View.cpp 99 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "ResourceCache.h"
  35. #include "PostProcess.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Sort.h"
  41. #include "Technique.h"
  42. #include "Texture2D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "Zone.h"
  48. #include "DebugNew.h"
  49. static const Vector3 directions[] =
  50. {
  51. Vector3(1.0f, 0.0f, 0.0f),
  52. Vector3(-1.0f, 0.0f, 0.0f),
  53. Vector3(0.0f, 1.0f, 0.0f),
  54. Vector3(0.0f, -1.0f, 0.0f),
  55. Vector3(0.0f, 0.0f, 1.0f),
  56. Vector3(0.0f, 0.0f, -1.0f)
  57. };
  58. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  60. /// %Frustum octree query for shadowcasters.
  61. class ShadowCasterOctreeQuery : public OctreeQuery
  62. {
  63. public:
  64. /// Construct with frustum and query parameters.
  65. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  66. unsigned viewMask = DEFAULT_VIEWMASK) :
  67. OctreeQuery(result, drawableFlags, viewMask),
  68. frustum_(frustum)
  69. {
  70. }
  71. /// Intersection test for an octant.
  72. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  73. {
  74. if (inside)
  75. return INSIDE;
  76. else
  77. return frustum_.IsInside(box);
  78. }
  79. /// Intersection test for drawables.
  80. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  81. {
  82. while (start != end)
  83. {
  84. Drawable* drawable = *start;
  85. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->GetCastShadows() && drawable->IsVisible() &&
  86. (drawable->GetViewMask() & viewMask_))
  87. {
  88. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  89. result_.Push(drawable);
  90. }
  91. ++start;
  92. }
  93. }
  94. /// Frustum.
  95. Frustum frustum_;
  96. };
  97. /// %Frustum octree query for zones and occluders.
  98. class ZoneOccluderOctreeQuery : public OctreeQuery
  99. {
  100. public:
  101. /// Construct with frustum and query parameters.
  102. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  103. unsigned viewMask = DEFAULT_VIEWMASK) :
  104. OctreeQuery(result, drawableFlags, viewMask),
  105. frustum_(frustum)
  106. {
  107. }
  108. /// Intersection test for an octant.
  109. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  110. {
  111. if (inside)
  112. return INSIDE;
  113. else
  114. return frustum_.IsInside(box);
  115. }
  116. /// Intersection test for drawables.
  117. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  118. {
  119. while (start != end)
  120. {
  121. Drawable* drawable = *start;
  122. unsigned char flags = drawable->GetDrawableFlags();
  123. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && drawable->IsVisible() &&
  124. (drawable->GetViewMask() & viewMask_))
  125. {
  126. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  127. result_.Push(drawable);
  128. }
  129. ++start;
  130. }
  131. }
  132. /// Frustum.
  133. Frustum frustum_;
  134. };
  135. /// %Frustum octree query with occlusion.
  136. class OccludedFrustumOctreeQuery : public OctreeQuery
  137. {
  138. public:
  139. /// Construct with frustum, occlusion buffer and query parameters.
  140. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  141. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  142. OctreeQuery(result, drawableFlags, viewMask),
  143. frustum_(frustum),
  144. buffer_(buffer)
  145. {
  146. }
  147. /// Intersection test for an octant.
  148. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  149. {
  150. if (inside)
  151. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  152. else
  153. {
  154. Intersection result = frustum_.IsInside(box);
  155. if (result != OUTSIDE && !buffer_->IsVisible(box))
  156. result = OUTSIDE;
  157. return result;
  158. }
  159. }
  160. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  161. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  162. {
  163. while (start != end)
  164. {
  165. Drawable* drawable = *start;
  166. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->IsVisible() &&
  167. (drawable->GetViewMask() & viewMask_))
  168. {
  169. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  170. result_.Push(drawable);
  171. }
  172. ++start;
  173. }
  174. }
  175. /// Frustum.
  176. Frustum frustum_;
  177. /// Occlusion buffer.
  178. OcclusionBuffer* buffer_;
  179. };
  180. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  181. {
  182. View* view = reinterpret_cast<View*>(item->aux_);
  183. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  184. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  185. OcclusionBuffer* buffer = view->occlusionBuffer_;
  186. while (start != end)
  187. {
  188. Drawable* drawable = *start++;
  189. drawable->UpdateDistance(view->frame_);
  190. // If draw distance non-zero, check it
  191. float maxDistance = drawable->GetDrawDistance();
  192. if ((maxDistance <= 0.0f || drawable->GetDistance() <= maxDistance) && (!buffer || !drawable->IsOccludee() ||
  193. buffer->IsVisible(drawable->GetWorldBoundingBox())))
  194. {
  195. drawable->MarkInView(view->frame_);
  196. // For geometries, clear lights and find new zone if necessary
  197. if (drawable->GetDrawableFlags() & DRAWABLE_GEOMETRY)
  198. {
  199. drawable->ClearLights();
  200. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  201. view->FindZone(drawable, threadIndex);
  202. }
  203. }
  204. }
  205. }
  206. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  207. {
  208. View* view = reinterpret_cast<View*>(item->aux_);
  209. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  210. view->ProcessLight(*query, threadIndex);
  211. }
  212. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  213. {
  214. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  215. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  216. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  217. while (start != end)
  218. {
  219. Drawable* drawable = *start;
  220. drawable->UpdateGeometry(frame);
  221. ++start;
  222. }
  223. }
  224. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  225. {
  226. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  227. queue->SortFrontToBack();
  228. }
  229. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  230. {
  231. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  232. queue->SortBackToFront();
  233. }
  234. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  235. {
  236. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  237. start->litBatches_.SortFrontToBack();
  238. }
  239. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  240. {
  241. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  242. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  243. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  244. }
  245. OBJECTTYPESTATIC(View);
  246. View::View(Context* context) :
  247. Object(context),
  248. graphics_(GetSubsystem<Graphics>()),
  249. renderer_(GetSubsystem<Renderer>()),
  250. octree_(0),
  251. camera_(0),
  252. cameraZone_(0),
  253. farClipZone_(0),
  254. renderTarget_(0)
  255. {
  256. frame_.camera_ = 0;
  257. // Create octree query vector for each thread
  258. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  259. }
  260. View::~View()
  261. {
  262. }
  263. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  264. {
  265. Scene* scene = viewport->GetScene();
  266. Camera* camera = viewport->GetCamera();
  267. if (!scene || !camera)
  268. return false;
  269. // If scene is loading asynchronously, it is incomplete and should not be rendered
  270. if (scene->IsAsyncLoading())
  271. return false;
  272. Octree* octree = scene->GetComponent<Octree>();
  273. if (!octree)
  274. return false;
  275. renderMode_ = renderer_->GetRenderMode();
  276. octree_ = octree;
  277. camera_ = camera;
  278. renderTarget_ = renderTarget;
  279. // Get active post-processing effects on the viewport
  280. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  281. postProcesses_.Clear();
  282. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  283. {
  284. PostProcess* effect = i->Get();
  285. if (effect && effect->IsActive())
  286. postProcesses_.Push(*i);
  287. }
  288. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  289. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  290. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  291. const IntRect& rect = viewport->GetRect();
  292. if (rect != IntRect::ZERO)
  293. {
  294. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  295. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  296. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  297. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  298. }
  299. else
  300. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  301. viewSize_ = IntVector2(viewRect_.right_ - viewRect_.left_, viewRect_.bottom_ - viewRect_.top_);
  302. rtSize_ = IntVector2(rtWidth, rtHeight);
  303. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  304. #ifdef USE_OPENGL
  305. if (renderTarget_)
  306. {
  307. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  308. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  309. }
  310. #endif
  311. drawShadows_ = renderer_->GetDrawShadows();
  312. materialQuality_ = renderer_->GetMaterialQuality();
  313. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  314. // Set possible quality overrides from the camera
  315. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  316. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  317. materialQuality_ = QUALITY_LOW;
  318. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  319. drawShadows_ = false;
  320. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  321. maxOccluderTriangles_ = 0;
  322. return true;
  323. }
  324. void View::Update(const FrameInfo& frame)
  325. {
  326. if (!camera_ || !octree_)
  327. return;
  328. frame_.camera_ = camera_;
  329. frame_.timeStep_ = frame.timeStep_;
  330. frame_.frameNumber_ = frame.frameNumber_;
  331. frame_.viewSize_ = viewSize_;
  332. // Clear screen buffers, geometry, light, occluder & batch lists
  333. screenBuffers_.Clear();
  334. geometries_.Clear();
  335. allGeometries_.Clear();
  336. lights_.Clear();
  337. zones_.Clear();
  338. occluders_.Clear();
  339. baseQueue_.Clear();
  340. preAlphaQueue_.Clear();
  341. gbufferQueue_.Clear();
  342. alphaQueue_.Clear();
  343. postAlphaQueue_.Clear();
  344. lightQueues_.Clear();
  345. vertexLightQueues_.Clear();
  346. // Do not update if camera projection is illegal
  347. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  348. if (!camera_->IsProjectionValid())
  349. return;
  350. // Set automatic aspect ratio if required
  351. if (camera_->GetAutoAspectRatio())
  352. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  353. GetDrawables();
  354. GetBatches();
  355. UpdateGeometries();
  356. }
  357. void View::Render()
  358. {
  359. if (!octree_ || !camera_)
  360. return;
  361. // Allocate screen buffers for post-processing and blitting as necessary
  362. AllocateScreenBuffers();
  363. // Forget parameter sources from the previous view
  364. graphics_->ClearParameterSources();
  365. // If stream offset is supported, write all instance transforms to a single large buffer
  366. // Else we must lock the instance buffer for each batch group
  367. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  368. PrepareInstancingBuffer();
  369. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  370. // again to ensure correct projection will be used
  371. if (camera_->GetAutoAspectRatio())
  372. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  373. graphics_->SetColorWrite(true);
  374. graphics_->SetFillMode(FILL_SOLID);
  375. // Bind the face selection and indirection cube maps for point light shadows
  376. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  377. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  378. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  379. // ie. when using deferred rendering and/or doing post-processing
  380. if (renderTarget_)
  381. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  382. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  383. // as a render texture produced on Direct3D9
  384. #ifdef USE_OPENGL
  385. if (renderTarget_)
  386. camera_->SetFlipVertical(true);
  387. #endif
  388. // Render
  389. if (renderMode_ == RENDER_FORWARD)
  390. RenderBatchesForward();
  391. else
  392. RenderBatchesDeferred();
  393. #ifdef USE_OPENGL
  394. camera_->SetFlipVertical(false);
  395. #endif
  396. graphics_->SetViewTexture(0);
  397. graphics_->SetScissorTest(false);
  398. graphics_->SetStencilTest(false);
  399. graphics_->ResetStreamFrequencies();
  400. // Run post-processes or framebuffer blitting now
  401. if (screenBuffers_.Size())
  402. {
  403. if (postProcesses_.Size())
  404. RunPostProcesses();
  405. else
  406. BlitFramebuffer();
  407. }
  408. // If this is a main view, draw the associated debug geometry now
  409. if (!renderTarget_)
  410. {
  411. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  412. if (debug)
  413. {
  414. debug->SetView(camera_);
  415. debug->Render();
  416. }
  417. }
  418. // "Forget" the camera, octree and zone after rendering
  419. camera_ = 0;
  420. octree_ = 0;
  421. cameraZone_ = 0;
  422. farClipZone_ = 0;
  423. occlusionBuffer_ = 0;
  424. frame_.camera_ = 0;
  425. }
  426. void View::GetDrawables()
  427. {
  428. PROFILE(GetDrawables);
  429. WorkQueue* queue = GetSubsystem<WorkQueue>();
  430. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  431. // Get zones and occluders first
  432. {
  433. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE);
  434. octree_->GetDrawables(query);
  435. }
  436. highestZonePriority_ = M_MIN_INT;
  437. int bestPriority = M_MIN_INT;
  438. Vector3 cameraPos = camera_->GetWorldPosition();
  439. // Get default zone first in case we do not have zones defined
  440. Zone* defaultZone = renderer_->GetDefaultZone();
  441. cameraZone_ = farClipZone_ = defaultZone;
  442. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  443. {
  444. Drawable* drawable = *i;
  445. unsigned char flags = drawable->GetDrawableFlags();
  446. if (flags & DRAWABLE_ZONE)
  447. {
  448. Zone* zone = static_cast<Zone*>(drawable);
  449. zones_.Push(zone);
  450. int priority = zone->GetPriority();
  451. if (priority > highestZonePriority_)
  452. highestZonePriority_ = priority;
  453. if (zone->IsInside(cameraPos) && priority > bestPriority)
  454. {
  455. cameraZone_ = zone;
  456. bestPriority = priority;
  457. }
  458. }
  459. else
  460. occluders_.Push(drawable);
  461. }
  462. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  463. cameraZoneOverride_ = cameraZone_->GetOverride();
  464. if (!cameraZoneOverride_)
  465. {
  466. Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  467. bestPriority = M_MIN_INT;
  468. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  469. {
  470. int priority = (*i)->GetPriority();
  471. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  472. {
  473. farClipZone_ = *i;
  474. bestPriority = priority;
  475. }
  476. }
  477. }
  478. if (farClipZone_ == defaultZone)
  479. farClipZone_ = cameraZone_;
  480. // If occlusion in use, get & render the occluders
  481. occlusionBuffer_ = 0;
  482. if (maxOccluderTriangles_ > 0)
  483. {
  484. UpdateOccluders(occluders_, camera_);
  485. if (occluders_.Size())
  486. {
  487. PROFILE(DrawOcclusion);
  488. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  489. DrawOccluders(occlusionBuffer_, occluders_);
  490. }
  491. }
  492. // Get lights and geometries. Coarse occlusion for octants is used at this point
  493. if (occlusionBuffer_)
  494. {
  495. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  496. DRAWABLE_LIGHT);
  497. octree_->GetDrawables(query);
  498. }
  499. else
  500. {
  501. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  502. octree_->GetDrawables(query);
  503. }
  504. // Check drawable occlusion and find zones for moved drawables in worker threads
  505. {
  506. WorkItem item;
  507. item.workFunction_ = CheckVisibilityWork;
  508. item.aux_ = this;
  509. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  510. while (start != tempDrawables.End())
  511. {
  512. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  513. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  514. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  515. item.start_ = &(*start);
  516. item.end_ = &(*end);
  517. queue->AddWorkItem(item);
  518. start = end;
  519. }
  520. queue->Complete();
  521. }
  522. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  523. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  524. sceneBox_.defined_ = false;
  525. minZ_ = M_INFINITY;
  526. maxZ_ = 0.0f;
  527. const Matrix3x4& view = camera_->GetInverseWorldTransform();
  528. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  529. {
  530. Drawable* drawable = tempDrawables[i];
  531. unsigned char flags = drawable->GetDrawableFlags();
  532. if (!drawable->IsInView(frame_))
  533. continue;
  534. if (flags & DRAWABLE_GEOMETRY)
  535. {
  536. // Expand the scene bounding boxes. However, do not take skyboxes into account, as they have undefinedly large size
  537. // and the bounding boxes are also used for shadow focusing
  538. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  539. BoundingBox geomViewBox = geomBox.Transformed(view);
  540. if (drawable->GetType() != Skybox::GetTypeStatic())
  541. {
  542. sceneBox_.Merge(geomBox);
  543. minZ_ = Min(minZ_, geomViewBox.min_.z_);
  544. maxZ_ = Max(maxZ_, geomViewBox.max_.z_);
  545. }
  546. // Store depth info for split directional light queries
  547. drawable->SetMinMaxZ(geomViewBox.min_.z_, geomViewBox.max_.z_);
  548. geometries_.Push(drawable);
  549. allGeometries_.Push(drawable);
  550. }
  551. else if (flags & DRAWABLE_LIGHT)
  552. {
  553. Light* light = static_cast<Light*>(drawable);
  554. // Skip lights which are so dim that they can not contribute to a rendertarget
  555. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  556. lights_.Push(light);
  557. }
  558. }
  559. if (minZ_ == M_INFINITY)
  560. minZ_ = 0.0f;
  561. // Sort the lights to brightest/closest first
  562. for (unsigned i = 0; i < lights_.Size(); ++i)
  563. {
  564. Light* light = lights_[i];
  565. light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
  566. light->SetLightQueue(0);
  567. }
  568. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  569. }
  570. void View::GetBatches()
  571. {
  572. WorkQueue* queue = GetSubsystem<WorkQueue>();
  573. PODVector<Light*> vertexLights;
  574. // Process lit geometries and shadow casters for each light
  575. {
  576. PROFILE(ProcessLights);
  577. lightQueryResults_.Resize(lights_.Size());
  578. WorkItem item;
  579. item.workFunction_ = ProcessLightWork;
  580. item.aux_ = this;
  581. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  582. {
  583. LightQueryResult& query = lightQueryResults_[i];
  584. query.light_ = lights_[i];
  585. item.start_ = &query;
  586. queue->AddWorkItem(item);
  587. }
  588. // Ensure all lights have been processed before proceeding
  589. queue->Complete();
  590. }
  591. // Build light queues and lit batches
  592. {
  593. PROFILE(GetLightBatches);
  594. maxLightsDrawables_.Clear();
  595. // Preallocate light queues: per-pixel lights which have lit geometries
  596. unsigned numLightQueues = 0;
  597. unsigned usedLightQueues = 0;
  598. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  599. {
  600. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  601. ++numLightQueues;
  602. }
  603. lightQueues_.Resize(numLightQueues);
  604. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  605. {
  606. LightQueryResult& query = *i;
  607. // If light has no affected geometries, no need to process further
  608. if (query.litGeometries_.Empty())
  609. continue;
  610. Light* light = query.light_;
  611. // Per-pixel light
  612. if (!light->GetPerVertex())
  613. {
  614. unsigned shadowSplits = query.numSplits_;
  615. // Initialize light queue. Store light-to-queue mapping so that the queue can be found later
  616. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  617. light->SetLightQueue(&lightQueue);
  618. lightQueue.light_ = light;
  619. lightQueue.litBatches_.Clear();
  620. lightQueue.volumeBatches_.Clear();
  621. // Allocate shadow map now
  622. lightQueue.shadowMap_ = 0;
  623. if (shadowSplits > 0)
  624. {
  625. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  626. // If did not manage to get a shadow map, convert the light to unshadowed
  627. if (!lightQueue.shadowMap_)
  628. shadowSplits = 0;
  629. }
  630. // Setup shadow batch queues
  631. lightQueue.shadowSplits_.Resize(shadowSplits);
  632. for (unsigned j = 0; j < shadowSplits; ++j)
  633. {
  634. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  635. Camera* shadowCamera = query.shadowCameras_[j];
  636. shadowQueue.shadowCamera_ = shadowCamera;
  637. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  638. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  639. // Setup the shadow split viewport and finalize shadow camera parameters
  640. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  641. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  642. // Loop through shadow casters
  643. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  644. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  645. {
  646. Drawable* drawable = *k;
  647. if (!drawable->IsInView(frame_, false))
  648. {
  649. drawable->MarkInView(frame_, false);
  650. allGeometries_.Push(drawable);
  651. }
  652. Zone* zone = GetZone(drawable);
  653. unsigned numBatches = drawable->GetNumBatches();
  654. for (unsigned l = 0; l < numBatches; ++l)
  655. {
  656. Batch shadowBatch;
  657. drawable->GetBatch(shadowBatch, frame_, l);
  658. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  659. if (!shadowBatch.geometry_ || !tech)
  660. continue;
  661. Pass* pass = tech->GetPass(PASS_SHADOW);
  662. // Skip if material has no shadow pass
  663. if (!pass)
  664. continue;
  665. // Fill the rest of the batch
  666. shadowBatch.camera_ = shadowCamera;
  667. shadowBatch.zone_ = zone;
  668. shadowBatch.lightQueue_ = &lightQueue;
  669. FinalizeBatch(shadowBatch, tech, pass);
  670. shadowQueue.shadowBatches_.AddBatch(shadowBatch);
  671. }
  672. }
  673. }
  674. // Process lit geometries
  675. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  676. {
  677. Drawable* drawable = *j;
  678. drawable->AddLight(light);
  679. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  680. if (!drawable->GetMaxLights())
  681. GetLitBatches(drawable, lightQueue);
  682. else
  683. maxLightsDrawables_.Insert(drawable);
  684. }
  685. // In deferred modes, store the light volume batch now
  686. if (renderMode_ != RENDER_FORWARD)
  687. {
  688. Batch volumeBatch;
  689. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  690. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  691. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  692. volumeBatch.camera_ = camera_;
  693. volumeBatch.lightQueue_ = &lightQueue;
  694. volumeBatch.distance_ = light->GetDistance();
  695. volumeBatch.material_ = 0;
  696. volumeBatch.pass_ = 0;
  697. volumeBatch.zone_ = 0;
  698. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  699. lightQueue.volumeBatches_.Push(volumeBatch);
  700. }
  701. }
  702. // Per-vertex light
  703. else
  704. {
  705. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  706. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  707. {
  708. Drawable* drawable = *j;
  709. drawable->AddVertexLight(light);
  710. }
  711. }
  712. }
  713. }
  714. // Process drawables with limited per-pixel light count
  715. if (maxLightsDrawables_.Size())
  716. {
  717. PROFILE(GetMaxLightsBatches);
  718. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  719. {
  720. Drawable* drawable = *i;
  721. drawable->LimitLights();
  722. const PODVector<Light*>& lights = drawable->GetLights();
  723. for (unsigned i = 0; i < lights.Size(); ++i)
  724. {
  725. Light* light = lights[i];
  726. // Find the correct light queue again
  727. LightBatchQueue* queue = light->GetLightQueue();
  728. if (queue)
  729. GetLitBatches(drawable, *queue);
  730. }
  731. }
  732. }
  733. // Build base pass batches
  734. {
  735. PROFILE(GetBaseBatches);
  736. hasZeroLightMask_ = false;
  737. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  738. {
  739. Drawable* drawable = *i;
  740. Zone* zone = GetZone(drawable);
  741. unsigned numBatches = drawable->GetNumBatches();
  742. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  743. if (!drawableVertexLights.Empty())
  744. drawable->LimitVertexLights();
  745. for (unsigned j = 0; j < numBatches; ++j)
  746. {
  747. Batch baseBatch;
  748. drawable->GetBatch(baseBatch, frame_, j);
  749. // Check here if the material refers to a rendertarget texture with camera(s) attached
  750. // Only check this for the main view (null rendertarget)
  751. if (baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  752. CheckMaterialForAuxView(baseBatch.material_);
  753. // If already has a lit base pass, skip (forward rendering only)
  754. if (j < 32 && drawable->HasBasePass(j))
  755. continue;
  756. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  757. if (!baseBatch.geometry_ || !tech)
  758. continue;
  759. // Fill the rest of the batch
  760. baseBatch.camera_ = camera_;
  761. baseBatch.zone_ = zone;
  762. baseBatch.isBase_ = true;
  763. Pass* pass = 0;
  764. // In deferred modes check for G-buffer and material passes first
  765. if (renderMode_ == RENDER_PREPASS)
  766. {
  767. pass = tech->GetPass(PASS_PREPASS);
  768. if (pass)
  769. {
  770. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  771. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  772. hasZeroLightMask_ = true;
  773. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  774. baseBatch.lightMask_ = GetLightMask(drawable);
  775. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (zone->GetLightMask() & 0xff));
  776. gbufferQueue_.AddBatch(baseBatch);
  777. pass = tech->GetPass(PASS_MATERIAL);
  778. }
  779. }
  780. if (renderMode_ == RENDER_DEFERRED)
  781. pass = tech->GetPass(PASS_DEFERRED);
  782. // Next check for forward unlit base pass
  783. if (!pass)
  784. pass = tech->GetPass(PASS_BASE);
  785. if (pass)
  786. {
  787. // Check for vertex lights (both forward unlit, light pre-pass material pass, and deferred G-buffer)
  788. if (!drawableVertexLights.Empty())
  789. {
  790. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  791. // them to prevent double-lighting
  792. if (renderMode_ != RENDER_FORWARD && pass->GetBlendMode() == BLEND_REPLACE)
  793. {
  794. vertexLights.Clear();
  795. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  796. {
  797. if (drawableVertexLights[i]->GetPerVertex())
  798. vertexLights.Push(drawableVertexLights[i]);
  799. }
  800. }
  801. else
  802. vertexLights = drawableVertexLights;
  803. if (!vertexLights.Empty())
  804. {
  805. // Find a vertex light queue. If not found, create new
  806. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  807. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  808. if (i == vertexLightQueues_.End())
  809. {
  810. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  811. i->second_.light_ = 0;
  812. i->second_.shadowMap_ = 0;
  813. i->second_.vertexLights_ = vertexLights;
  814. }
  815. baseBatch.lightQueue_ = &(i->second_);
  816. }
  817. }
  818. // Check whether batch is opaque or transparent
  819. if (pass->GetBlendMode() == BLEND_REPLACE)
  820. {
  821. if (pass->GetType() != PASS_DEFERRED)
  822. {
  823. FinalizeBatch(baseBatch, tech, pass);
  824. baseQueue_.AddBatch(baseBatch);
  825. }
  826. else
  827. {
  828. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  829. baseBatch.lightMask_ = GetLightMask(drawable);
  830. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  831. gbufferQueue_.AddBatch(baseBatch);
  832. }
  833. }
  834. else
  835. {
  836. // Transparent batches can not be instanced
  837. FinalizeBatch(baseBatch, tech, pass, false);
  838. alphaQueue_.AddBatch(baseBatch);
  839. }
  840. continue;
  841. }
  842. // If no pass found so far, finally check for pre-alpha / post-alpha custom passes
  843. pass = tech->GetPass(PASS_PREALPHA);
  844. if (pass)
  845. {
  846. FinalizeBatch(baseBatch, tech, pass);
  847. preAlphaQueue_.AddBatch(baseBatch);
  848. continue;
  849. }
  850. pass = tech->GetPass(PASS_POSTALPHA);
  851. if (pass)
  852. {
  853. // Post-alpha pass is treated similarly as alpha, and is not instanced
  854. FinalizeBatch(baseBatch, tech, pass, false);
  855. postAlphaQueue_.AddBatch(baseBatch);
  856. continue;
  857. }
  858. }
  859. }
  860. }
  861. }
  862. void View::UpdateGeometries()
  863. {
  864. PROFILE(SortAndUpdateGeometry);
  865. WorkQueue* queue = GetSubsystem<WorkQueue>();
  866. // Sort batches
  867. {
  868. WorkItem item;
  869. item.workFunction_ = SortBatchQueueFrontToBackWork;
  870. item.start_ = &baseQueue_;
  871. queue->AddWorkItem(item);
  872. item.start_ = &preAlphaQueue_;
  873. queue->AddWorkItem(item);
  874. if (renderMode_ != RENDER_FORWARD)
  875. {
  876. item.start_ = &gbufferQueue_;
  877. queue->AddWorkItem(item);
  878. }
  879. item.workFunction_ = SortBatchQueueBackToFrontWork;
  880. item.start_ = &alphaQueue_;
  881. queue->AddWorkItem(item);
  882. item.start_ = &postAlphaQueue_;
  883. queue->AddWorkItem(item);
  884. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  885. {
  886. item.workFunction_ = SortLightQueueWork;
  887. item.start_ = &(*i);
  888. queue->AddWorkItem(item);
  889. if ((*i).shadowSplits_.Size())
  890. {
  891. item.workFunction_ = SortShadowQueueWork;
  892. queue->AddWorkItem(item);
  893. }
  894. }
  895. }
  896. // Update geometries. Split into threaded and non-threaded updates.
  897. {
  898. nonThreadedGeometries_.Clear();
  899. threadedGeometries_.Clear();
  900. for (PODVector<Drawable*>::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i)
  901. {
  902. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  903. if (type == UPDATE_MAIN_THREAD)
  904. nonThreadedGeometries_.Push(*i);
  905. else if (type == UPDATE_WORKER_THREAD)
  906. threadedGeometries_.Push(*i);
  907. }
  908. if (threadedGeometries_.Size())
  909. {
  910. WorkItem item;
  911. item.workFunction_ = UpdateDrawableGeometriesWork;
  912. item.aux_ = const_cast<FrameInfo*>(&frame_);
  913. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  914. while (start != threadedGeometries_.End())
  915. {
  916. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  917. if (end - start > DRAWABLES_PER_WORK_ITEM)
  918. end = start + DRAWABLES_PER_WORK_ITEM;
  919. item.start_ = &(*start);
  920. item.end_ = &(*end);
  921. queue->AddWorkItem(item);
  922. start = end;
  923. }
  924. }
  925. // While the work queue is processed, update non-threaded geometries
  926. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  927. (*i)->UpdateGeometry(frame_);
  928. }
  929. // Finally ensure all threaded work has completed
  930. queue->Complete();
  931. }
  932. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  933. {
  934. Light* light = lightQueue.light_;
  935. Zone* zone = GetZone(drawable);
  936. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  937. // Shadows on transparencies can only be rendered if shadow maps are not reused
  938. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  939. bool allowLitBase = light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  940. unsigned numBatches = drawable->GetNumBatches();
  941. for (unsigned i = 0; i < numBatches; ++i)
  942. {
  943. Batch litBatch;
  944. drawable->GetBatch(litBatch, frame_, i);
  945. Technique* tech = GetTechnique(drawable, litBatch.material_);
  946. if (!litBatch.geometry_ || !tech)
  947. continue;
  948. // Do not create pixel lit forward passes for materials that render into the G-buffer
  949. if ((renderMode_ == RENDER_PREPASS && tech->HasPass(PASS_PREPASS)) || (renderMode_ == RENDER_DEFERRED &&
  950. tech->HasPass(PASS_DEFERRED)))
  951. continue;
  952. Pass* pass = 0;
  953. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  954. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  955. if (i < 32 && allowLitBase)
  956. {
  957. pass = tech->GetPass(PASS_LITBASE);
  958. if (pass)
  959. {
  960. litBatch.isBase_ = true;
  961. drawable->SetBasePass(i);
  962. }
  963. }
  964. // If no lit base pass, get ordinary light pass
  965. if (!pass)
  966. pass = tech->GetPass(PASS_LIGHT);
  967. // Skip if material does not receive light at all
  968. if (!pass)
  969. continue;
  970. // Fill the rest of the batch
  971. litBatch.camera_ = camera_;
  972. litBatch.lightQueue_ = &lightQueue;
  973. litBatch.zone_ = zone;
  974. // Check from the ambient pass whether the object is opaque or transparent
  975. Pass* ambientPass = tech->GetPass(PASS_BASE);
  976. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  977. {
  978. FinalizeBatch(litBatch, tech, pass);
  979. lightQueue.litBatches_.AddBatch(litBatch);
  980. }
  981. else
  982. {
  983. // Transparent batches can not be instanced
  984. FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows);
  985. alphaQueue_.AddBatch(litBatch);
  986. }
  987. }
  988. }
  989. void View::RenderBatchesForward()
  990. {
  991. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  992. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  993. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  994. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  995. // If not reusing shadowmaps, render all of them first
  996. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  997. {
  998. PROFILE(RenderShadowMaps);
  999. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1000. {
  1001. if (i->shadowMap_)
  1002. RenderShadowMap(*i);
  1003. }
  1004. }
  1005. graphics_->SetRenderTarget(0, renderTarget);
  1006. graphics_->SetDepthStencil(depthStencil);
  1007. graphics_->SetViewport(viewRect_);
  1008. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1009. // Render opaque object unlit base pass
  1010. if (!baseQueue_.IsEmpty())
  1011. {
  1012. PROFILE(RenderBase);
  1013. baseQueue_.Draw(graphics_, renderer_);
  1014. }
  1015. // Render shadow maps + opaque objects' additive lighting
  1016. if (!lightQueues_.Empty())
  1017. {
  1018. PROFILE(RenderLights);
  1019. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1020. {
  1021. // If reusing shadowmaps, render each of them before the lit batches
  1022. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1023. {
  1024. RenderShadowMap(*i);
  1025. graphics_->SetRenderTarget(0, renderTarget);
  1026. graphics_->SetDepthStencil(depthStencil);
  1027. graphics_->SetViewport(viewRect_);
  1028. }
  1029. i->litBatches_.Draw(i->light_, graphics_, renderer_);
  1030. }
  1031. }
  1032. graphics_->SetScissorTest(false);
  1033. graphics_->SetStencilTest(false);
  1034. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1035. graphics_->SetAlphaTest(false);
  1036. graphics_->SetBlendMode(BLEND_REPLACE);
  1037. graphics_->SetColorWrite(true);
  1038. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1039. graphics_->SetDepthWrite(false);
  1040. graphics_->SetScissorTest(false);
  1041. graphics_->SetStencilTest(false);
  1042. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1043. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1044. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  1045. DrawFullscreenQuad(camera_, false);
  1046. // Render pre-alpha custom pass
  1047. if (!preAlphaQueue_.IsEmpty())
  1048. {
  1049. PROFILE(RenderPreAlpha);
  1050. preAlphaQueue_.Draw(graphics_, renderer_);
  1051. }
  1052. // Render transparent objects (both base passes & additive lighting)
  1053. if (!alphaQueue_.IsEmpty())
  1054. {
  1055. PROFILE(RenderAlpha);
  1056. alphaQueue_.Draw(graphics_, renderer_, true);
  1057. }
  1058. // Render post-alpha custom pass
  1059. if (!postAlphaQueue_.IsEmpty())
  1060. {
  1061. PROFILE(RenderPostAlpha);
  1062. postAlphaQueue_.Draw(graphics_, renderer_);
  1063. }
  1064. // Resolve multisampled backbuffer now if necessary
  1065. if (resolve)
  1066. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  1067. }
  1068. void View::RenderBatchesDeferred()
  1069. {
  1070. // If not reusing shadowmaps, render all of them first
  1071. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1072. {
  1073. PROFILE(RenderShadowMaps);
  1074. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1075. {
  1076. if (i->shadowMap_)
  1077. RenderShadowMap(*i);
  1078. }
  1079. }
  1080. bool hwDepth = graphics_->GetHardwareDepthSupport();
  1081. // In light prepass mode the albedo buffer is used for light accumulation instead
  1082. Texture2D* albedoBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1083. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1084. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  1085. Graphics::GetLinearDepthFormat());
  1086. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  1087. RenderSurface* depthStencil = hwDepth ? depthBuffer->GetRenderSurface() : renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  1088. if (renderMode_ == RENDER_PREPASS)
  1089. {
  1090. graphics_->SetRenderTarget(0, normalBuffer);
  1091. if (!hwDepth)
  1092. graphics_->SetRenderTarget(1, depthBuffer);
  1093. }
  1094. else
  1095. {
  1096. graphics_->SetRenderTarget(0, renderTarget);
  1097. graphics_->SetRenderTarget(1, albedoBuffer);
  1098. graphics_->SetRenderTarget(2, normalBuffer);
  1099. if (!hwDepth)
  1100. graphics_->SetRenderTarget(3, depthBuffer);
  1101. }
  1102. graphics_->SetDepthStencil(depthStencil);
  1103. graphics_->SetViewport(viewRect_);
  1104. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1105. // Render G-buffer batches
  1106. if (!gbufferQueue_.IsEmpty())
  1107. {
  1108. PROFILE(RenderGBuffer);
  1109. gbufferQueue_.Draw(graphics_, renderer_, false, true);
  1110. }
  1111. // Clear the light accumulation buffer (light pre-pass only.) However, skip the clear if the first light is a directional
  1112. // light with full mask
  1113. RenderSurface* lightRenderTarget = renderMode_ == RENDER_PREPASS ? albedoBuffer->GetRenderSurface() : renderTarget;
  1114. if (renderMode_ == RENDER_PREPASS)
  1115. {
  1116. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  1117. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  1118. graphics_->SetRenderTarget(0, lightRenderTarget);
  1119. graphics_->ResetRenderTarget(1);
  1120. graphics_->SetDepthStencil(depthStencil);
  1121. graphics_->SetViewport(viewRect_);
  1122. if (!optimizeLightBuffer)
  1123. graphics_->Clear(CLEAR_COLOR);
  1124. }
  1125. else
  1126. {
  1127. graphics_->ResetRenderTarget(1);
  1128. graphics_->ResetRenderTarget(2);
  1129. graphics_->ResetRenderTarget(3);
  1130. }
  1131. // Render shadow maps + light volumes
  1132. if (!lightQueues_.Empty())
  1133. {
  1134. PROFILE(RenderLights);
  1135. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1136. {
  1137. // If reusing shadowmaps, render each of them before the lit batches
  1138. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1139. {
  1140. RenderShadowMap(*i);
  1141. graphics_->SetRenderTarget(0, lightRenderTarget);
  1142. graphics_->SetDepthStencil(depthStencil);
  1143. graphics_->SetViewport(viewRect_);
  1144. }
  1145. if (renderMode_ == RENDER_DEFERRED)
  1146. graphics_->SetTexture(TU_ALBEDOBUFFER, albedoBuffer);
  1147. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  1148. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  1149. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1150. {
  1151. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1152. i->volumeBatches_[j].Draw(graphics_, renderer_);
  1153. }
  1154. }
  1155. }
  1156. graphics_->SetTexture(TU_ALBEDOBUFFER, 0);
  1157. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  1158. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  1159. if (renderMode_ == RENDER_PREPASS)
  1160. {
  1161. graphics_->SetRenderTarget(0, renderTarget);
  1162. graphics_->SetDepthStencil(depthStencil);
  1163. graphics_->SetViewport(viewRect_);
  1164. }
  1165. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1166. graphics_->SetAlphaTest(false);
  1167. graphics_->SetBlendMode(BLEND_REPLACE);
  1168. graphics_->SetColorWrite(true);
  1169. graphics_->SetDepthTest(CMP_ALWAYS);
  1170. graphics_->SetDepthWrite(false);
  1171. graphics_->SetScissorTest(false);
  1172. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  1173. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1174. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1175. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  1176. DrawFullscreenQuad(camera_, false);
  1177. // Render opaque objects with deferred lighting result (light pre-pass only)
  1178. if (!baseQueue_.IsEmpty())
  1179. {
  1180. PROFILE(RenderBase);
  1181. graphics_->SetTexture(TU_LIGHTBUFFER, renderMode_ == RENDER_PREPASS ? albedoBuffer : 0);
  1182. baseQueue_.Draw(graphics_, renderer_);
  1183. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1184. }
  1185. // Render pre-alpha custom pass
  1186. if (!preAlphaQueue_.IsEmpty())
  1187. {
  1188. PROFILE(RenderPreAlpha);
  1189. preAlphaQueue_.Draw(graphics_, renderer_);
  1190. }
  1191. // Render transparent objects (both base passes & additive lighting)
  1192. if (!alphaQueue_.IsEmpty())
  1193. {
  1194. PROFILE(RenderAlpha);
  1195. alphaQueue_.Draw(graphics_, renderer_, true);
  1196. }
  1197. // Render post-alpha custom pass
  1198. if (!postAlphaQueue_.IsEmpty())
  1199. {
  1200. PROFILE(RenderPostAlpha);
  1201. postAlphaQueue_.Draw(graphics_, renderer_);
  1202. }
  1203. }
  1204. void View::AllocateScreenBuffers()
  1205. {
  1206. unsigned neededBuffers = 0;
  1207. #ifdef USE_OPENGL
  1208. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1209. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1210. if (renderMode_ != RENDER_FORWARD && (!renderTarget_ || (renderMode_ == RENDER_DEFERRED &&
  1211. renderTarget_->GetParentTexture()->GetFormat() != Graphics::GetRGBAFormat())))
  1212. neededBuffers = 1;
  1213. #endif
  1214. unsigned postProcessPasses = 0;
  1215. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1216. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1217. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1218. if (postProcessPasses)
  1219. neededBuffers = Min((int)postProcessPasses, 2);
  1220. unsigned format = Graphics::GetRGBFormat();
  1221. #ifdef USE_OPENGL
  1222. if (renderMode_ == RENDER_DEFERRED)
  1223. format = Graphics::GetRGBAFormat();
  1224. #endif
  1225. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1226. for (unsigned i = 0; i < neededBuffers; ++i)
  1227. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true));
  1228. }
  1229. void View::BlitFramebuffer()
  1230. {
  1231. // Blit the final image to destination rendertarget
  1232. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1233. graphics_->SetAlphaTest(false);
  1234. graphics_->SetBlendMode(BLEND_REPLACE);
  1235. graphics_->SetDepthTest(CMP_ALWAYS);
  1236. graphics_->SetDepthWrite(true);
  1237. graphics_->SetScissorTest(false);
  1238. graphics_->SetStencilTest(false);
  1239. graphics_->SetRenderTarget(0, renderTarget_);
  1240. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1241. graphics_->SetViewport(viewRect_);
  1242. String shaderName = "CopyFramebuffer";
  1243. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1244. float rtWidth = (float)rtSize_.x_;
  1245. float rtHeight = (float)rtSize_.y_;
  1246. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1247. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1248. #ifdef USE_OPENGL
  1249. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1250. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1251. #else
  1252. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1253. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1254. #endif
  1255. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1256. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1257. DrawFullscreenQuad(camera_, false);
  1258. }
  1259. void View::RunPostProcesses()
  1260. {
  1261. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1262. // Ping-pong buffer indices for read and write
  1263. unsigned readRtIndex = 0;
  1264. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1265. graphics_->SetAlphaTest(false);
  1266. graphics_->SetBlendMode(BLEND_REPLACE);
  1267. graphics_->SetDepthTest(CMP_ALWAYS);
  1268. graphics_->SetScissorTest(false);
  1269. graphics_->SetStencilTest(false);
  1270. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1271. {
  1272. PostProcess* effect = postProcesses_[i];
  1273. // For each effect, rendertargets can be re-used. Allocate them now
  1274. renderer_->SaveScreenBufferAllocations();
  1275. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1276. HashMap<StringHash, Texture2D*> renderTargets;
  1277. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1278. renderTargetInfos.End(); ++j)
  1279. {
  1280. unsigned width = j->second_.size_.x_;
  1281. unsigned height = j->second_.size_.y_;
  1282. if (j->second_.sizeDivisor_)
  1283. {
  1284. width = viewSize_.x_ / width;
  1285. height = viewSize_.y_ / height;
  1286. }
  1287. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1288. }
  1289. // Run each effect pass
  1290. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1291. {
  1292. PostProcessPass* pass = effect->GetPass(j);
  1293. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1294. bool swapBuffers = false;
  1295. // Write depth on the last pass only
  1296. graphics_->SetDepthWrite(lastPass);
  1297. // Set output rendertarget
  1298. RenderSurface* rt = 0;
  1299. String output = pass->GetOutput().ToLower();
  1300. if (output == "viewport")
  1301. {
  1302. if (!lastPass)
  1303. {
  1304. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1305. swapBuffers = true;
  1306. }
  1307. else
  1308. rt = renderTarget_;
  1309. graphics_->SetRenderTarget(0, rt);
  1310. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1311. graphics_->SetViewport(viewRect_);
  1312. }
  1313. else
  1314. {
  1315. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1316. if (k != renderTargets.End())
  1317. rt = k->second_->GetRenderSurface();
  1318. else
  1319. continue; // Skip pass if rendertarget can not be found
  1320. graphics_->SetRenderTarget(0, rt);
  1321. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1322. graphics_->SetViewport(IntRect(0, 0, rt->GetWidth(), rt->GetHeight()));
  1323. }
  1324. // Set shaders, shader parameters and textures
  1325. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1326. renderer_->GetPixelShader(pass->GetPixelShader()));
  1327. const HashMap<StringHash, Vector4>& globalParameters = effect->GetShaderParameters();
  1328. for (HashMap<StringHash, Vector4>::ConstIterator k = globalParameters.Begin(); k != globalParameters.End(); ++k)
  1329. graphics_->SetShaderParameter(k->first_, k->second_);
  1330. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1331. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1332. graphics_->SetShaderParameter(k->first_, k->second_);
  1333. float rtWidth = (float)rtSize_.x_;
  1334. float rtHeight = (float)rtSize_.y_;
  1335. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1336. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1337. #ifdef USE_OPENGL
  1338. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1339. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1340. #else
  1341. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1342. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1343. #endif
  1344. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1345. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1346. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1347. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator k = renderTargetInfos.Begin(); k !=
  1348. renderTargetInfos.End(); ++k)
  1349. {
  1350. String invSizeName = k->second_.name_ + "InvSize";
  1351. String offsetsName = k->second_.name_ + "Offsets";
  1352. float width = (float)renderTargets[k->first_]->GetWidth();
  1353. float height = (float)renderTargets[k->first_]->GetHeight();
  1354. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1355. #ifdef USE_OPENGL
  1356. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1357. #else
  1358. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1359. #endif
  1360. }
  1361. const String* textureNames = pass->GetTextures();
  1362. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1363. {
  1364. if (!textureNames[k].Empty())
  1365. {
  1366. // Texture may either refer to a rendertarget or to a texture resource
  1367. if (!textureNames[k].Compare("viewport", false))
  1368. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1369. else
  1370. {
  1371. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1372. if (l != renderTargets.End())
  1373. graphics_->SetTexture(k, l->second_);
  1374. else
  1375. {
  1376. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1377. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1378. if (texture)
  1379. graphics_->SetTexture(k, texture);
  1380. else
  1381. pass->SetTexture((TextureUnit)k, String());
  1382. }
  1383. }
  1384. }
  1385. }
  1386. DrawFullscreenQuad(camera_, false);
  1387. // Swap the ping-pong buffer sides now if necessary
  1388. if (swapBuffers)
  1389. Swap(readRtIndex, writeRtIndex);
  1390. }
  1391. // Forget the rendertargets allocated during this effect
  1392. renderer_->RestoreScreenBufferAllocations();
  1393. }
  1394. }
  1395. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1396. {
  1397. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1398. float halfViewSize = camera->GetHalfViewSize();
  1399. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1400. Vector3 cameraPos = camera->GetWorldPosition();
  1401. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1402. {
  1403. Drawable* occluder = *i;
  1404. bool erase = false;
  1405. if (!occluder->IsInView(frame_, false))
  1406. occluder->UpdateDistance(frame_);
  1407. // Check occluder's draw distance (in main camera view)
  1408. float maxDistance = occluder->GetDrawDistance();
  1409. if (maxDistance <= 0.0f || occluder->GetDistance() <= maxDistance)
  1410. {
  1411. // Check that occluder is big enough on the screen
  1412. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1413. float diagonal = box.Size().Length();
  1414. float compare;
  1415. if (!camera->IsOrthographic())
  1416. compare = diagonal * halfViewSize / occluder->GetDistance();
  1417. else
  1418. compare = diagonal * invOrthoSize;
  1419. if (compare < occluderSizeThreshold_)
  1420. erase = true;
  1421. else
  1422. {
  1423. // Store amount of triangles divided by screen size as a sorting key
  1424. // (best occluders are big and have few triangles)
  1425. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1426. }
  1427. }
  1428. else
  1429. erase = true;
  1430. if (erase)
  1431. i = occluders.Erase(i);
  1432. else
  1433. ++i;
  1434. }
  1435. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1436. if (occluders.Size())
  1437. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1438. }
  1439. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1440. {
  1441. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1442. buffer->Clear();
  1443. for (unsigned i = 0; i < occluders.Size(); ++i)
  1444. {
  1445. Drawable* occluder = occluders[i];
  1446. if (i > 0)
  1447. {
  1448. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1449. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1450. continue;
  1451. }
  1452. // Check for running out of triangles
  1453. if (!occluder->DrawOcclusion(buffer))
  1454. break;
  1455. }
  1456. buffer->BuildDepthHierarchy();
  1457. }
  1458. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1459. {
  1460. Light* light = query.light_;
  1461. LightType type = light->GetLightType();
  1462. const Frustum& frustum = camera_->GetFrustum();
  1463. // Check if light should be shadowed
  1464. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1465. // If shadow distance non-zero, check it
  1466. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1467. isShadowed = false;
  1468. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1469. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1470. query.litGeometries_.Clear();
  1471. switch (type)
  1472. {
  1473. case LIGHT_DIRECTIONAL:
  1474. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1475. {
  1476. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1477. query.litGeometries_.Push(geometries_[i]);
  1478. }
  1479. break;
  1480. case LIGHT_SPOT:
  1481. {
  1482. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1483. octree_->GetDrawables(octreeQuery);
  1484. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1485. {
  1486. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1487. query.litGeometries_.Push(tempDrawables[i]);
  1488. }
  1489. }
  1490. break;
  1491. case LIGHT_POINT:
  1492. {
  1493. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()),
  1494. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1495. octree_->GetDrawables(octreeQuery);
  1496. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1497. {
  1498. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1499. query.litGeometries_.Push(tempDrawables[i]);
  1500. }
  1501. }
  1502. break;
  1503. }
  1504. // If no lit geometries or not shadowed, no need to process shadow cameras
  1505. if (query.litGeometries_.Empty() || !isShadowed)
  1506. {
  1507. query.numSplits_ = 0;
  1508. return;
  1509. }
  1510. // Determine number of shadow cameras and setup their initial positions
  1511. SetupShadowCameras(query);
  1512. // Process each split for shadow casters
  1513. query.shadowCasters_.Clear();
  1514. for (unsigned i = 0; i < query.numSplits_; ++i)
  1515. {
  1516. Camera* shadowCamera = query.shadowCameras_[i];
  1517. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1518. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1519. // For point light check that the face is visible: if not, can skip the split
  1520. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1521. continue;
  1522. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1523. if (type == LIGHT_DIRECTIONAL)
  1524. {
  1525. if (minZ_ > query.shadowFarSplits_[i])
  1526. continue;
  1527. if (maxZ_ < query.shadowNearSplits_[i])
  1528. continue;
  1529. }
  1530. // Reuse lit geometry query for all except directional lights
  1531. if (type == LIGHT_DIRECTIONAL)
  1532. {
  1533. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1534. camera_->GetViewMask());
  1535. octree_->GetDrawables(query);
  1536. }
  1537. // Check which shadow casters actually contribute to the shadowing
  1538. ProcessShadowCasters(query, tempDrawables, i);
  1539. }
  1540. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1541. // only cost has been the shadow camera setup & queries
  1542. if (query.shadowCasters_.Empty())
  1543. query.numSplits_ = 0;
  1544. }
  1545. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1546. {
  1547. Light* light = query.light_;
  1548. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1549. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1550. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1551. const Matrix4& lightProj = shadowCamera->GetProjection();
  1552. LightType type = light->GetLightType();
  1553. query.shadowCasterBox_[splitIndex].defined_ = false;
  1554. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1555. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1556. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1557. Frustum lightViewFrustum;
  1558. if (type != LIGHT_DIRECTIONAL)
  1559. lightViewFrustum = camera_->GetSplitFrustum(minZ_, maxZ_).Transformed(lightView);
  1560. else
  1561. lightViewFrustum = camera_->GetSplitFrustum(Max(minZ_, query.shadowNearSplits_[splitIndex]),
  1562. Min(maxZ_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1563. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1564. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1565. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1566. return;
  1567. BoundingBox lightViewBox;
  1568. BoundingBox lightProjBox;
  1569. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1570. {
  1571. Drawable* drawable = *i;
  1572. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1573. // Check for that first
  1574. if (!drawable->GetCastShadows())
  1575. continue;
  1576. // For point light, check that this drawable is inside the split shadow camera frustum
  1577. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1578. continue;
  1579. // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
  1580. // times. However, this should not cause problems as no scene modification happens at this point.
  1581. if (!drawable->IsInView(frame_, false))
  1582. drawable->UpdateDistance(frame_);
  1583. // Check shadow distance
  1584. float maxShadowDistance = drawable->GetShadowDistance();
  1585. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1586. continue;
  1587. // Check shadow mask
  1588. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1589. continue;
  1590. // Project shadow caster bounding box to light view space for visibility check
  1591. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1592. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1593. {
  1594. // Merge to shadow caster bounding box and add to the list
  1595. if (type == LIGHT_DIRECTIONAL)
  1596. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1597. else
  1598. {
  1599. lightProjBox = lightViewBox.Projected(lightProj);
  1600. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1601. }
  1602. query.shadowCasters_.Push(drawable);
  1603. }
  1604. }
  1605. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1606. }
  1607. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1608. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1609. {
  1610. if (shadowCamera->IsOrthographic())
  1611. {
  1612. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1613. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1614. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1615. }
  1616. else
  1617. {
  1618. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1619. if (drawable->IsInView(frame_))
  1620. return true;
  1621. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1622. Vector3 center = lightViewBox.Center();
  1623. Ray extrusionRay(center, center.Normalized());
  1624. float extrusionDistance = shadowCamera->GetFarClip();
  1625. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1626. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1627. float sizeFactor = extrusionDistance / originalDistance;
  1628. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1629. // than necessary, so the test will be conservative
  1630. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1631. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1632. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1633. lightViewBox.Merge(extrudedBox);
  1634. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1635. }
  1636. }
  1637. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1638. {
  1639. unsigned width = shadowMap->GetWidth();
  1640. unsigned height = shadowMap->GetHeight();
  1641. int maxCascades = renderer_->GetMaxShadowCascades();
  1642. // Due to instruction count limits, deferred modes in SM2.0 can only support up to 3 cascades
  1643. #ifndef USE_OPENGL
  1644. if (renderMode_ != RENDER_FORWARD && !graphics_->GetSM3Support())
  1645. maxCascades = Max(maxCascades, 3);
  1646. #endif
  1647. switch (light->GetLightType())
  1648. {
  1649. case LIGHT_DIRECTIONAL:
  1650. if (maxCascades == 1)
  1651. return IntRect(0, 0, width, height);
  1652. else if (maxCascades == 2)
  1653. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1654. else
  1655. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1656. (splitIndex / 2 + 1) * height / 2);
  1657. case LIGHT_SPOT:
  1658. return IntRect(0, 0, width, height);
  1659. case LIGHT_POINT:
  1660. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1661. (splitIndex / 2 + 1) * height / 3);
  1662. }
  1663. return IntRect();
  1664. }
  1665. void View::SetupShadowCameras(LightQueryResult& query)
  1666. {
  1667. Light* light = query.light_;
  1668. LightType type = light->GetLightType();
  1669. int splits = 0;
  1670. if (type == LIGHT_DIRECTIONAL)
  1671. {
  1672. const CascadeParameters& cascade = light->GetShadowCascade();
  1673. float nearSplit = camera_->GetNearClip();
  1674. float farSplit;
  1675. while (splits < renderer_->GetMaxShadowCascades())
  1676. {
  1677. // If split is completely beyond camera far clip, we are done
  1678. if (nearSplit > camera_->GetFarClip())
  1679. break;
  1680. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1681. if (farSplit <= nearSplit)
  1682. break;
  1683. // Setup the shadow camera for the split
  1684. Camera* shadowCamera = renderer_->GetShadowCamera();
  1685. query.shadowCameras_[splits] = shadowCamera;
  1686. query.shadowNearSplits_[splits] = nearSplit;
  1687. query.shadowFarSplits_[splits] = farSplit;
  1688. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1689. nearSplit = farSplit;
  1690. ++splits;
  1691. }
  1692. }
  1693. if (type == LIGHT_SPOT)
  1694. {
  1695. Camera* shadowCamera = renderer_->GetShadowCamera();
  1696. query.shadowCameras_[0] = shadowCamera;
  1697. Node* cameraNode = shadowCamera->GetNode();
  1698. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1699. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1700. shadowCamera->SetFarClip(light->GetRange());
  1701. shadowCamera->SetFov(light->GetFov());
  1702. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1703. splits = 1;
  1704. }
  1705. if (type == LIGHT_POINT)
  1706. {
  1707. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1708. {
  1709. Camera* shadowCamera = renderer_->GetShadowCamera();
  1710. query.shadowCameras_[i] = shadowCamera;
  1711. Node* cameraNode = shadowCamera->GetNode();
  1712. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1713. cameraNode->SetPosition(light->GetWorldPosition());
  1714. cameraNode->SetDirection(directions[i]);
  1715. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1716. shadowCamera->SetFarClip(light->GetRange());
  1717. shadowCamera->SetFov(90.0f);
  1718. shadowCamera->SetAspectRatio(1.0f);
  1719. }
  1720. splits = MAX_CUBEMAP_FACES;
  1721. }
  1722. query.numSplits_ = splits;
  1723. }
  1724. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1725. {
  1726. Node* cameraNode = shadowCamera->GetNode();
  1727. float extrusionDistance = camera_->GetFarClip();
  1728. const FocusParameters& parameters = light->GetShadowFocus();
  1729. // Calculate initial position & rotation
  1730. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1731. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1732. cameraNode->SetTransform(pos, light->GetWorldRotation());
  1733. // Calculate main camera shadowed frustum in light's view space
  1734. farSplit = Min(farSplit, camera_->GetFarClip());
  1735. // Use the scene Z bounds to limit frustum size if applicable
  1736. if (parameters.focus_)
  1737. {
  1738. nearSplit = Max(minZ_, nearSplit);
  1739. farSplit = Min(maxZ_, farSplit);
  1740. }
  1741. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1742. Polyhedron frustumVolume;
  1743. frustumVolume.Define(splitFrustum);
  1744. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1745. if (parameters.focus_)
  1746. {
  1747. BoundingBox litGeometriesBox;
  1748. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1749. {
  1750. Drawable* drawable = geometries_[i];
  1751. // Skip skyboxes as they have undefinedly large bounding box size
  1752. if (drawable->GetType() == Skybox::GetTypeStatic())
  1753. continue;
  1754. if (drawable->GetMinZ() <= farSplit && drawable->GetMaxZ() >= nearSplit &&
  1755. (GetLightMask(drawable) & light->GetLightMask()))
  1756. litGeometriesBox.Merge(drawable->GetWorldBoundingBox());
  1757. }
  1758. if (litGeometriesBox.defined_)
  1759. {
  1760. frustumVolume.Clip(litGeometriesBox);
  1761. // If volume became empty, restore it to avoid zero size
  1762. if (frustumVolume.Empty())
  1763. frustumVolume.Define(splitFrustum);
  1764. }
  1765. }
  1766. // Transform frustum volume to light space
  1767. const Matrix3x4& lightView = shadowCamera->GetInverseWorldTransform();
  1768. frustumVolume.Transform(lightView);
  1769. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1770. BoundingBox shadowBox;
  1771. if (!parameters.nonUniform_)
  1772. shadowBox.Define(Sphere(frustumVolume));
  1773. else
  1774. shadowBox.Define(frustumVolume);
  1775. shadowCamera->SetOrthographic(true);
  1776. shadowCamera->SetAspectRatio(1.0f);
  1777. shadowCamera->SetNearClip(0.0f);
  1778. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1779. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1780. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1781. }
  1782. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1783. const BoundingBox& shadowCasterBox)
  1784. {
  1785. const FocusParameters& parameters = light->GetShadowFocus();
  1786. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1787. LightType type = light->GetLightType();
  1788. if (type == LIGHT_DIRECTIONAL)
  1789. {
  1790. BoundingBox shadowBox;
  1791. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1792. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1793. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1794. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1795. // Requantize and snap to shadow map texels
  1796. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1797. }
  1798. if (type == LIGHT_SPOT)
  1799. {
  1800. if (parameters.focus_)
  1801. {
  1802. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1803. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1804. float viewSize = Max(viewSizeX, viewSizeY);
  1805. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1806. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1807. float quantize = parameters.quantize_ * invOrthoSize;
  1808. float minView = parameters.minView_ * invOrthoSize;
  1809. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1810. if (viewSize < 1.0f)
  1811. shadowCamera->SetZoom(1.0f / viewSize);
  1812. }
  1813. }
  1814. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1815. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1816. if (shadowCamera->GetZoom() >= 1.0f)
  1817. {
  1818. if (light->GetLightType() != LIGHT_POINT)
  1819. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1820. else
  1821. {
  1822. #ifdef USE_OPENGL
  1823. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1824. #else
  1825. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1826. #endif
  1827. }
  1828. }
  1829. }
  1830. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1831. const BoundingBox& viewBox)
  1832. {
  1833. Node* cameraNode = shadowCamera->GetNode();
  1834. const FocusParameters& parameters = light->GetShadowFocus();
  1835. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1836. float minX = viewBox.min_.x_;
  1837. float minY = viewBox.min_.y_;
  1838. float maxX = viewBox.max_.x_;
  1839. float maxY = viewBox.max_.y_;
  1840. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1841. Vector2 viewSize(maxX - minX, maxY - minY);
  1842. // Quantize size to reduce swimming
  1843. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1844. if (parameters.nonUniform_)
  1845. {
  1846. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1847. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1848. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1849. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1850. }
  1851. else if (parameters.focus_)
  1852. {
  1853. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1854. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1855. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1856. viewSize.y_ = viewSize.x_;
  1857. }
  1858. shadowCamera->SetOrthoSize(viewSize);
  1859. // Center shadow camera to the view space bounding box
  1860. Vector3 pos(shadowCamera->GetWorldPosition());
  1861. Quaternion rot(shadowCamera->GetWorldRotation());
  1862. Vector3 adjust(center.x_, center.y_, 0.0f);
  1863. cameraNode->Translate(rot * adjust);
  1864. // If the shadow map viewport is known, snap to whole texels
  1865. if (shadowMapWidth > 0.0f)
  1866. {
  1867. Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
  1868. // Take into account that shadow map border will not be used
  1869. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1870. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1871. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1872. cameraNode->Translate(rot * snap);
  1873. }
  1874. }
  1875. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1876. {
  1877. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1878. int bestPriority = M_MIN_INT;
  1879. Zone* newZone = 0;
  1880. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  1881. // (possibly incorrect) and must be re-evaluated on the next frame
  1882. bool temporary = !camera_->GetFrustum().IsInside(center);
  1883. // First check if the last zone remains a conclusive result
  1884. Zone* lastZone = drawable->GetLastZone();
  1885. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1886. lastZone->GetPriority() >= highestZonePriority_)
  1887. newZone = lastZone;
  1888. else
  1889. {
  1890. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1891. {
  1892. Zone* zone = *i;
  1893. int priority = zone->GetPriority();
  1894. if (zone->IsInside(center) && (drawable->GetZoneMask() & zone->GetZoneMask()) && priority > bestPriority)
  1895. {
  1896. newZone = zone;
  1897. bestPriority = priority;
  1898. }
  1899. }
  1900. }
  1901. drawable->SetZone(newZone, temporary);
  1902. }
  1903. Zone* View::GetZone(Drawable* drawable)
  1904. {
  1905. if (cameraZoneOverride_)
  1906. return cameraZone_;
  1907. Zone* drawableZone = drawable->GetZone();
  1908. return drawableZone ? drawableZone : cameraZone_;
  1909. }
  1910. unsigned View::GetLightMask(Drawable* drawable)
  1911. {
  1912. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1913. }
  1914. unsigned View::GetShadowMask(Drawable* drawable)
  1915. {
  1916. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1917. }
  1918. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1919. {
  1920. unsigned long long hash = 0;
  1921. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1922. hash += (unsigned long long)(*i);
  1923. return hash;
  1924. }
  1925. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1926. {
  1927. if (!material)
  1928. material = renderer_->GetDefaultMaterial();
  1929. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1930. // If only one technique, no choice
  1931. if (techniques.Size() == 1)
  1932. return techniques[0].technique_;
  1933. else
  1934. {
  1935. float lodDistance = drawable->GetLodDistance();
  1936. // Check for suitable technique. Techniques should be ordered like this:
  1937. // Most distant & highest quality
  1938. // Most distant & lowest quality
  1939. // Second most distant & highest quality
  1940. // ...
  1941. for (unsigned i = 0; i < techniques.Size(); ++i)
  1942. {
  1943. const TechniqueEntry& entry = techniques[i];
  1944. Technique* technique = entry.technique_;
  1945. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1946. continue;
  1947. if (lodDistance >= entry.lodDistance_)
  1948. return technique;
  1949. }
  1950. // If no suitable technique found, fallback to the last
  1951. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  1952. }
  1953. }
  1954. void View::CheckMaterialForAuxView(Material* material)
  1955. {
  1956. const SharedPtr<Texture>* textures = material->GetTextures();
  1957. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1958. {
  1959. // Have to check cube & 2D textures separately
  1960. Texture* texture = textures[i];
  1961. if (texture)
  1962. {
  1963. if (texture->GetType() == Texture2D::GetTypeStatic())
  1964. {
  1965. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1966. RenderSurface* target = tex2D->GetRenderSurface();
  1967. if (target)
  1968. {
  1969. Viewport* viewport = target->GetViewport();
  1970. if (viewport->GetScene() && viewport->GetCamera())
  1971. renderer_->AddView(target, viewport);
  1972. }
  1973. }
  1974. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1975. {
  1976. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1977. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1978. {
  1979. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1980. if (target)
  1981. {
  1982. Viewport* viewport = target->GetViewport();
  1983. if (viewport->GetScene() && viewport->GetCamera())
  1984. renderer_->AddView(target, viewport);
  1985. }
  1986. }
  1987. }
  1988. }
  1989. }
  1990. // Set frame number so that we can early-out next time we come across this material on the same frame
  1991. material->MarkForAuxView(frame_.frameNumber_);
  1992. }
  1993. void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows)
  1994. {
  1995. // Convert to instanced if possible
  1996. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  1997. batch.geometryType_ = GEOM_INSTANCED;
  1998. batch.pass_ = pass;
  1999. renderer_->SetBatchShaders(batch, tech, pass, allowShadows);
  2000. batch.CalculateSortKey();
  2001. }
  2002. void View::PrepareInstancingBuffer()
  2003. {
  2004. PROFILE(PrepareInstancingBuffer);
  2005. unsigned totalInstances = 0;
  2006. totalInstances += baseQueue_.GetNumInstances(renderer_);
  2007. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  2008. if (renderMode_ != RENDER_FORWARD)
  2009. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  2010. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2011. {
  2012. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2013. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  2014. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  2015. }
  2016. // If fail to set buffer size, fall back to per-group locking
  2017. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2018. {
  2019. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2020. unsigned freeIndex = 0;
  2021. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  2022. if (lockedData)
  2023. {
  2024. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2025. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2026. if (renderMode_ != RENDER_FORWARD)
  2027. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2028. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2029. {
  2030. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2031. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2032. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2033. }
  2034. instancingBuffer->Unlock();
  2035. }
  2036. }
  2037. }
  2038. void View::SetupLightVolumeBatch(Batch& batch)
  2039. {
  2040. Light* light = batch.lightQueue_->light_;
  2041. LightType type = light->GetLightType();
  2042. float lightDist;
  2043. // Use replace blend mode for the first pre-pass light volume, and additive for the rest
  2044. graphics_->SetAlphaTest(false);
  2045. graphics_->SetBlendMode(renderMode_ == RENDER_PREPASS && light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  2046. graphics_->SetDepthWrite(false);
  2047. if (type != LIGHT_DIRECTIONAL)
  2048. {
  2049. if (type == LIGHT_POINT)
  2050. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).Distance(camera_->GetWorldPosition());
  2051. else
  2052. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  2053. // Draw front faces if not inside light volume
  2054. if (lightDist < camera_->GetNearClip() * 2.0f)
  2055. {
  2056. renderer_->SetCullMode(CULL_CW, camera_);
  2057. graphics_->SetDepthTest(CMP_GREATER);
  2058. }
  2059. else
  2060. {
  2061. renderer_->SetCullMode(CULL_CCW, camera_);
  2062. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2063. }
  2064. }
  2065. else
  2066. {
  2067. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2068. // refresh the directional light's model transform before rendering
  2069. light->GetVolumeTransform(camera_);
  2070. graphics_->SetCullMode(CULL_NONE);
  2071. graphics_->SetDepthTest(CMP_ALWAYS);
  2072. }
  2073. graphics_->SetScissorTest(false);
  2074. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2075. }
  2076. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  2077. {
  2078. Light quadDirLight(context_);
  2079. quadDirLight.SetLightType(LIGHT_DIRECTIONAL);
  2080. Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
  2081. graphics_->SetCullMode(CULL_NONE);
  2082. graphics_->SetShaderParameter(VSP_MODEL, model);
  2083. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  2084. graphics_->ClearTransformSources();
  2085. renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
  2086. }
  2087. void View::RenderShadowMap(const LightBatchQueue& queue)
  2088. {
  2089. PROFILE(RenderShadowMap);
  2090. Texture2D* shadowMap = queue.shadowMap_;
  2091. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2092. graphics_->SetColorWrite(false);
  2093. graphics_->SetStencilTest(false);
  2094. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2095. graphics_->SetDepthStencil(shadowMap);
  2096. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2097. graphics_->Clear(CLEAR_DEPTH);
  2098. // Set shadow depth bias
  2099. BiasParameters parameters = queue.light_->GetShadowBias();
  2100. // Adjust the light's constant depth bias according to global shadow map resolution
  2101. /// \todo Should remove this adjustment and find a more flexible solution
  2102. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2103. if (shadowMapSize <= 512)
  2104. parameters.constantBias_ *= 2.0f;
  2105. else if (shadowMapSize >= 2048)
  2106. parameters.constantBias_ *= 0.5f;
  2107. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2108. // Render each of the splits
  2109. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2110. {
  2111. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2112. if (!shadowQueue.shadowBatches_.IsEmpty())
  2113. {
  2114. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2115. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  2116. // However, do not do this for point lights, which need to render continuously across cube faces
  2117. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  2118. if (queue.light_->GetLightType() != LIGHT_POINT)
  2119. {
  2120. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  2121. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  2122. graphics_->SetScissorTest(true, zoomRect, false);
  2123. }
  2124. else
  2125. graphics_->SetScissorTest(false);
  2126. // Draw instanced and non-instanced shadow casters
  2127. shadowQueue.shadowBatches_.Draw(graphics_, renderer_);
  2128. }
  2129. }
  2130. graphics_->SetColorWrite(true);
  2131. graphics_->SetDepthBias(0.0f, 0.0f);
  2132. }
  2133. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2134. {
  2135. // If using the backbuffer, return the backbuffer depth-stencil
  2136. if (!renderTarget)
  2137. return 0;
  2138. // Then check for linked depth-stencil
  2139. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2140. // Finally get one from Renderer
  2141. if (!depthStencil)
  2142. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2143. return depthStencil;
  2144. }