PhysicsWorld.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Mutex.h"
  29. #include "PhysicsEvents.h"
  30. #include "PhysicsUtils.h"
  31. #include "PhysicsWorld.h"
  32. #include "Profiler.h"
  33. #include "Ray.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "Sort.h"
  38. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  41. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  42. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  43. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  44. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  45. extern ContactAddedCallback gContactAddedCallback;
  46. namespace Urho3D
  47. {
  48. const char* PHYSICS_CATEGORY = "Physics";
  49. extern const char* SUBSYSTEM_CATEGORY;
  50. static const int MAX_SOLVER_ITERATIONS = 256;
  51. static const int DEFAULT_FPS = 60;
  52. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  53. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  54. {
  55. return lhs.distance_ < rhs.distance_;
  56. }
  57. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  58. {
  59. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  60. }
  61. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  62. {
  63. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  64. }
  65. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0, int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  66. {
  67. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  68. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  69. cp.m_combinedRestitution = colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  70. return true;
  71. }
  72. /// Callback for physics world queries.
  73. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  74. {
  75. /// Construct.
  76. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  77. {
  78. }
  79. /// Add a contact result.
  80. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObjectWrapper *colObj0Wrap, int, int, const btCollisionObjectWrapper *colObj1Wrap, int, int)
  81. {
  82. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  83. if (body && !result_.Contains(body))
  84. result_.Push(body);
  85. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  86. if (body && !result_.Contains(body))
  87. result_.Push(body);
  88. return 0.0f;
  89. }
  90. /// Found rigid bodies.
  91. PODVector<RigidBody*>& result_;
  92. };
  93. OBJECTTYPESTATIC(PhysicsWorld);
  94. PhysicsWorld::PhysicsWorld(Context* context) :
  95. Component(context),
  96. collisionConfiguration_(0),
  97. collisionDispatcher_(0),
  98. broadphase_(0),
  99. solver_(0),
  100. world_(0),
  101. fps_(DEFAULT_FPS),
  102. timeAcc_(0.0f),
  103. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  104. interpolation_(true),
  105. internalEdge_(true),
  106. applyingTransforms_(false),
  107. debugRenderer_(0),
  108. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  109. {
  110. gContactAddedCallback = CustomMaterialCombinerCallback;
  111. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  112. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  113. broadphase_ = new btDbvtBroadphase();
  114. solver_ = new btSequentialImpulseConstraintSolver();
  115. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  116. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  117. world_->getDispatchInfo().m_useContinuous = true;
  118. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  119. world_->setDebugDrawer(this);
  120. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  121. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  122. }
  123. PhysicsWorld::~PhysicsWorld()
  124. {
  125. if (scene_)
  126. {
  127. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  128. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  129. (*i)->ReleaseConstraint();
  130. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  131. (*i)->ReleaseBody();
  132. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  133. (*i)->ReleaseShape();
  134. }
  135. delete world_;
  136. world_ = 0;
  137. delete solver_;
  138. solver_ = 0;
  139. delete broadphase_;
  140. broadphase_ = 0;
  141. delete collisionDispatcher_;
  142. collisionDispatcher_ = 0;
  143. delete collisionConfiguration_;
  144. collisionConfiguration_ = 0;
  145. }
  146. void PhysicsWorld::RegisterObject(Context* context)
  147. {
  148. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  149. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  150. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  151. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_INT, "Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  152. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  153. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  154. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Internal Edge Utility", internalEdge_, true, AM_DEFAULT);
  155. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  156. }
  157. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  158. {
  159. if (debugRenderer_)
  160. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  161. else
  162. return false;
  163. }
  164. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  165. {
  166. if (debugRenderer_)
  167. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  168. }
  169. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  170. {
  171. if (debug)
  172. {
  173. PROFILE(PhysicsDrawDebug);
  174. debugRenderer_ = debug;
  175. debugDepthTest_ = depthTest;
  176. world_->debugDrawWorld();
  177. debugRenderer_ = 0;
  178. }
  179. }
  180. void PhysicsWorld::reportErrorWarning(const char* warningString)
  181. {
  182. LOGWARNING("Physics: " + String(warningString));
  183. }
  184. void PhysicsWorld::Update(float timeStep)
  185. {
  186. PROFILE(UpdatePhysics);
  187. float internalTimeStep = 1.0f / fps_;
  188. delayedWorldTransforms_.Clear();
  189. if (interpolation_)
  190. {
  191. int maxSubSteps = (int)(timeStep * fps_) + 1;
  192. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  193. }
  194. else
  195. {
  196. timeAcc_ += timeStep;
  197. while (timeAcc_ >= internalTimeStep)
  198. {
  199. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  200. timeAcc_ -= internalTimeStep;
  201. }
  202. }
  203. // Apply delayed (parented) world transforms now
  204. while (!delayedWorldTransforms_.Empty())
  205. {
  206. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  207. i != delayedWorldTransforms_.End(); ++i)
  208. {
  209. const DelayedWorldTransform& transform = i->second_;
  210. // If parent's transform has already been assigned, can proceed
  211. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  212. {
  213. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  214. delayedWorldTransforms_.Erase(i);
  215. }
  216. }
  217. }
  218. }
  219. void PhysicsWorld::UpdateCollisions()
  220. {
  221. world_->performDiscreteCollisionDetection();
  222. }
  223. void PhysicsWorld::SetFps(int fps)
  224. {
  225. fps_ = Clamp(fps, 1, 1000);
  226. MarkNetworkUpdate();
  227. }
  228. void PhysicsWorld::SetGravity(Vector3 gravity)
  229. {
  230. world_->setGravity(ToBtVector3(gravity));
  231. MarkNetworkUpdate();
  232. }
  233. void PhysicsWorld::SetNumIterations(int num)
  234. {
  235. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  236. world_->getSolverInfo().m_numIterations = num;
  237. MarkNetworkUpdate();
  238. }
  239. void PhysicsWorld::SetInterpolation(bool enable)
  240. {
  241. interpolation_ = enable;
  242. }
  243. void PhysicsWorld::SetInternalEdge(bool enable)
  244. {
  245. internalEdge_ = enable;
  246. MarkNetworkUpdate();
  247. }
  248. void PhysicsWorld::SetSplitImpulse(bool enable)
  249. {
  250. world_->getSolverInfo().m_splitImpulse = enable;
  251. MarkNetworkUpdate();
  252. }
  253. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  254. {
  255. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  256. MarkNetworkUpdate();
  257. }
  258. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  259. {
  260. PROFILE(PhysicsRaycast);
  261. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  262. maxDistance * ray.direction_));
  263. rayCallback.m_collisionFilterGroup = (short)0xffff;
  264. rayCallback.m_collisionFilterMask = collisionMask;
  265. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  266. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  267. {
  268. PhysicsRaycastResult newResult;
  269. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  270. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  271. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  272. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  273. result.Push(newResult);
  274. }
  275. Sort(result.Begin(), result.End(), CompareRaycastResults);
  276. }
  277. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  278. {
  279. PROFILE(PhysicsRaycastSingle);
  280. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  281. maxDistance * ray.direction_));
  282. rayCallback.m_collisionFilterGroup = (short)0xffff;
  283. rayCallback.m_collisionFilterMask = collisionMask;
  284. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  285. if (rayCallback.hasHit())
  286. {
  287. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  288. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  289. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  290. result.distance_ = (result.position_ - ray.origin_).Length();
  291. }
  292. else
  293. {
  294. result.body_ = 0;
  295. result.position_ = Vector3::ZERO;
  296. result.normal_ = Vector3::ZERO;
  297. result.distance_ = M_INFINITY;
  298. }
  299. }
  300. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  301. {
  302. PROFILE(PhysicsSphereCast);
  303. btSphereShape shape(radius);
  304. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  305. maxDistance * ray.direction_));
  306. convexCallback.m_collisionFilterGroup = (short)0xffff;
  307. convexCallback.m_collisionFilterMask = collisionMask;
  308. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  309. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  310. if (convexCallback.hasHit())
  311. {
  312. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  313. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  314. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  315. result.distance_ = (result.position_ - ray.origin_).Length();
  316. }
  317. else
  318. {
  319. result.body_ = 0;
  320. result.position_ = Vector3::ZERO;
  321. result.normal_ = Vector3::ZERO;
  322. result.distance_ = M_INFINITY;
  323. }
  324. }
  325. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  326. {
  327. PROFILE(PhysicsSphereQuery);
  328. result.Clear();
  329. btSphereShape sphereShape(sphere.radius_);
  330. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  331. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  332. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  333. tempRigidBody->activate();
  334. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  335. PhysicsQueryCallback callback(result);
  336. world_->contactTest(tempRigidBody, callback);
  337. world_->removeRigidBody(tempRigidBody);
  338. delete tempRigidBody;
  339. }
  340. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  341. {
  342. PROFILE(PhysicsBoxQuery);
  343. result.Clear();
  344. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  345. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  346. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  347. tempRigidBody->activate();
  348. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  349. PhysicsQueryCallback callback(result);
  350. world_->contactTest(tempRigidBody, callback);
  351. world_->removeRigidBody(tempRigidBody);
  352. delete tempRigidBody;
  353. }
  354. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  355. {
  356. PROFILE(GetCollidingBodies);
  357. result.Clear();
  358. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  359. i != currentCollisions_.End(); ++i)
  360. {
  361. if (i->first_.first_ == body)
  362. result.Push(i->first_.second_);
  363. else if (i->first_.second_ == body)
  364. result.Push(i->first_.first_);
  365. }
  366. }
  367. Vector3 PhysicsWorld::GetGravity() const
  368. {
  369. return ToVector3(world_->getGravity());
  370. }
  371. int PhysicsWorld::GetNumIterations() const
  372. {
  373. return world_->getSolverInfo().m_numIterations;
  374. }
  375. bool PhysicsWorld::GetSplitImpulse() const
  376. {
  377. return world_->getSolverInfo().m_splitImpulse != 0;
  378. }
  379. void PhysicsWorld::AddRigidBody(RigidBody* body)
  380. {
  381. rigidBodies_.Push(body);
  382. }
  383. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  384. {
  385. rigidBodies_.Remove(body);
  386. }
  387. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  388. {
  389. collisionShapes_.Push(shape);
  390. }
  391. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  392. {
  393. collisionShapes_.Remove(shape);
  394. }
  395. void PhysicsWorld::AddConstraint(Constraint* constraint)
  396. {
  397. constraints_.Push(constraint);
  398. }
  399. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  400. {
  401. constraints_.Remove(constraint);
  402. }
  403. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  404. {
  405. delayedWorldTransforms_[transform.rigidBody_] = transform;
  406. }
  407. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  408. {
  409. DebugRenderer* debug = GetComponent<DebugRenderer>();
  410. DrawDebugGeometry(debug, depthTest);
  411. }
  412. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  413. {
  414. debugRenderer_ = debug;
  415. }
  416. void PhysicsWorld::SetDebugDepthTest(bool enable)
  417. {
  418. debugDepthTest_ = enable;
  419. }
  420. void PhysicsWorld::CleanupGeometryCache()
  421. {
  422. // Remove cached shapes whose only reference is the cache itself
  423. for (HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  424. i != geometryCache_.End();)
  425. {
  426. HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  427. if (current->second_.Refs() == 1)
  428. geometryCache_.Erase(current);
  429. }
  430. }
  431. void PhysicsWorld::OnNodeSet(Node* node)
  432. {
  433. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  434. if (node)
  435. {
  436. scene_ = GetScene();
  437. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  438. }
  439. }
  440. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  441. {
  442. using namespace SceneSubsystemUpdate;
  443. Update(eventData[P_TIMESTEP].GetFloat());
  444. }
  445. void PhysicsWorld::PreStep(float timeStep)
  446. {
  447. // Send pre-step event
  448. using namespace PhysicsPreStep;
  449. VariantMap eventData;
  450. eventData[P_WORLD] = (void*)this;
  451. eventData[P_TIMESTEP] = timeStep;
  452. SendEvent(E_PHYSICSPRESTEP, eventData);
  453. // Start profiling block for the actual simulation step
  454. #ifdef ENABLE_PROFILING
  455. Profiler* profiler = GetSubsystem<Profiler>();
  456. if (profiler)
  457. profiler->BeginBlock("StepSimulation");
  458. #endif
  459. }
  460. void PhysicsWorld::PostStep(float timeStep)
  461. {
  462. #ifdef ENABLE_PROFILING
  463. Profiler* profiler = GetSubsystem<Profiler>();
  464. if (profiler)
  465. profiler->EndBlock();
  466. #endif
  467. SendCollisionEvents();
  468. // Send post-step event
  469. using namespace PhysicsPreStep;
  470. VariantMap eventData;
  471. eventData[P_WORLD] = (void*)this;
  472. eventData[P_TIMESTEP] = timeStep;
  473. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  474. }
  475. void PhysicsWorld::SendCollisionEvents()
  476. {
  477. PROFILE(SendCollisionEvents);
  478. currentCollisions_.Clear();
  479. int numManifolds = collisionDispatcher_->getNumManifolds();
  480. if (numManifolds)
  481. {
  482. VariantMap physicsCollisionData;
  483. VariantMap nodeCollisionData;
  484. VectorBuffer contacts;
  485. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  486. for (int i = 0; i < numManifolds; ++i)
  487. {
  488. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  489. int numContacts = contactManifold->getNumContacts();
  490. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  491. if (!numContacts)
  492. continue;
  493. const btCollisionObject* objectA = contactManifold->getBody0();
  494. const btCollisionObject* objectB = contactManifold->getBody1();
  495. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  496. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  497. // If it's not a rigidbody, maybe a ghost object
  498. if (!bodyA || !bodyB)
  499. continue;
  500. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  501. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  502. continue;
  503. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  504. continue;
  505. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  506. !bodyA->IsActive() && !bodyB->IsActive())
  507. continue;
  508. WeakPtr<RigidBody> bodyWeakA(bodyA);
  509. WeakPtr<RigidBody> bodyWeakB(bodyB);
  510. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  511. if (bodyA < bodyB)
  512. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  513. else
  514. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  515. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  516. // objects during collision event handling
  517. currentCollisions_[bodyPair] = contactManifold;
  518. }
  519. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  520. i != currentCollisions_.End(); ++i)
  521. {
  522. RigidBody* bodyA = i->first_.first_;
  523. RigidBody* bodyB = i->first_.second_;
  524. if (!bodyA || !bodyB)
  525. continue;
  526. btPersistentManifold* contactManifold = i->second_;
  527. int numContacts = contactManifold->getNumContacts();
  528. Node* nodeA = bodyA->GetNode();
  529. Node* nodeB = bodyB->GetNode();
  530. WeakPtr<Node> nodeWeakA(nodeA);
  531. WeakPtr<Node> nodeWeakB(nodeB);
  532. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  533. bool newCollision = !previousCollisions_.Contains(i->first_);
  534. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  535. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  536. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  537. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  538. physicsCollisionData[PhysicsCollision::P_PHANTOM] = phantom;
  539. contacts.Clear();
  540. for (int j = 0; j < numContacts; ++j)
  541. {
  542. btManifoldPoint& point = contactManifold->getContactPoint(j);
  543. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  544. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  545. contacts.WriteFloat(point.m_distance1);
  546. contacts.WriteFloat(point.m_appliedImpulse);
  547. }
  548. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  549. // Send separate collision start event if collision is new
  550. if (newCollision)
  551. {
  552. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData);
  553. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  554. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  555. continue;
  556. }
  557. // Then send the ongoing collision event
  558. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  559. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  560. continue;
  561. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  562. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  563. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  564. nodeCollisionData[NodeCollision::P_PHANTOM] = phantom;
  565. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  566. if (newCollision)
  567. {
  568. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  569. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  570. continue;
  571. }
  572. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData);
  573. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  574. continue;
  575. contacts.Clear();
  576. for (int j = 0; j < numContacts; ++j)
  577. {
  578. btManifoldPoint& point = contactManifold->getContactPoint(j);
  579. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  580. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  581. contacts.WriteFloat(point.m_distance1);
  582. contacts.WriteFloat(point.m_appliedImpulse);
  583. }
  584. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  585. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  586. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  587. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  588. if (newCollision)
  589. {
  590. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  591. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  592. continue;
  593. }
  594. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData);
  595. }
  596. }
  597. // Send collision end events as applicable
  598. {
  599. VariantMap physicsCollisionData;
  600. VariantMap nodeCollisionData;
  601. physicsCollisionData[PhysicsCollisionEnd::P_WORLD] = (void*)this;
  602. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  603. {
  604. if (!currentCollisions_.Contains(i->first_))
  605. {
  606. RigidBody* bodyA = i->first_.first_;
  607. RigidBody* bodyB = i->first_.second_;
  608. if (!bodyA || !bodyB)
  609. continue;
  610. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  611. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  612. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  613. continue;
  614. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  615. continue;
  616. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  617. !bodyA->IsActive() && !bodyB->IsActive())
  618. continue;
  619. Node* nodeA = bodyA->GetNode();
  620. Node* nodeB = bodyB->GetNode();
  621. WeakPtr<Node> nodeWeakA(nodeA);
  622. WeakPtr<Node> nodeWeakB(nodeB);
  623. physicsCollisionData[PhysicsCollisionEnd::P_BODYA] = (void*)bodyA;
  624. physicsCollisionData[PhysicsCollisionEnd::P_BODYB] = (void*)bodyB;
  625. physicsCollisionData[PhysicsCollisionEnd::P_NODEA] = (void*)nodeA;
  626. physicsCollisionData[PhysicsCollisionEnd::P_NODEB] = (void*)nodeB;
  627. physicsCollisionData[PhysicsCollisionEnd::P_PHANTOM] = phantom;
  628. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData);
  629. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  630. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  631. continue;
  632. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyA;
  633. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeB;
  634. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyB;
  635. nodeCollisionData[NodeCollisionEnd::P_PHANTOM] = phantom;
  636. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  637. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  638. continue;
  639. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyB;
  640. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeA;
  641. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyA;
  642. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  643. }
  644. }
  645. }
  646. previousCollisions_ = currentCollisions_;
  647. }
  648. void RegisterPhysicsLibrary(Context* context)
  649. {
  650. CollisionShape::RegisterObject(context);
  651. RigidBody::RegisterObject(context);
  652. Constraint::RegisterObject(context);
  653. PhysicsWorld::RegisterObject(context);
  654. }
  655. }