == defaultZone)
  522. farClipZone_ = cameraZone_;
  523. // If occlusion in use, get & render the occluders
  524. occlusionBuffer_ = 0;
  525. if (maxOccluderTriangles_ > 0)
  526. {
  527. UpdateOccluders(occluders_, camera_);
  528. if (occluders_.Size())
  529. {
  530. PROFILE(DrawOcclusion);
  531. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  532. DrawOccluders(occlusionBuffer_, occluders_);
  533. }
  534. }
  535. // Get lights and geometries. Coarse occlusion for octants is used at this point
  536. if (occlusionBuffer_)
  537. {
  538. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  539. DRAWABLE_LIGHT, camera_->GetViewMask());
  540. octree_->GetDrawables(query);
  541. }
  542. else
  543. {
  544. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT,
  545. camera_->GetViewMask());
  546. octree_->GetDrawables(query);
  547. }
  548. // Check drawable occlusion and find zones for moved drawables in worker threads
  549. {
  550. WorkItem item;
  551. item.workFunction_ = CheckVisibilityWork;
  552. item.aux_ = this;
  553. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  554. while (start != tempDrawables.End())
  555. {
  556. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  557. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  558. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  559. item.start_ = &(*start);
  560. item.end_ = &(*end);
  561. queue->AddWorkItem(item);
  562. start = end;
  563. }
  564. queue->Complete(M_MAX_UNSIGNED);
  565. }
  566. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  567. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  568. sceneBox_.defined_ = false;
  569. minZ_ = M_INFINITY;
  570. maxZ_ = 0.0f;
  571. unsigned cameraViewMask = camera_->GetViewMask();
  572. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  573. {
  574. Drawable* drawable = tempDrawables[i];
  575. if (!drawable->IsInView(frame_))
  576. continue;
  577. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  578. {
  579. // Find zone for the drawable if necessary
  580. Zone* drawableZone = drawable->GetZone();
  581. if ((drawable->IsZoneDirty() || !drawableZone || (drawableZone->GetViewMask() & cameraViewMask) == 0) && !cameraZoneOverride_)
  582. FindZone(drawable);
  583. // Expand the scene bounding box and Z range (skybox not included because of infinite size) and store the drawawble
  584. if (drawable->GetType() != Skybox::GetTypeStatic())
  585. {
  586. sceneBox_.Merge(drawable->GetWorldBoundingBox());
  587. minZ_ = Min(minZ_, drawable->GetMinZ());
  588. maxZ_ = Max(maxZ_, drawable->GetMaxZ());
  589. }
  590. geometries_.Push(drawable);
  591. }
  592. else
  593. {
  594. Light* light = static_cast<Light*>(drawable);
  595. // Skip lights which are so dim that they can not contribute to a rendertarget
  596. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  597. lights_.Push(light);
  598. }
  599. }
  600. if (minZ_ == M_INFINITY)
  601. minZ_ = 0.0f;
  602. // Sort the lights to brightest/closest first
  603. for (unsigned i = 0; i < lights_.Size(); ++i)
  604. {
  605. Light* light = lights_[i];
  606. light->SetIntensitySortValue(camera_->GetDistance(light->GetNode()->GetWorldPosition()));
  607. light->SetLightQueue(0);
  608. }
  609. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  610. }
  611. void View::GetBatches()
  612. {
  613. WorkQueue* queue = GetSubsystem<WorkQueue>();
  614. PODVector<Light*> vertexLights;
  615. BatchQueue* alphaQueue = batchQueues_.Contains(alphaPassName_) ? &batchQueues_[alphaPassName_] : (BatchQueue*)0;
  616. // Check whether to use the lit base pass optimization
  617. bool useLitBase = true;
  618. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  619. {
  620. const RenderPathCommand& command = renderPath_->commands_[i];
  621. if (command.type_ == CMD_FORWARDLIGHTS)
  622. useLitBase = command.useLitBase_;
  623. }
  624. // Process lit geometries and shadow casters for each light
  625. {
  626. PROFILE(ProcessLights);
  627. lightQueryResults_.Resize(lights_.Size());
  628. WorkItem item;
  629. item.workFunction_ = ProcessLightWork;
  630. item.aux_ = this;
  631. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  632. {
  633. LightQueryResult& query = lightQueryResults_[i];
  634. query.light_ = lights_[i];
  635. item.start_ = &query;
  636. queue->AddWorkItem(item);
  637. }
  638. // Ensure all lights have been processed before proceeding
  639. queue->Complete(M_MAX_UNSIGNED);
  640. }
  641. // Build light queues and lit batches
  642. {
  643. PROFILE(GetLightBatches);
  644. // Preallocate light queues: per-pixel lights which have lit geometries
  645. unsigned numLightQueues = 0;
  646. unsigned usedLightQueues = 0;
  647. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  648. {
  649. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  650. ++numLightQueues;
  651. }
  652. lightQueues_.Resize(numLightQueues);
  653. maxLightsDrawables_.Clear();
  654. unsigned maxSortedInstances = renderer_->GetMaxSortedInstances();
  655. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  656. {
  657. LightQueryResult& query = *i;
  658. // If light has no affected geometries, no need to process further
  659. if (query.litGeometries_.Empty())
  660. continue;
  661. Light* light = query.light_;
  662. // Per-pixel light
  663. if (!light->GetPerVertex())
  664. {
  665. unsigned shadowSplits = query.numSplits_;
  666. // Initialize light queue and store it to the light so that it can be found later
  667. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  668. light->SetLightQueue(&lightQueue);
  669. lightQueue.light_ = light;
  670. lightQueue.shadowMap_ = 0;
  671. lightQueue.litBatches_.Clear(maxSortedInstances);
  672. lightQueue.volumeBatches_.Clear();
  673. // Allocate shadow map now
  674. if (shadowSplits > 0)
  675. {
  676. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  677. // If did not manage to get a shadow map, convert the light to unshadowed
  678. if (!lightQueue.shadowMap_)
  679. shadowSplits = 0;
  680. }
  681. // Setup shadow batch queues
  682. lightQueue.shadowSplits_.Resize(shadowSplits);
  683. for (unsigned j = 0; j < shadowSplits; ++j)
  684. {
  685. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  686. Camera* shadowCamera = query.shadowCameras_[j];
  687. shadowQueue.shadowCamera_ = shadowCamera;
  688. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  689. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  690. shadowQueue.shadowBatches_.Clear(maxSortedInstances);
  691. // Setup the shadow split viewport and finalize shadow camera parameters
  692. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  693. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  694. // Loop through shadow casters
  695. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  696. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  697. {
  698. Drawable* drawable = *k;
  699. if (!drawable->IsInView(frame_, false))
  700. {
  701. drawable->MarkInView(frame_, false);
  702. shadowGeometries_.Push(drawable);
  703. }
  704. Zone* zone = GetZone(drawable);
  705. const Vector<SourceBatch>& batches = drawable->GetBatches();
  706. for (unsigned l = 0; l < batches.Size(); ++l)
  707. {
  708. const SourceBatch& srcBatch = batches[l];
  709. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  710. if (!srcBatch.geometry_ || !tech)
  711. continue;
  712. Pass* pass = tech->GetPass(PASS_SHADOW);
  713. // Skip if material has no shadow pass
  714. if (!pass)
  715. continue;
  716. Batch destBatch(srcBatch);
  717. destBatch.pass_ = pass;
  718. destBatch.camera_ = shadowCamera;
  719. destBatch.zone_ = zone;
  720. destBatch.lightQueue_ = &lightQueue;
  721. AddBatchToQueue(shadowQueue.shadowBatches_, destBatch, tech);
  722. }
  723. }
  724. }
  725. // Process lit geometries
  726. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  727. {
  728. Drawable* drawable = *j;
  729. drawable->AddLight(light);
  730. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  731. if (!drawable->GetMaxLights())
  732. GetLitBatches(drawable, lightQueue, alphaQueue, useLitBase);
  733. else
  734. maxLightsDrawables_.Insert(drawable);
  735. }
  736. // In deferred modes, store the light volume batch now
  737. if (deferred_)
  738. {
  739. Batch volumeBatch;
  740. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  741. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  742. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  743. volumeBatch.camera_ = camera_;
  744. volumeBatch.lightQueue_ = &lightQueue;
  745. volumeBatch.distance_ = light->GetDistance();
  746. volumeBatch.material_ = 0;
  747. volumeBatch.pass_ = 0;
  748. volumeBatch.zone_ = 0;
  749. renderer_->SetLightVolumeBatchShaders(volumeBatch, lightVS_, lightPS_);
  750. lightQueue.volumeBatches_.Push(volumeBatch);
  751. }
  752. }
  753. // Per-vertex light
  754. else
  755. {
  756. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  757. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  758. {
  759. Drawable* drawable = *j;
  760. drawable->AddVertexLight(light);
  761. }
  762. }
  763. }
  764. }
  765. // Process drawables with limited per-pixel light count
  766. if (maxLightsDrawables_.Size())
  767. {
  768. PROFILE(GetMaxLightsBatches);
  769. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  770. {
  771. Drawable* drawable = *i;
  772. drawable->LimitLights();
  773. const PODVector<Light*>& lights = drawable->GetLights();
  774. for (unsigned i = 0; i < lights.Size(); ++i)
  775. {
  776. Light* light = lights[i];
  777. // Find the correct light queue again
  778. LightBatchQueue* queue = light->GetLightQueue();
  779. if (queue)
  780. GetLitBatches(drawable, *queue, alphaQueue, useLitBase);
  781. }
  782. }
  783. }
  784. // Build base pass batches
  785. {
  786. PROFILE(GetBaseBatches);
  787. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  788. {
  789. Drawable* drawable = *i;
  790. Zone* zone = GetZone(drawable);
  791. const Vector<SourceBatch>& batches = drawable->GetBatches();
  792. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  793. if (!drawableVertexLights.Empty())
  794. drawable->LimitVertexLights();
  795. for (unsigned j = 0; j < batches.Size(); ++j)
  796. {
  797. const SourceBatch& srcBatch = batches[j];
  798. // Check here if the material refers to a rendertarget texture with camera(s) attached
  799. // Only check this for backbuffer views (null rendertarget)
  800. if (srcBatch.material_ && srcBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  801. CheckMaterialForAuxView(srcBatch.material_);
  802. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  803. if (!srcBatch.geometry_ || !tech)
  804. continue;
  805. Batch destBatch(srcBatch);
  806. destBatch.camera_ = camera_;
  807. destBatch.zone_ = zone;
  808. destBatch.isBase_ = true;
  809. destBatch.pass_ = 0;
  810. destBatch.lightMask_ = GetLightMask(drawable);
  811. // Check each of the scene passes
  812. for (unsigned k = 0; k < scenePasses_.Size(); ++k)
  813. {
  814. ScenePassInfo& info = scenePasses_[k];
  815. destBatch.pass_ = tech->GetPass(info.pass_);
  816. if (!destBatch.pass_)
  817. continue;
  818. // Skip forward base pass if the corresponding litbase pass already exists
  819. if (info.pass_ == basePassName_ && j < 32 && drawable->HasBasePass(j))
  820. continue;
  821. if (info.vertexLights_ && !drawableVertexLights.Empty())
  822. {
  823. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  824. // them to prevent double-lighting
  825. if (deferred_ && destBatch.pass_->GetBlendMode() == BLEND_REPLACE)
  826. {
  827. vertexLights.Clear();
  828. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  829. {
  830. if (drawableVertexLights[i]->GetPerVertex())
  831. vertexLights.Push(drawableVertexLights[i]);
  832. }
  833. }
  834. else
  835. vertexLights = drawableVertexLights;
  836. if (!vertexLights.Empty())
  837. {
  838. // Find a vertex light queue. If not found, create new
  839. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  840. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  841. if (i == vertexLightQueues_.End())
  842. {
  843. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  844. i->second_.light_ = 0;
  845. i->second_.shadowMap_ = 0;
  846. i->second_.vertexLights_ = vertexLights;
  847. }
  848. destBatch.lightQueue_ = &(i->second_);
  849. }
  850. }
  851. else
  852. destBatch.lightQueue_ = 0;
  853. bool allowInstancing = info.allowInstancing_;
  854. if (allowInstancing && info.markToStencil_ && destBatch.lightMask_ != (zone->GetLightMask() & 0xff))
  855. allowInstancing = false;
  856. AddBatchToQueue(*info.batchQueue_, destBatch, tech, allowInstancing);
  857. }
  858. }
  859. }
  860. }
  861. }
  862. void View::UpdateGeometries()
  863. {
  864. PROFILE(SortAndUpdateGeometry);
  865. WorkQueue* queue = GetSubsystem<WorkQueue>();
  866. // Sort batches
  867. {
  868. WorkItem item;
  869. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  870. {
  871. const RenderPathCommand& command = renderPath_->commands_[i];
  872. if (!command.enabled_)
  873. continue;
  874. if (command.type_ == CMD_SCENEPASS)
  875. {
  876. item.workFunction_ = command.sortMode_ == SORT_FRONTTOBACK ? SortBatchQueueFrontToBackWork :
  877. SortBatchQueueBackToFrontWork;
  878. item.start_ = &batchQueues_[command.pass_];
  879. queue->AddWorkItem(item);
  880. }
  881. }
  882. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  883. {
  884. item.workFunction_ = SortLightQueueWork;
  885. item.start_ = &(*i);
  886. queue->AddWorkItem(item);
  887. if (i->shadowSplits_.Size())
  888. {
  889. item.workFunction_ = SortShadowQueueWork;
  890. queue->AddWorkItem(item);
  891. }
  892. }
  893. }
  894. // Update geometries. Split into threaded and non-threaded updates.
  895. {
  896. nonThreadedGeometries_.Clear();
  897. threadedGeometries_.Clear();
  898. for (PODVector<Drawable*>::Iterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  899. {
  900. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  901. if (type == UPDATE_MAIN_THREAD)
  902. nonThreadedGeometries_.Push(*i);
  903. else if (type == UPDATE_WORKER_THREAD)
  904. threadedGeometries_.Push(*i);
  905. }
  906. for (PODVector<Drawable*>::Iterator i = shadowGeometries_.Begin(); i != shadowGeometries_.End(); ++i)
  907. {
  908. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  909. if (type == UPDATE_MAIN_THREAD)
  910. nonThreadedGeometries_.Push(*i);
  911. else if (type == UPDATE_WORKER_THREAD)
  912. threadedGeometries_.Push(*i);
  913. }
  914. if (threadedGeometries_.Size())
  915. {
  916. WorkItem item;
  917. item.workFunction_ = UpdateDrawableGeometriesWork;
  918. item.aux_ = const_cast<FrameInfo*>(&frame_);
  919. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  920. while (start != threadedGeometries_.End())
  921. {
  922. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  923. if (end - start > DRAWABLES_PER_WORK_ITEM)
  924. end = start + DRAWABLES_PER_WORK_ITEM;
  925. item.start_ = &(*start);
  926. item.end_ = &(*end);
  927. queue->AddWorkItem(item);
  928. start = end;
  929. }
  930. }
  931. // While the work queue is processed, update non-threaded geometries
  932. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  933. (*i)->UpdateGeometry(frame_);
  934. }
  935. // Finally ensure all threaded work has completed
  936. queue->Complete(M_MAX_UNSIGNED);
  937. }
  938. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue, BatchQueue* alphaQueue, bool useLitBase)
  939. {
  940. Light* light = lightQueue.light_;
  941. Zone* zone = GetZone(drawable);
  942. const Vector<SourceBatch>& batches = drawable->GetBatches();
  943. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  944. // Shadows on transparencies can only be rendered if shadow maps are not reused
  945. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  946. bool allowLitBase = useLitBase && light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  947. for (unsigned i = 0; i < batches.Size(); ++i)
  948. {
  949. const SourceBatch& srcBatch = batches[i];
  950. Technique* tech = GetTechnique(drawable, srcBatch.material_);
  951. if (!srcBatch.geometry_ || !tech)
  952. continue;
  953. // Do not create pixel lit forward passes for materials that render into the G-buffer
  954. if (gBufferPassName_.Value() && tech->HasPass(gBufferPassName_))
  955. continue;
  956. Batch destBatch(srcBatch);
  957. bool isLitAlpha = false;
  958. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  959. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  960. if (i < 32 && allowLitBase)
  961. {
  962. destBatch.pass_ = tech->GetPass(litBasePassName_);
  963. if (destBatch.pass_)
  964. {
  965. destBatch.isBase_ = true;
  966. drawable->SetBasePass(i);
  967. }
  968. else
  969. destBatch.pass_ = tech->GetPass(lightPassName_);
  970. }
  971. else
  972. destBatch.pass_ = tech->GetPass(lightPassName_);
  973. // If no lit pass, check for lit alpha
  974. if (!destBatch.pass_)
  975. {
  976. destBatch.pass_ = tech->GetPass(litAlphaPassName_);
  977. isLitAlpha = true;
  978. }
  979. // Skip if material does not receive light at all
  980. if (!destBatch.pass_)
  981. continue;
  982. destBatch.camera_ = camera_;
  983. destBatch.lightQueue_ = &lightQueue;
  984. destBatch.zone_ = zone;
  985. if (!isLitAlpha)
  986. AddBatchToQueue(lightQueue.litBatches_, destBatch, tech);
  987. else if (alphaQueue)
  988. {
  989. // Transparent batches can not be instanced
  990. AddBatchToQueue(*alphaQueue, destBatch, tech, false, allowTransparentShadows);
  991. }
  992. }
  993. }
  994. void View::ExecuteRenderPathCommands()
  995. {
  996. // If not reusing shadowmaps, render all of them first
  997. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  998. {
  999. PROFILE(RenderShadowMaps);
  1000. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1001. {
  1002. if (i->shadowMap_)
  1003. RenderShadowMap(*i);
  1004. }
  1005. }
  1006. // Check if forward rendering needs to resolve the multisampled backbuffer to a texture
  1007. bool needResolve = !deferred_ && !renderTarget_ && graphics_->GetMultiSample() > 1 && screenBuffers_.Size();
  1008. {
  1009. PROFILE(RenderCommands);
  1010. unsigned lastCommandIndex = 0;
  1011. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1012. {
  1013. if (!renderPath_->commands_[i].enabled_)
  1014. continue;
  1015. lastCommandIndex = i;
  1016. }
  1017. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1018. {
  1019. RenderPathCommand& command = renderPath_->commands_[i];
  1020. if (!command.enabled_)
  1021. continue;
  1022. // If command writes and reads the target at same time, pingpong automatically
  1023. if (CheckViewportRead(command))
  1024. {
  1025. readBuffer_ = writeBuffer_;
  1026. if (!command.outputNames_[0].Compare("viewport", false))
  1027. {
  1028. ++writeBuffer_;
  1029. if (writeBuffer_ >= screenBuffers_.Size())
  1030. writeBuffer_ = 0;
  1031. // If this is a scene render pass, must copy the previous viewport contents now
  1032. if (command.type_ == CMD_SCENEPASS && !needResolve)
  1033. {
  1034. BlitFramebuffer(screenBuffers_[readBuffer_], screenBuffers_[writeBuffer_]->GetRenderSurface(), false);
  1035. }
  1036. }
  1037. // Resolve multisampled framebuffer now if necessary
  1038. /// \todo Does not copy the depth buffer
  1039. if (needResolve)
  1040. {
  1041. graphics_->ResolveToTexture(screenBuffers_[readBuffer_], viewRect_);
  1042. needResolve = false;
  1043. }
  1044. }
  1045. // Check which rendertarget will be used on this pass
  1046. if (screenBuffers_.Size() && !needResolve)
  1047. currentRenderTarget_ = screenBuffers_[writeBuffer_]->GetRenderSurface();
  1048. else
  1049. currentRenderTarget_ = renderTarget_;
  1050. // Optimization: if the last command is a quad with output to the viewport, do not use the screenbuffers,
  1051. // but the viewport directly. This saves the extra copy
  1052. if (screenBuffers_.Size() && i == lastCommandIndex && command.type_ == CMD_QUAD && command.outputNames_.Size() == 1 &&
  1053. !command.outputNames_[0].Compare("viewport", false))
  1054. currentRenderTarget_ = renderTarget_;
  1055. switch (command.type_)
  1056. {
  1057. case CMD_CLEAR:
  1058. {
  1059. PROFILE(ClearRenderTarget);
  1060. Color clearColor = command.clearColor_;
  1061. if (command.useFogColor_)
  1062. clearColor = farClipZone_->GetFogColor();
  1063. SetRenderTargets(command);
  1064. graphics_->Clear(command.clearFlags_, clearColor, command.clearDepth_, command.clearStencil_);
  1065. }
  1066. break;
  1067. case CMD_SCENEPASS:
  1068. if (!batchQueues_[command.pass_].IsEmpty())
  1069. {
  1070. PROFILE(RenderScenePass);
  1071. SetRenderTargets(command);
  1072. SetTextures(command);
  1073. graphics_->SetFillMode(camera_->GetFillMode());
  1074. batchQueues_[command.pass_].Draw(this, command.useScissor_, command.markToStencil_);
  1075. }
  1076. break;
  1077. case CMD_QUAD:
  1078. {
  1079. PROFILE(RenderQuad);
  1080. SetRenderTargets(command);
  1081. SetTextures(command);
  1082. RenderQuad(command);
  1083. }
  1084. break;
  1085. case CMD_FORWARDLIGHTS:
  1086. // Render shadow maps + opaque objects' additive lighting
  1087. if (!lightQueues_.Empty())
  1088. {
  1089. PROFILE(RenderLights);
  1090. SetRenderTargets(command);
  1091. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1092. {
  1093. // If reusing shadowmaps, render each of them before the lit batches
  1094. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1095. {
  1096. RenderShadowMap(*i);
  1097. SetRenderTargets(command);
  1098. }
  1099. SetTextures(command);
  1100. graphics_->SetFillMode(camera_->GetFillMode());
  1101. i->litBatches_.Draw(i->light_, this);
  1102. }
  1103. graphics_->SetScissorTest(false);
  1104. graphics_->SetStencilTest(false);
  1105. }
  1106. break;
  1107. case CMD_LIGHTVOLUMES:
  1108. // Render shadow maps + light volumes
  1109. if (!lightQueues_.Empty())
  1110. {
  1111. PROFILE(RenderLightVolumes);
  1112. SetRenderTargets(command);
  1113. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1114. {
  1115. // If reusing shadowmaps, render each of them before the lit batches
  1116. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1117. {
  1118. RenderShadowMap(*i);
  1119. SetRenderTargets(command);
  1120. }
  1121. SetTextures(command);
  1122. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1123. {
  1124. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1125. i->volumeBatches_[j].Draw(this);
  1126. }
  1127. }
  1128. graphics_->SetScissorTest(false);
  1129. graphics_->SetStencilTest(false);
  1130. }
  1131. break;
  1132. default:
  1133. break;
  1134. }
  1135. }
  1136. }
  1137. // After executing all commands, reset rendertarget for debug geometry rendering
  1138. graphics_->SetRenderTarget(0, renderTarget_);
  1139. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1140. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1141. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1142. graphics_->SetViewport(viewRect_);
  1143. graphics_->SetFillMode(FILL_SOLID);
  1144. }
  1145. void View::SetRenderTargets(RenderPathCommand& command)
  1146. {
  1147. unsigned index = 0;
  1148. IntRect viewPort = viewRect_;
  1149. while (index < command.outputNames_.Size())
  1150. {
  1151. if (!command.outputNames_[index].Compare("viewport", false))
  1152. graphics_->SetRenderTarget(index, currentRenderTarget_);
  1153. else
  1154. {
  1155. StringHash nameHash(command.outputNames_[index]);
  1156. if (renderTargets_.Contains(nameHash))
  1157. {
  1158. Texture2D* texture = renderTargets_[nameHash];
  1159. graphics_->SetRenderTarget(index, texture);
  1160. if (!index)
  1161. {
  1162. // Determine viewport size from rendertarget info
  1163. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1164. {
  1165. const RenderTargetInfo& info = renderPath_->renderTargets_[i];
  1166. if (!info.name_.Compare(command.outputNames_[index], false))
  1167. {
  1168. switch (info.sizeMode_)
  1169. {
  1170. // If absolute or a divided viewport size, use the full texture
  1171. case SIZE_ABSOLUTE:
  1172. case SIZE_VIEWPORTDIVISOR:
  1173. viewPort = IntRect(0, 0, texture->GetWidth(), texture->GetHeight());
  1174. break;
  1175. // If a divided rendertarget size, retain the same viewport, but scaled
  1176. case SIZE_RENDERTARGETDIVISOR:
  1177. if (info.size_.x_ && info.size_.y_)
  1178. {
  1179. viewPort = IntRect(viewRect_.left_ / info.size_.x_, viewRect_.top_ / info.size_.y_,
  1180. viewRect_.right_ / info.size_.x_, viewRect_.bottom_ / info.size_.y_);
  1181. }
  1182. break;
  1183. }
  1184. break;
  1185. }
  1186. }
  1187. }
  1188. }
  1189. else
  1190. graphics_->SetRenderTarget(0, (RenderSurface*)0);
  1191. }
  1192. ++index;
  1193. }
  1194. while (index < MAX_RENDERTARGETS)
  1195. {
  1196. graphics_->SetRenderTarget(index, (RenderSurface*)0);
  1197. ++index;
  1198. }
  1199. graphics_->SetDepthStencil(GetDepthStencil(graphics_->GetRenderTarget(0)));
  1200. graphics_->SetViewport(viewPort);
  1201. graphics_->SetColorWrite(true);
  1202. }
  1203. void View::SetTextures(RenderPathCommand& command)
  1204. {
  1205. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1206. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1207. {
  1208. if (command.textureNames_[i].Empty())
  1209. continue;
  1210. // Bind the rendered output
  1211. if (!command.textureNames_[i].Compare("viewport", false))
  1212. {
  1213. graphics_->SetTexture(i, screenBuffers_[readBuffer_]);
  1214. continue;
  1215. }
  1216. // Bind a rendertarget
  1217. HashMap<StringHash, Texture2D*>::ConstIterator j = renderTargets_.Find(command.textureNames_[i]);
  1218. if (j != renderTargets_.End())
  1219. {
  1220. graphics_->SetTexture(i, j->second_);
  1221. continue;
  1222. }
  1223. // Bind a texture from the resource system
  1224. Texture2D* texture = cache->GetResource<Texture2D>(command.textureNames_[i]);
  1225. if (texture)
  1226. graphics_->SetTexture(i, texture);
  1227. else
  1228. {
  1229. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1230. command.textureNames_[i] = String::EMPTY;
  1231. }
  1232. }
  1233. }
  1234. void View::RenderQuad(RenderPathCommand& command)
  1235. {
  1236. // If shader can not be found, clear it from the command to prevent redundant attempts
  1237. ShaderVariation* vs = renderer_->GetVertexShader(command.vertexShaderName_);
  1238. if (!vs)
  1239. command.vertexShaderName_ = String::EMPTY;
  1240. ShaderVariation* ps = renderer_->GetPixelShader(command.pixelShaderName_);
  1241. if (!ps)
  1242. command.pixelShaderName_ = String::EMPTY;
  1243. // Set shaders & shader parameters and textures
  1244. graphics_->SetShaders(vs, ps);
  1245. const HashMap<StringHash, Vector4>& parameters = command.shaderParameters_;
  1246. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1247. graphics_->SetShaderParameter(k->first_, k->second_);
  1248. float rtWidth = (float)rtSize_.x_;
  1249. float rtHeight = (float)rtSize_.y_;
  1250. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1251. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1252. #ifdef USE_OPENGL
  1253. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1254. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1255. #else
  1256. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1257. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1258. #endif
  1259. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1260. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1261. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1262. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1263. {
  1264. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1265. if (!rtInfo.enabled_)
  1266. continue;
  1267. StringHash nameHash(rtInfo.name_);
  1268. if (!renderTargets_.Contains(nameHash))
  1269. continue;
  1270. String invSizeName = rtInfo.name_ + "InvSize";
  1271. String offsetsName = rtInfo.name_ + "Offsets";
  1272. float width = (float)renderTargets_[nameHash]->GetWidth();
  1273. float height = (float)renderTargets_[nameHash]->GetHeight();
  1274. graphics_->SetShaderParameter(invSizeName, Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1275. #ifdef USE_OPENGL
  1276. graphics_->SetShaderParameter(offsetsName, Vector4::ZERO);
  1277. #else
  1278. graphics_->SetShaderParameter(offsetsName, Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1279. #endif
  1280. }
  1281. graphics_->SetBlendMode(BLEND_REPLACE);
  1282. graphics_->SetDepthTest(CMP_ALWAYS);
  1283. graphics_->SetDepthWrite(false);
  1284. graphics_->SetFillMode(FILL_SOLID);
  1285. graphics_->SetScissorTest(false);
  1286. graphics_->SetStencilTest(false);
  1287. DrawFullscreenQuad(false);
  1288. }
  1289. bool View::CheckViewportRead(const RenderPathCommand& command)
  1290. {
  1291. for (unsigned i = 0; i < MAX_TEXTURE_UNITS; ++i)
  1292. {
  1293. if (!command.textureNames_[i].Empty() && !command.textureNames_[i].Compare("viewport", false))
  1294. return true;
  1295. }
  1296. return false;
  1297. }
  1298. void View::AllocateScreenBuffers()
  1299. {
  1300. unsigned neededBuffers = 0;
  1301. #ifdef USE_OPENGL
  1302. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1303. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1304. if (deferred_ && (!renderTarget_ || (deferred_ && renderTarget_->GetParentTexture()->GetFormat() !=
  1305. Graphics::GetRGBAFormat())))
  1306. neededBuffers = 1;
  1307. #endif
  1308. // If backbuffer is antialiased when using deferred rendering, need to reserve a buffer
  1309. if (deferred_ && !renderTarget_ && graphics_->GetMultiSample() > 1)
  1310. neededBuffers = 1;
  1311. unsigned format = Graphics::GetRGBFormat();
  1312. #ifdef USE_OPENGL
  1313. if (deferred_)
  1314. format = Graphics::GetRGBAFormat();
  1315. #endif
  1316. // Check for commands which read the rendered scene and allocate a buffer for each, up to 2 maximum for pingpong
  1317. /// \todo If the last copy is optimized away, this allocates an extra buffer unnecessarily
  1318. bool hasViewportRead = false;
  1319. bool hasViewportReadWrite = false;
  1320. for (unsigned i = 0; i < renderPath_->commands_.Size(); ++i)
  1321. {
  1322. const RenderPathCommand& command = renderPath_->commands_[i];
  1323. if (!command.enabled_)
  1324. continue;
  1325. if (CheckViewportRead(command))
  1326. {
  1327. hasViewportRead = true;
  1328. if (!command.outputNames_[0].Compare("viewport", false))
  1329. hasViewportReadWrite = true;
  1330. }
  1331. }
  1332. if (hasViewportRead && !neededBuffers)
  1333. neededBuffers = 1;
  1334. if (hasViewportReadWrite)
  1335. neededBuffers = 2;
  1336. // Allocate screen buffers with filtering active in case the quad commands need that
  1337. // Follow the sRGB mode of the destination rendertarget
  1338. bool sRGB = renderTarget_ ? renderTarget_->GetParentTexture()->GetSRGB() : graphics_->GetSRGB();
  1339. for (unsigned i = 0; i < neededBuffers; ++i)
  1340. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true, sRGB));
  1341. // Allocate extra render targets defined by the rendering path
  1342. for (unsigned i = 0; i < renderPath_->renderTargets_.Size(); ++i)
  1343. {
  1344. const RenderTargetInfo& rtInfo = renderPath_->renderTargets_[i];
  1345. if (!rtInfo.enabled_)
  1346. continue;
  1347. unsigned width = rtInfo.size_.x_;
  1348. unsigned height = rtInfo.size_.y_;
  1349. if (rtInfo.sizeMode_ == SIZE_VIEWPORTDIVISOR)
  1350. {
  1351. width = viewSize_.x_ / (width ? width : 1);
  1352. height = viewSize_.y_ / (height ? height : 1);
  1353. }
  1354. if (rtInfo.sizeMode_ == SIZE_RENDERTARGETDIVISOR)
  1355. {
  1356. width = rtSize_.x_ / (width ? width : 1);
  1357. height = rtSize_.y_ / (height ? height : 1);
  1358. }
  1359. renderTargets_[rtInfo.name_] = renderer_->GetScreenBuffer(width, height, rtInfo.format_, rtInfo.filtered_, rtInfo.sRGB_);
  1360. }
  1361. }
  1362. void View::BlitFramebuffer(Texture2D* source, RenderSurface* destination, bool depthWrite)
  1363. {
  1364. PROFILE(BlitFramebuffer);
  1365. graphics_->SetBlendMode(BLEND_REPLACE);
  1366. graphics_->SetDepthTest(CMP_ALWAYS);
  1367. graphics_->SetDepthWrite(true);
  1368. graphics_->SetFillMode(FILL_SOLID);
  1369. graphics_->SetScissorTest(false);
  1370. graphics_->SetStencilTest(false);
  1371. graphics_->SetRenderTarget(0, destination);
  1372. for (unsigned i = 1; i < MAX_RENDERTARGETS; ++i)
  1373. graphics_->SetRenderTarget(i, (RenderSurface*)0);
  1374. graphics_->SetDepthStencil(GetDepthStencil(destination));
  1375. graphics_->SetViewport(viewRect_);
  1376. String shaderName = "CopyFramebuffer";
  1377. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1378. float rtWidth = (float)rtSize_.x_;
  1379. float rtHeight = (float)rtSize_.y_;
  1380. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1381. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1382. #ifdef USE_OPENGL
  1383. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1384. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1385. #else
  1386. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1387. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1388. #endif
  1389. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1390. graphics_->SetTexture(TU_DIFFUSE, source);
  1391. DrawFullscreenQuad(false);
  1392. }
  1393. void View::DrawFullscreenQuad(bool nearQuad)
  1394. {
  1395. Light* quadDirLight = renderer_->GetQuadDirLight();
  1396. Geometry* geometry = renderer_->GetLightGeometry(quadDirLight);
  1397. Matrix3x4 model = Matrix3x4::IDENTITY;
  1398. Matrix4 projection = Matrix4::IDENTITY;
  1399. #ifdef USE_OPENGL
  1400. model.m23_ = nearQuad ? -1.0f : 1.0f;
  1401. #else
  1402. model.m23_ = nearQuad ? 0.0f : 1.0f;
  1403. #endif
  1404. graphics_->SetCullMode(CULL_NONE);
  1405. graphics_->SetShaderParameter(VSP_MODEL, model);
  1406. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1407. graphics_->ClearTransformSources();
  1408. geometry->Draw(graphics_);
  1409. }
  1410. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1411. {
  1412. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1413. float halfViewSize = camera->GetHalfViewSize();
  1414. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1415. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1416. {
  1417. Drawable* occluder = *i;
  1418. bool erase = false;
  1419. if (!occluder->IsInView(frame_, false))
  1420. occluder->UpdateBatches(frame_);
  1421. // Check occluder's draw distance (in main camera view)
  1422. float maxDistance = occluder->GetDrawDistance();
  1423. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1424. {
  1425. // Check that occluder is big enough on the screen
  1426. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1427. float diagonal = box.Size().Length();
  1428. float compare;
  1429. if (!camera->IsOrthographic())
  1430. compare = diagonal * halfViewSize / occluder->GetDistance();
  1431. else
  1432. compare = diagonal * invOrthoSize;
  1433. if (compare < occluderSizeThreshold_)
  1434. erase = true;
  1435. else
  1436. {
  1437. // Store amount of triangles divided by screen size as a sorting key
  1438. // (best occluders are big and have few triangles)
  1439. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1440. }
  1441. }
  1442. else
  1443. erase = true;
  1444. if (erase)
  1445. i = occluders.Erase(i);
  1446. else
  1447. ++i;
  1448. }
  1449. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1450. if (occluders.Size())
  1451. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1452. }
  1453. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1454. {
  1455. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1456. buffer->Clear();
  1457. for (unsigned i = 0; i < occluders.Size(); ++i)
  1458. {
  1459. Drawable* occluder = occluders[i];
  1460. if (i > 0)
  1461. {
  1462. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1463. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1464. continue;
  1465. }
  1466. // Check for running out of triangles
  1467. if (!occluder->DrawOcclusion(buffer))
  1468. break;
  1469. }
  1470. buffer->BuildDepthHierarchy();
  1471. }
  1472. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1473. {
  1474. Light* light = query.light_;
  1475. LightType type = light->GetLightType();
  1476. const Frustum& frustum = camera_->GetFrustum();
  1477. // Check if light should be shadowed
  1478. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1479. // If shadow distance non-zero, check it
  1480. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1481. isShadowed = false;
  1482. // OpenGL ES can not support point light shadows
  1483. #ifdef GL_ES_VERSION_2_0
  1484. if (isShadowed && type == LIGHT_POINT)
  1485. isShadowed = false;
  1486. #endif
  1487. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1488. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1489. query.litGeometries_.Clear();
  1490. switch (type)
  1491. {
  1492. case LIGHT_DIRECTIONAL:
  1493. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1494. {
  1495. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1496. query.litGeometries_.Push(geometries_[i]);
  1497. }
  1498. break;
  1499. case LIGHT_SPOT:
  1500. {
  1501. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1502. octree_->GetDrawables(octreeQuery);
  1503. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1504. {
  1505. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1506. query.litGeometries_.Push(tempDrawables[i]);
  1507. }
  1508. }
  1509. break;
  1510. case LIGHT_POINT:
  1511. {
  1512. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetNode()->GetWorldPosition(), light->GetRange()),
  1513. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1514. octree_->GetDrawables(octreeQuery);
  1515. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1516. {
  1517. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1518. query.litGeometries_.Push(tempDrawables[i]);
  1519. }
  1520. }
  1521. break;
  1522. }
  1523. // If no lit geometries or not shadowed, no need to process shadow cameras
  1524. if (query.litGeometries_.Empty() || !isShadowed)
  1525. {
  1526. query.numSplits_ = 0;
  1527. return;
  1528. }
  1529. // Determine number of shadow cameras and setup their initial positions
  1530. SetupShadowCameras(query);
  1531. // Process each split for shadow casters
  1532. query.shadowCasters_.Clear();
  1533. for (unsigned i = 0; i < query.numSplits_; ++i)
  1534. {
  1535. Camera* shadowCamera = query.shadowCameras_[i];
  1536. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1537. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1538. // For point light check that the face is visible: if not, can skip the split
  1539. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1540. continue;
  1541. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1542. if (type == LIGHT_DIRECTIONAL)
  1543. {
  1544. if (minZ_ > query.shadowFarSplits_[i])
  1545. continue;
  1546. if (maxZ_ < query.shadowNearSplits_[i])
  1547. continue;
  1548. // Reuse lit geometry query for all except directional lights
  1549. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1550. camera_->GetViewMask());
  1551. octree_->GetDrawables(query);
  1552. }
  1553. // Check which shadow casters actually contribute to the shadowing
  1554. ProcessShadowCasters(query, tempDrawables, i);
  1555. }
  1556. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1557. // only cost has been the shadow camera setup & queries
  1558. if (query.shadowCasters_.Empty())
  1559. query.numSplits_ = 0;
  1560. }
  1561. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1562. {
  1563. Light* light = query.light_;
  1564. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1565. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1566. const Matrix3x4& lightView = shadowCamera->GetView();
  1567. const Matrix4& lightProj = shadowCamera->GetProjection();
  1568. LightType type = light->GetLightType();
  1569. query.shadowCasterBox_[splitIndex].defined_ = false;
  1570. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1571. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1572. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1573. Frustum lightViewFrustum;
  1574. if (type != LIGHT_DIRECTIONAL)
  1575. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1576. else
  1577. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1578. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1579. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1580. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1581. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1582. return;
  1583. BoundingBox lightViewBox;
  1584. BoundingBox lightProjBox;
  1585. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1586. {
  1587. Drawable* drawable = *i;
  1588. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1589. // Check for that first
  1590. if (!drawable->GetCastShadows())
  1591. continue;
  1592. // Check shadow mask
  1593. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1594. continue;
  1595. // For point light, check that this drawable is inside the split shadow camera frustum
  1596. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1597. continue;
  1598. // Note: as lights are processed threaded, it is possible a drawable's UpdateBatches() function is called several
  1599. // times. However, this should not cause problems as no scene modification happens at this point.
  1600. if (!drawable->IsInView(frame_, false))
  1601. drawable->UpdateBatches(frame_);
  1602. // Check shadow distance
  1603. float maxShadowDistance = drawable->GetShadowDistance();
  1604. float drawDistance = drawable->GetDrawDistance();
  1605. if (drawDistance > 0.0f && (maxShadowDistance <= 0.0f || drawDistance < maxShadowDistance))
  1606. maxShadowDistance = drawDistance;
  1607. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1608. continue;
  1609. // Project shadow caster bounding box to light view space for visibility check
  1610. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1611. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1612. {
  1613. // Merge to shadow caster bounding box and add to the list
  1614. if (type == LIGHT_DIRECTIONAL)
  1615. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1616. else
  1617. {
  1618. lightProjBox = lightViewBox.Projected(lightProj);
  1619. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1620. }
  1621. query.shadowCasters_.Push(drawable);
  1622. }
  1623. }
  1624. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1625. }
  1626. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1627. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1628. {
  1629. if (shadowCamera->IsOrthographic())
  1630. {
  1631. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1632. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1633. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1634. }
  1635. else
  1636. {
  1637. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1638. if (drawable->IsInView(frame_))
  1639. return true;
  1640. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1641. Vector3 center = lightViewBox.Center();
  1642. Ray extrusionRay(center, center.Normalized());
  1643. float extrusionDistance = shadowCamera->GetFarClip();
  1644. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1645. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1646. float sizeFactor = extrusionDistance / originalDistance;
  1647. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1648. // than necessary, so the test will be conservative
  1649. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1650. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1651. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1652. lightViewBox.Merge(extrudedBox);
  1653. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1654. }
  1655. }
  1656. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1657. {
  1658. unsigned width = shadowMap->GetWidth();
  1659. unsigned height = shadowMap->GetHeight();
  1660. int maxCascades = renderer_->GetMaxShadowCascades();
  1661. switch (light->GetLightType())
  1662. {
  1663. case LIGHT_DIRECTIONAL:
  1664. if (maxCascades == 1)
  1665. return IntRect(0, 0, width, height);
  1666. else if (maxCascades == 2)
  1667. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1668. else
  1669. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1670. (splitIndex / 2 + 1) * height / 2);
  1671. case LIGHT_SPOT:
  1672. return IntRect(0, 0, width, height);
  1673. case LIGHT_POINT:
  1674. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1675. (splitIndex / 2 + 1) * height / 3);
  1676. }
  1677. return IntRect();
  1678. }
  1679. void View::SetupShadowCameras(LightQueryResult& query)
  1680. {
  1681. Light* light = query.light_;
  1682. int splits = 0;
  1683. switch (light->GetLightType())
  1684. {
  1685. case LIGHT_DIRECTIONAL:
  1686. {
  1687. const CascadeParameters& cascade = light->GetShadowCascade();
  1688. float nearSplit = camera_->GetNearClip();
  1689. float farSplit;
  1690. while (splits < renderer_->GetMaxShadowCascades())
  1691. {
  1692. // If split is completely beyond camera far clip, we are done
  1693. if (nearSplit > camera_->GetFarClip())
  1694. break;
  1695. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1696. if (farSplit <= nearSplit)
  1697. break;
  1698. // Setup the shadow camera for the split
  1699. Camera* shadowCamera = renderer_->GetShadowCamera();
  1700. query.shadowCameras_[splits] = shadowCamera;
  1701. query.shadowNearSplits_[splits] = nearSplit;
  1702. query.shadowFarSplits_[splits] = farSplit;
  1703. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1704. nearSplit = farSplit;
  1705. ++splits;
  1706. }
  1707. }
  1708. break;
  1709. case LIGHT_SPOT:
  1710. {
  1711. Camera* shadowCamera = renderer_->GetShadowCamera();
  1712. query.shadowCameras_[0] = shadowCamera;
  1713. Node* cameraNode = shadowCamera->GetNode();
  1714. Node* lightNode = light->GetNode();
  1715. cameraNode->SetTransform(lightNode->GetWorldPosition(), lightNode->GetWorldRotation());
  1716. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1717. shadowCamera->SetFarClip(light->GetRange());
  1718. shadowCamera->SetFov(light->GetFov());
  1719. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1720. splits = 1;
  1721. }
  1722. break;
  1723. case LIGHT_POINT:
  1724. {
  1725. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1726. {
  1727. Camera* shadowCamera = renderer_->GetShadowCamera();
  1728. query.shadowCameras_[i] = shadowCamera;
  1729. Node* cameraNode = shadowCamera->GetNode();
  1730. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1731. cameraNode->SetPosition(light->GetNode()->GetWorldPosition());
  1732. cameraNode->SetDirection(*directions[i]);
  1733. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1734. shadowCamera->SetFarClip(light->GetRange());
  1735. shadowCamera->SetFov(90.0f);
  1736. shadowCamera->SetAspectRatio(1.0f);
  1737. }
  1738. splits = MAX_CUBEMAP_FACES;
  1739. }
  1740. break;
  1741. }
  1742. query.numSplits_ = splits;
  1743. }
  1744. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1745. {
  1746. Node* shadowCameraNode = shadowCamera->GetNode();
  1747. Node* lightNode = light->GetNode();
  1748. float extrusionDistance = camera_->GetFarClip();
  1749. const FocusParameters& parameters = light->GetShadowFocus();
  1750. // Calculate initial position & rotation
  1751. Vector3 pos = cameraNode_->GetWorldPosition() - extrusionDistance * lightNode->GetWorldDirection();
  1752. shadowCameraNode->SetTransform(pos, lightNode->GetWorldRotation());
  1753. // Calculate main camera shadowed frustum in light's view space
  1754. farSplit = Min(farSplit, camera_->GetFarClip());
  1755. // Use the scene Z bounds to limit frustum size if applicable
  1756. if (parameters.focus_)
  1757. {
  1758. nearSplit = Max(minZ_, nearSplit);
  1759. farSplit = Min(maxZ_, farSplit);
  1760. }
  1761. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1762. Polyhedron frustumVolume;
  1763. frustumVolume.Define(splitFrustum);
  1764. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1765. if (parameters.focus_)
  1766. {
  1767. BoundingBox litGeometriesBox;
  1768. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1769. {
  1770. Drawable* drawable = geometries_[i];
  1771. // Skip skyboxes as they have undefinedly large bounding box size
  1772. if (drawable->GetType() == Skybox::GetTypeStatic())
  1773. continue;
  1774. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1775. (GetLightMask(drawable) & light->GetLightMask()))
  1776. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1777. }
  1778. if (litGeometriesBox.defined_)
  1779. {
  1780. frustumVolume.Clip(litGeometriesBox);
  1781. // If volume became empty, restore it to avoid zero size
  1782. if (frustumVolume.Empty())
  1783. frustumVolume.Define(splitFrustum);
  1784. }
  1785. }
  1786. // Transform frustum volume to light space
  1787. const Matrix3x4& lightView = shadowCamera->GetView();
  1788. frustumVolume.Transform(lightView);
  1789. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1790. BoundingBox shadowBox;
  1791. if (!parameters.nonUniform_)
  1792. shadowBox.Define(Sphere(frustumVolume));
  1793. else
  1794. shadowBox.Define(frustumVolume);
  1795. shadowCamera->SetOrthographic(true);
  1796. shadowCamera->SetAspectRatio(1.0f);
  1797. shadowCamera->SetNearClip(0.0f);
  1798. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1799. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1800. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1801. }
  1802. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1803. const BoundingBox& shadowCasterBox)
  1804. {
  1805. const FocusParameters& parameters = light->GetShadowFocus();
  1806. float shadowMapWidth = (float)(shadowViewport.Width());
  1807. LightType type = light->GetLightType();
  1808. if (type == LIGHT_DIRECTIONAL)
  1809. {
  1810. BoundingBox shadowBox;
  1811. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1812. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1813. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1814. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1815. // Requantize and snap to shadow map texels
  1816. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1817. }
  1818. if (type == LIGHT_SPOT)
  1819. {
  1820. if (parameters.focus_)
  1821. {
  1822. float viewSizeX = Max(Abs(shadowCasterBox.min_.x_), Abs(shadowCasterBox.max_.x_));
  1823. float viewSizeY = Max(Abs(shadowCasterBox.min_.y_), Abs(shadowCasterBox.max_.y_));
  1824. float viewSize = Max(viewSizeX, viewSizeY);
  1825. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1826. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1827. float quantize = parameters.quantize_ * invOrthoSize;
  1828. float minView = parameters.minView_ * invOrthoSize;
  1829. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1830. if (viewSize < 1.0f)
  1831. shadowCamera->SetZoom(1.0f / viewSize);
  1832. }
  1833. }
  1834. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1835. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1836. if (shadowCamera->GetZoom() >= 1.0f)
  1837. {
  1838. if (light->GetLightType() != LIGHT_POINT)
  1839. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1840. else
  1841. {
  1842. #ifdef USE_OPENGL
  1843. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1844. #else
  1845. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1846. #endif
  1847. }
  1848. }
  1849. }
  1850. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1851. const BoundingBox& viewBox)
  1852. {
  1853. Node* shadowCameraNode = shadowCamera->GetNode();
  1854. const FocusParameters& parameters = light->GetShadowFocus();
  1855. float shadowMapWidth = (float)(shadowViewport.Width());
  1856. float minX = viewBox.min_.x_;
  1857. float minY = viewBox.min_.y_;
  1858. float maxX = viewBox.max_.x_;
  1859. float maxY = viewBox.max_.y_;
  1860. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1861. Vector2 viewSize(maxX - minX, maxY - minY);
  1862. // Quantize size to reduce swimming
  1863. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1864. if (parameters.nonUniform_)
  1865. {
  1866. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1867. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1868. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1869. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1870. }
  1871. else if (parameters.focus_)
  1872. {
  1873. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1874. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1875. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1876. viewSize.y_ = viewSize.x_;
  1877. }
  1878. shadowCamera->SetOrthoSize(viewSize);
  1879. // Center shadow camera to the view space bounding box
  1880. Quaternion rot(shadowCameraNode->GetWorldRotation());
  1881. Vector3 adjust(center.x_, center.y_, 0.0f);
  1882. shadowCameraNode->Translate(rot * adjust);
  1883. // If the shadow map viewport is known, snap to whole texels
  1884. if (shadowMapWidth > 0.0f)
  1885. {
  1886. Vector3 viewPos(rot.Inverse() * shadowCameraNode->GetWorldPosition());
  1887. // Take into account that shadow map border will not be used
  1888. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1889. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1890. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1891. shadowCameraNode->Translate(rot * snap);
  1892. }
  1893. }
  1894. void View::FindZone(Drawable* drawable)
  1895. {
  1896. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1897. int bestPriority = M_MIN_INT;
  1898. Zone* newZone = 0;
  1899. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  1900. // (possibly incorrect) and must be re-evaluated on the next frame
  1901. bool temporary = !camera_->GetFrustum().IsInside(center);
  1902. // First check if the last zone remains a conclusive result
  1903. Zone* lastZone = drawable->GetLastZone();
  1904. if (lastZone && (lastZone->GetViewMask() & camera_->GetViewMask()) && lastZone->GetPriority() >= highestZonePriority_ &&
  1905. (drawable->GetZoneMask() & lastZone->GetZoneMask()) && lastZone->IsInside(center))
  1906. newZone = lastZone;
  1907. else
  1908. {
  1909. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1910. {
  1911. Zone* zone = *i;
  1912. int priority = zone->GetPriority();
  1913. if (priority > bestPriority && (drawable->GetZoneMask() & zone->GetZoneMask()) && zone->IsInside(center))
  1914. {
  1915. newZone = zone;
  1916. bestPriority = priority;
  1917. }
  1918. }
  1919. }
  1920. drawable->SetZone(newZone, temporary);
  1921. }
  1922. Zone* View::GetZone(Drawable* drawable)
  1923. {
  1924. if (cameraZoneOverride_)
  1925. return cameraZone_;
  1926. Zone* drawableZone = drawable->GetZone();
  1927. return drawableZone ? drawableZone : cameraZone_;
  1928. }
  1929. unsigned View::GetLightMask(Drawable* drawable)
  1930. {
  1931. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1932. }
  1933. unsigned View::GetShadowMask(Drawable* drawable)
  1934. {
  1935. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1936. }
  1937. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1938. {
  1939. unsigned long long hash = 0;
  1940. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1941. hash += (unsigned long long)(*i);
  1942. return hash;
  1943. }
  1944. Technique* View::GetTechnique(Drawable* drawable, Material* material)
  1945. {
  1946. if (!material)
  1947. {
  1948. const Vector<TechniqueEntry>& techniques = renderer_->GetDefaultMaterial()->GetTechniques();
  1949. return techniques.Size() ? techniques[0].technique_ : (Technique*)0;
  1950. }
  1951. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1952. // If only one technique, no choice
  1953. if (techniques.Size() == 1)
  1954. return techniques[0].technique_;
  1955. else
  1956. {
  1957. float lodDistance = drawable->GetLodDistance();
  1958. // Check for suitable technique. Techniques should be ordered like this:
  1959. // Most distant & highest quality
  1960. // Most distant & lowest quality
  1961. // Second most distant & highest quality
  1962. // ...
  1963. for (unsigned i = 0; i < techniques.Size(); ++i)
  1964. {
  1965. const TechniqueEntry& entry = techniques[i];
  1966. Technique* tech = entry.technique_;
  1967. if (!tech || (tech->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1968. continue;
  1969. if (lodDistance >= entry.lodDistance_)
  1970. return tech;
  1971. }
  1972. // If no suitable technique found, fallback to the last
  1973. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  1974. }
  1975. }
  1976. void View::CheckMaterialForAuxView(Material* material)
  1977. {
  1978. const SharedPtr<Texture>* textures = material->GetTextures();
  1979. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1980. {
  1981. Texture* texture = textures[i];
  1982. if (texture && texture->GetUsage() == TEXTURE_RENDERTARGET)
  1983. {
  1984. // Have to check cube & 2D textures separately
  1985. if (texture->GetType() == Texture2D::GetTypeStatic())
  1986. {
  1987. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1988. RenderSurface* target = tex2D->GetRenderSurface();
  1989. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  1990. target->QueueUpdate();
  1991. }
  1992. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1993. {
  1994. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1995. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1996. {
  1997. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1998. if (target && target->GetUpdateMode() == SURFACE_UPDATEVISIBLE)
  1999. target->QueueUpdate();
  2000. }
  2001. }
  2002. }
  2003. }
  2004. // Flag as processed so we can early-out next time we come across this material on the same frame
  2005. material->MarkForAuxView(frame_.frameNumber_);
  2006. }
  2007. void View::AddBatchToQueue(BatchQueue& batchQueue, Batch& batch, Technique* tech, bool allowInstancing, bool allowShadows)
  2008. {
  2009. if (!batch.material_)
  2010. batch.material_ = renderer_->GetDefaultMaterial();
  2011. // Convert to instanced if possible
  2012. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && batch.geometry_->GetIndexBuffer() && !batch.shaderData_ &&
  2013. !batch.overrideView_)
  2014. batch.geometryType_ = GEOM_INSTANCED;
  2015. if (batch.geometryType_ == GEOM_INSTANCED)
  2016. {
  2017. HashMap<BatchGroupKey, BatchGroup>* groups = batch.isBase_ ? &batchQueue.baseBatchGroups_ : &batchQueue.batchGroups_;
  2018. BatchGroupKey key(batch);
  2019. HashMap<BatchGroupKey, BatchGroup>::Iterator i = groups->Find(key);
  2020. if (i == groups->End())
  2021. {
  2022. // Create a new group based on the batch
  2023. // In case the group remains below the instancing limit, do not enable instancing shaders yet
  2024. BatchGroup newGroup(batch);
  2025. newGroup.geometryType_ = GEOM_STATIC;
  2026. renderer_->SetBatchShaders(newGroup, tech, allowShadows);
  2027. newGroup.CalculateSortKey();
  2028. newGroup.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2029. groups->Insert(MakePair(key, newGroup));
  2030. }
  2031. else
  2032. {
  2033. i->second_.instances_.Push(InstanceData(batch.worldTransform_, batch.distance_));
  2034. // Convert to using instancing shaders when the instancing limit is reached
  2035. if (i->second_.instances_.Size() == minInstances_)
  2036. {
  2037. i->second_.geometryType_ = GEOM_INSTANCED;
  2038. renderer_->SetBatchShaders(i->second_, tech, allowShadows);
  2039. i->second_.CalculateSortKey();
  2040. }
  2041. }
  2042. }
  2043. else
  2044. {
  2045. renderer_->SetBatchShaders(batch, tech, allowShadows);
  2046. batch.CalculateSortKey();
  2047. batchQueue.batches_.Push(batch);
  2048. }
  2049. }
  2050. void View::PrepareInstancingBuffer()
  2051. {
  2052. PROFILE(PrepareInstancingBuffer);
  2053. unsigned totalInstances = 0;
  2054. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2055. totalInstances += i->second_.GetNumInstances();
  2056. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2057. {
  2058. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2059. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances();
  2060. totalInstances += i->litBatches_.GetNumInstances();
  2061. }
  2062. // If fail to set buffer size, fall back to per-group locking
  2063. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2064. {
  2065. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2066. unsigned freeIndex = 0;
  2067. void* dest = instancingBuffer->Lock(0, totalInstances, true);
  2068. if (!dest)
  2069. return;
  2070. for (HashMap<StringHash, BatchQueue>::Iterator i = batchQueues_.Begin(); i != batchQueues_.End(); ++i)
  2071. i->second_.SetTransforms(dest, freeIndex);
  2072. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2073. {
  2074. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2075. i->shadowSplits_[j].shadowBatches_.SetTransforms(dest, freeIndex);
  2076. i->litBatches_.SetTransforms(dest, freeIndex);
  2077. }
  2078. instancingBuffer->Unlock();
  2079. }
  2080. }
  2081. void View::SetupLightVolumeBatch(Batch& batch)
  2082. {
  2083. Light* light = batch.lightQueue_->light_;
  2084. LightType type = light->GetLightType();
  2085. Vector3 cameraPos = cameraNode_->GetWorldPosition();
  2086. float lightDist;
  2087. graphics_->SetBlendMode(BLEND_ADD);
  2088. graphics_->SetDepthBias(0.0f, 0.0f);
  2089. graphics_->SetDepthWrite(false);
  2090. graphics_->SetFillMode(FILL_SOLID);
  2091. if (type != LIGHT_DIRECTIONAL)
  2092. {
  2093. if (type == LIGHT_POINT)
  2094. lightDist = Sphere(light->GetNode()->GetWorldPosition(), light->GetRange() * 1.25f).Distance(cameraPos);
  2095. else
  2096. lightDist = light->GetFrustum().Distance(cameraPos);
  2097. // Draw front faces if not inside light volume
  2098. if (lightDist < camera_->GetNearClip() * 2.0f)
  2099. {
  2100. renderer_->SetCullMode(CULL_CW, camera_);
  2101. graphics_->SetDepthTest(CMP_GREATER);
  2102. }
  2103. else
  2104. {
  2105. renderer_->SetCullMode(CULL_CCW, camera_);
  2106. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2107. }
  2108. }
  2109. else
  2110. {
  2111. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2112. // refresh the directional light's model transform before rendering
  2113. light->GetVolumeTransform(camera_);
  2114. graphics_->SetCullMode(CULL_NONE);
  2115. graphics_->SetDepthTest(CMP_ALWAYS);
  2116. }
  2117. graphics_->SetScissorTest(false);
  2118. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2119. }
  2120. void View::RenderShadowMap(const LightBatchQueue& queue)
  2121. {
  2122. PROFILE(RenderShadowMap);
  2123. Texture2D* shadowMap = queue.shadowMap_;
  2124. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2125. graphics_->SetColorWrite(false);
  2126. graphics_->SetFillMode(FILL_SOLID);
  2127. graphics_->SetStencilTest(false);
  2128. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2129. graphics_->SetDepthStencil(shadowMap);
  2130. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2131. graphics_->Clear(CLEAR_DEPTH);
  2132. // Set shadow depth bias
  2133. const BiasParameters& parameters = queue.light_->GetShadowBias();
  2134. // Render each of the splits
  2135. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2136. {
  2137. float multiplier = 1.0f;
  2138. // For directional light cascade splits, adjust depth bias according to the far clip ratio of the splits
  2139. if (i > 0 && queue.light_->GetLightType() == LIGHT_DIRECTIONAL)
  2140. {
  2141. multiplier = Max(queue.shadowSplits_[i].shadowCamera_->GetFarClip() / queue.shadowSplits_[0].shadowCamera_->GetFarClip(), 1.0f);
  2142. multiplier = 1.0f + (multiplier - 1.0f) * queue.light_->GetShadowCascade().biasAutoAdjust_;
  2143. }
  2144. graphics_->SetDepthBias(multiplier * parameters.constantBias_, multiplier * parameters.slopeScaledBias_);
  2145. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2146. if (!shadowQueue.shadowBatches_.IsEmpty())
  2147. {
  2148. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2149. shadowQueue.shadowBatches_.Draw(this);
  2150. }
  2151. }
  2152. graphics_->SetColorWrite(true);
  2153. graphics_->SetDepthBias(0.0f, 0.0f);
  2154. }
  2155. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2156. {
  2157. // If using the backbuffer, return the backbuffer depth-stencil
  2158. if (!renderTarget)
  2159. return 0;
  2160. // Then check for linked depth-stencil
  2161. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2162. // Finally get one from Renderer
  2163. if (!depthStencil)
  2164. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2165. return depthStencil;
  2166. }
  2167. }