PhysicsWorld.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Constraint.h"
  26. #include "Context.h"
  27. #include "DebugRenderer.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  42. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  43. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  44. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  45. static const int DEFAULT_FPS = 60;
  46. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  47. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  48. {
  49. return lhs.distance_ < rhs.distance_;
  50. }
  51. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  52. {
  53. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  54. }
  55. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  56. {
  57. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  58. }
  59. /// Callback for physics world queries.
  60. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  61. {
  62. /// Construct.
  63. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  64. {
  65. }
  66. /// Add a contact result.
  67. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObject *colObj0, int, int, const btCollisionObject *colObj1, int, int)
  68. {
  69. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0->getUserPointer());
  70. if (body && !result_.Contains(body))
  71. result_.Push(body);
  72. body = reinterpret_cast<RigidBody*>(colObj1->getUserPointer());
  73. if (body && !result_.Contains(body))
  74. result_.Push(body);
  75. return 0.0f;
  76. }
  77. /// Found rigid bodies.
  78. PODVector<RigidBody*>& result_;
  79. };
  80. OBJECTTYPESTATIC(PhysicsWorld);
  81. PhysicsWorld::PhysicsWorld(Context* context) :
  82. Component(context),
  83. collisionConfiguration_(0),
  84. collisionDispatcher_(0),
  85. broadphase_(0),
  86. solver_(0),
  87. world_(0),
  88. fps_(DEFAULT_FPS),
  89. timeAcc_(0.0f),
  90. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  91. interpolation_(true),
  92. debugRenderer_(0),
  93. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints)
  94. {
  95. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  96. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  97. broadphase_ = new btDbvtBroadphase();
  98. solver_ = new btSequentialImpulseConstraintSolver();
  99. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  100. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  101. world_->getDispatchInfo().m_useContinuous = true;
  102. world_->setDebugDrawer(this);
  103. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  104. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  105. }
  106. PhysicsWorld::~PhysicsWorld()
  107. {
  108. if (scene_)
  109. {
  110. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  111. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  112. (*i)->ReleaseConstraint();
  113. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  114. (*i)->ReleaseBody();
  115. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  116. (*i)->ReleaseShape();
  117. }
  118. // Remove any cached geometries that still remain
  119. geometryCache_.Clear();
  120. delete world_;
  121. world_ = 0;
  122. delete solver_;
  123. solver_ = 0;
  124. delete broadphase_;
  125. broadphase_ = 0;
  126. delete collisionDispatcher_;
  127. collisionDispatcher_ = 0;
  128. delete collisionConfiguration_;
  129. collisionConfiguration_ = 0;
  130. }
  131. void PhysicsWorld::RegisterObject(Context* context)
  132. {
  133. context->RegisterFactory<PhysicsWorld>();
  134. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  135. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  136. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  137. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  138. }
  139. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  140. {
  141. if (debugRenderer_)
  142. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  143. }
  144. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  145. {
  146. if (debug)
  147. {
  148. PROFILE(PhysicsDrawDebug);
  149. debugRenderer_ = debug;
  150. debugDepthTest_ = depthTest;
  151. world_->debugDrawWorld();
  152. debugRenderer_ = 0;
  153. }
  154. }
  155. void PhysicsWorld::reportErrorWarning(const char* warningString)
  156. {
  157. LOGWARNING("Physics: " + String(warningString));
  158. }
  159. void PhysicsWorld::Update(float timeStep)
  160. {
  161. PROFILE(UpdatePhysics);
  162. float internalTimeStep = 1.0f / fps_;
  163. if (interpolation_)
  164. {
  165. int maxSubSteps = (int)(timeStep * fps_) + 1;
  166. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  167. }
  168. else
  169. {
  170. timeAcc_ += timeStep;
  171. while (timeAcc_ >= internalTimeStep)
  172. {
  173. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  174. timeAcc_ -= internalTimeStep;
  175. }
  176. }
  177. }
  178. void PhysicsWorld::UpdateCollisions()
  179. {
  180. world_->performDiscreteCollisionDetection();
  181. }
  182. void PhysicsWorld::SetFps(int fps)
  183. {
  184. fps_ = Clamp(fps, 1, 1000);
  185. }
  186. void PhysicsWorld::SetGravity(Vector3 gravity)
  187. {
  188. world_->setGravity(ToBtVector3(gravity));
  189. }
  190. void PhysicsWorld::SetInterpolation(bool enable)
  191. {
  192. interpolation_ = enable;
  193. }
  194. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  195. {
  196. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  197. }
  198. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  199. {
  200. PROFILE(PhysicsRaycast);
  201. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  202. maxDistance * ray.direction_));
  203. rayCallback.m_collisionFilterGroup = (short)0xffff;
  204. rayCallback.m_collisionFilterMask = collisionMask;
  205. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  206. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  207. {
  208. PhysicsRaycastResult newResult;
  209. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  210. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  211. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  212. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  213. result.Push(newResult);
  214. }
  215. Sort(result.Begin(), result.End(), CompareRaycastResults);
  216. }
  217. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  218. {
  219. PROFILE(PhysicsRaycastSingle);
  220. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  221. maxDistance * ray.direction_));
  222. rayCallback.m_collisionFilterGroup = (short)0xffff;
  223. rayCallback.m_collisionFilterMask = collisionMask;
  224. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  225. if (rayCallback.hasHit())
  226. {
  227. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  228. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  229. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  230. result.distance_ = (result.position_ - ray.origin_).Length();
  231. }
  232. else
  233. {
  234. result.body_ = 0;
  235. result.position_ = Vector3::ZERO;
  236. result.normal_ = Vector3::ZERO;
  237. result.distance_ = M_INFINITY;
  238. }
  239. }
  240. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  241. {
  242. PROFILE(PhysicsSphereCast);
  243. btSphereShape shape(radius);
  244. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  245. maxDistance * ray.direction_));
  246. convexCallback.m_collisionFilterGroup = (short)0xffff;
  247. convexCallback.m_collisionFilterMask = collisionMask;
  248. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  249. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  250. if (convexCallback.hasHit())
  251. {
  252. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  253. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  254. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  255. result.distance_ = (result.position_ - ray.origin_).Length();
  256. }
  257. else
  258. {
  259. result.body_ = 0;
  260. result.position_ = Vector3::ZERO;
  261. result.normal_ = Vector3::ZERO;
  262. result.distance_ = M_INFINITY;
  263. }
  264. }
  265. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  266. {
  267. PROFILE(PhysicsWorld_GetRigidBodies);
  268. result.Clear();
  269. btSphereShape sphereShape(sphere.radius_);
  270. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  271. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  272. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  273. tempRigidBody->activate();
  274. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  275. PhysicsQueryCallback callback(result);
  276. world_->contactTest(tempRigidBody, callback);
  277. world_->removeRigidBody(tempRigidBody);
  278. delete tempRigidBody;
  279. }
  280. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  281. {
  282. PROFILE(PhysicsWorld_GetRigidBodies);
  283. result.Clear();
  284. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  285. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  286. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  287. tempRigidBody->activate();
  288. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  289. PhysicsQueryCallback callback(result);
  290. world_->contactTest(tempRigidBody, callback);
  291. world_->removeRigidBody(tempRigidBody);
  292. delete tempRigidBody;
  293. }
  294. Vector3 PhysicsWorld::GetGravity() const
  295. {
  296. return ToVector3(world_->getGravity());
  297. }
  298. void PhysicsWorld::AddRigidBody(RigidBody* body)
  299. {
  300. rigidBodies_.Push(body);
  301. }
  302. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  303. {
  304. rigidBodies_.Erase(rigidBodies_.Find(body));
  305. }
  306. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  307. {
  308. collisionShapes_.Push(shape);
  309. }
  310. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  311. {
  312. collisionShapes_.Erase(collisionShapes_.Find(shape));
  313. }
  314. void PhysicsWorld::AddConstraint(Constraint* constraint)
  315. {
  316. constraints_.Push(constraint);
  317. }
  318. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  319. {
  320. constraints_.Erase(constraints_.Find(constraint));
  321. }
  322. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  323. {
  324. delayedWorldTransforms_[transform.rigidBody_] = transform;
  325. }
  326. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  327. {
  328. DebugRenderer* debug = GetComponent<DebugRenderer>();
  329. DrawDebugGeometry(debug, depthTest);
  330. }
  331. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  332. {
  333. debugRenderer_ = debug;
  334. }
  335. void PhysicsWorld::SetDebugDepthTest(bool enable)
  336. {
  337. debugDepthTest_ = enable;
  338. }
  339. void PhysicsWorld::CleanupGeometryCache()
  340. {
  341. // Remove cached shapes whose only reference is the cache itself
  342. for (Map<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  343. i != geometryCache_.End();)
  344. {
  345. Map<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  346. if (current->second_.Refs() == 1)
  347. geometryCache_.Erase(current);
  348. }
  349. }
  350. void PhysicsWorld::OnNodeSet(Node* node)
  351. {
  352. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  353. if (node)
  354. {
  355. scene_ = GetScene();
  356. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  357. }
  358. }
  359. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  360. {
  361. using namespace SceneSubsystemUpdate;
  362. Update(eventData[P_TIMESTEP].GetFloat());
  363. }
  364. void PhysicsWorld::PreStep(float timeStep)
  365. {
  366. // Send pre-step event
  367. using namespace PhysicsPreStep;
  368. VariantMap eventData;
  369. eventData[P_WORLD] = (void*)this;
  370. eventData[P_TIMESTEP] = timeStep;
  371. SendEvent(E_PHYSICSPRESTEP, eventData);
  372. delayedWorldTransforms_.Clear();
  373. // Start profiling block for the actual simulation step
  374. #ifdef ENABLE_PROFILING
  375. Profiler* profiler = GetSubsystem<Profiler>();
  376. if (profiler)
  377. profiler->BeginBlock("StepSimulation");
  378. #endif
  379. }
  380. void PhysicsWorld::PostStep(float timeStep)
  381. {
  382. #ifdef ENABLE_PROFILING
  383. Profiler* profiler = GetSubsystem<Profiler>();
  384. if (profiler)
  385. profiler->EndBlock();
  386. #endif
  387. // Apply delayed (parented) world transforms now
  388. while (!delayedWorldTransforms_.Empty())
  389. {
  390. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  391. i != delayedWorldTransforms_.End(); )
  392. {
  393. HashMap<RigidBody*, DelayedWorldTransform>::Iterator current = i++;
  394. const DelayedWorldTransform& transform = current->second_;
  395. // If parent's transform has already been assigned, can proceed
  396. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  397. {
  398. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  399. delayedWorldTransforms_.Erase(current);
  400. }
  401. }
  402. }
  403. SendCollisionEvents();
  404. // Send post-step event
  405. using namespace PhysicsPreStep;
  406. VariantMap eventData;
  407. eventData[P_WORLD] = (void*)this;
  408. eventData[P_TIMESTEP] = timeStep;
  409. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  410. }
  411. void PhysicsWorld::SendCollisionEvents()
  412. {
  413. PROFILE(SendCollisionEvents);
  414. currentCollisions_.Clear();
  415. int numManifolds = collisionDispatcher_->getNumManifolds();
  416. if (numManifolds)
  417. {
  418. VariantMap physicsCollisionData;
  419. VariantMap nodeCollisionData;
  420. VectorBuffer contacts;
  421. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  422. for (int i = 0; i < numManifolds; ++i)
  423. {
  424. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  425. int numContacts = contactManifold->getNumContacts();
  426. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  427. if (!numContacts)
  428. continue;
  429. btCollisionObject* objectA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  430. btCollisionObject* objectB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  431. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  432. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  433. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  434. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  435. continue;
  436. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  437. continue;
  438. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  439. !bodyA->IsActive() && !bodyB->IsActive())
  440. continue;
  441. Node* nodeA = bodyA->GetNode();
  442. Node* nodeB = bodyB->GetNode();
  443. WeakPtr<Node> nodeWeakA(nodeA);
  444. WeakPtr<Node> nodeWeakB(nodeB);
  445. Pair<RigidBody*, RigidBody*> bodyPair;
  446. if (bodyA < bodyB)
  447. bodyPair = MakePair(bodyA, bodyB);
  448. else
  449. bodyPair = MakePair(bodyB, bodyA);
  450. currentCollisions_.Insert(bodyPair);
  451. bool newCollision = !previousCollisions_.Contains(bodyPair);
  452. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  453. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  454. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  455. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  456. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = !previousCollisions_.Contains(bodyPair);
  457. contacts.Clear();
  458. for (int j = 0; j < numContacts; ++j)
  459. {
  460. btManifoldPoint& point = contactManifold->getContactPoint(j);
  461. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  462. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  463. contacts.WriteFloat(point.m_distance1);
  464. contacts.WriteFloat(point.m_appliedImpulse);
  465. }
  466. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  467. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  468. // Skip if either of the nodes has been removed as a response to the event
  469. if (!nodeWeakA || !nodeWeakB)
  470. continue;
  471. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  472. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  473. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  474. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = newCollision;
  475. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  476. SendEvent(nodeA, E_NODECOLLISION, nodeCollisionData);
  477. // Skip if either of the nodes has been removed as a response to the event
  478. if (!nodeWeakA || !nodeWeakB)
  479. continue;
  480. contacts.Clear();
  481. for (int j = 0; j < numContacts; ++j)
  482. {
  483. btManifoldPoint& point = contactManifold->getContactPoint(j);
  484. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  485. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  486. contacts.WriteFloat(point.m_distance1);
  487. contacts.WriteFloat(point.m_appliedImpulse);
  488. }
  489. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  490. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  491. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  492. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  493. SendEvent(nodeB, E_NODECOLLISION, nodeCollisionData);
  494. }
  495. }
  496. previousCollisions_ = currentCollisions_;
  497. }
  498. void RegisterPhysicsLibrary(Context* context)
  499. {
  500. CollisionShape::RegisterObject(context);
  501. RigidBody::RegisterObject(context);
  502. Constraint::RegisterObject(context);
  503. PhysicsWorld::RegisterObject(context);
  504. }