PhysicsWorld.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Constraint.h"
  26. #include "Context.h"
  27. #include "DebugRenderer.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsUtils.h"
  32. #include "PhysicsWorld.h"
  33. #include "Profiler.h"
  34. #include "Ray.h"
  35. #include "RigidBody.h"
  36. #include "Scene.h"
  37. #include "SceneEvents.h"
  38. #include "Sort.h"
  39. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  40. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  41. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  42. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  43. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  44. #include "DebugNew.h"
  45. static const int DEFAULT_FPS = 60;
  46. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  47. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  48. {
  49. return lhs.distance_ < rhs.distance_;
  50. }
  51. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  52. {
  53. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  54. }
  55. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  56. {
  57. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  58. }
  59. OBJECTTYPESTATIC(PhysicsWorld);
  60. PhysicsWorld::PhysicsWorld(Context* context) :
  61. Component(context),
  62. collisionConfiguration_(0),
  63. collisionDispatcher_(0),
  64. broadphase_(0),
  65. solver_(0),
  66. world_(0),
  67. fps_(DEFAULT_FPS),
  68. timeAcc_(0.0f),
  69. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  70. interpolation_(true),
  71. debugRenderer_(0),
  72. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints)
  73. {
  74. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  75. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  76. broadphase_ = new btDbvtBroadphase();
  77. solver_ = new btSequentialImpulseConstraintSolver();
  78. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  79. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  80. world_->getDispatchInfo().m_useContinuous = true;
  81. world_->setDebugDrawer(this);
  82. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  83. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  84. }
  85. PhysicsWorld::~PhysicsWorld()
  86. {
  87. if (scene_)
  88. {
  89. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  90. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  91. (*i)->ReleaseConstraint();
  92. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  93. (*i)->ReleaseBody();
  94. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  95. (*i)->ReleaseShape();
  96. }
  97. // Remove any cached geometries that still remain
  98. geometryCache_.Clear();
  99. delete world_;
  100. world_ = 0;
  101. delete solver_;
  102. solver_ = 0;
  103. delete broadphase_;
  104. broadphase_ = 0;
  105. delete collisionDispatcher_;
  106. collisionDispatcher_ = 0;
  107. delete collisionConfiguration_;
  108. collisionConfiguration_ = 0;
  109. }
  110. void PhysicsWorld::RegisterObject(Context* context)
  111. {
  112. context->RegisterFactory<PhysicsWorld>();
  113. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  114. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  115. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  116. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  117. }
  118. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  119. {
  120. if (debugRenderer_)
  121. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  122. }
  123. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  124. {
  125. if (debug)
  126. {
  127. PROFILE(PhysicsDrawDebug);
  128. debugRenderer_ = debug;
  129. debugDepthTest_ = depthTest;
  130. world_->debugDrawWorld();
  131. debugRenderer_ = 0;
  132. }
  133. }
  134. void PhysicsWorld::reportErrorWarning(const char* warningString)
  135. {
  136. LOGWARNING("Physics: " + String(warningString));
  137. }
  138. void PhysicsWorld::Update(float timeStep)
  139. {
  140. PROFILE(UpdatePhysics);
  141. float internalTimeStep = 1.0f / fps_;
  142. if (interpolation_)
  143. {
  144. int maxSubSteps = (int)(timeStep * fps_) + 1;
  145. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  146. }
  147. else
  148. {
  149. timeAcc_ += timeStep;
  150. while (timeAcc_ >= internalTimeStep)
  151. {
  152. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  153. timeAcc_ -= internalTimeStep;
  154. }
  155. }
  156. }
  157. void PhysicsWorld::UpdateCollisions()
  158. {
  159. world_->performDiscreteCollisionDetection();
  160. }
  161. void PhysicsWorld::SetFps(int fps)
  162. {
  163. fps_ = Clamp(fps, 1, 1000);
  164. }
  165. void PhysicsWorld::SetGravity(Vector3 gravity)
  166. {
  167. world_->setGravity(ToBtVector3(gravity));
  168. }
  169. void PhysicsWorld::SetInterpolation(bool enable)
  170. {
  171. interpolation_ = enable;
  172. }
  173. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  174. {
  175. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  176. }
  177. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  178. {
  179. PROFILE(PhysicsRaycast);
  180. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  181. maxDistance * ray.direction_));
  182. rayCallback.m_collisionFilterGroup = (short)0xffff;
  183. rayCallback.m_collisionFilterMask = collisionMask;
  184. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  185. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  186. {
  187. PhysicsRaycastResult newResult;
  188. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  189. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  190. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  191. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  192. result.Push(newResult);
  193. }
  194. Sort(result.Begin(), result.End(), CompareRaycastResults);
  195. }
  196. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  197. {
  198. PROFILE(PhysicsRaycastSingle);
  199. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  200. maxDistance * ray.direction_));
  201. rayCallback.m_collisionFilterGroup = (short)0xffff;
  202. rayCallback.m_collisionFilterMask = collisionMask;
  203. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  204. if (rayCallback.hasHit())
  205. {
  206. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  207. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  208. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  209. result.distance_ = (result.position_ - ray.origin_).Length();
  210. }
  211. else
  212. {
  213. result.body_ = 0;
  214. result.position_ = Vector3::ZERO;
  215. result.normal_ = Vector3::ZERO;
  216. result.distance_ = M_INFINITY;
  217. }
  218. }
  219. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  220. {
  221. btSphereShape shape(radius);
  222. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  223. maxDistance * ray.direction_));
  224. convexCallback.m_collisionFilterGroup = (short)0xffff;
  225. convexCallback.m_collisionFilterMask = collisionMask;
  226. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  227. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  228. if (convexCallback.hasHit())
  229. {
  230. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  231. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  232. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  233. result.distance_ = (result.position_ - ray.origin_).Length();
  234. }
  235. else
  236. {
  237. result.body_ = 0;
  238. result.position_ = Vector3::ZERO;
  239. result.normal_ = Vector3::ZERO;
  240. result.distance_ = M_INFINITY;
  241. }
  242. }
  243. Vector3 PhysicsWorld::GetGravity() const
  244. {
  245. return ToVector3(world_->getGravity());
  246. }
  247. void PhysicsWorld::AddRigidBody(RigidBody* body)
  248. {
  249. rigidBodies_.Push(body);
  250. }
  251. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  252. {
  253. rigidBodies_.Erase(rigidBodies_.Find(body));
  254. }
  255. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  256. {
  257. collisionShapes_.Push(shape);
  258. }
  259. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  260. {
  261. collisionShapes_.Erase(collisionShapes_.Find(shape));
  262. }
  263. void PhysicsWorld::AddConstraint(Constraint* constraint)
  264. {
  265. constraints_.Push(constraint);
  266. }
  267. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  268. {
  269. constraints_.Erase(constraints_.Find(constraint));
  270. }
  271. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  272. {
  273. delayedWorldTransforms_[transform.rigidBody_] = transform;
  274. }
  275. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  276. {
  277. DebugRenderer* debug = GetComponent<DebugRenderer>();
  278. DrawDebugGeometry(debug, depthTest);
  279. }
  280. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  281. {
  282. debugRenderer_ = debug;
  283. }
  284. void PhysicsWorld::SetDebugDepthTest(bool enable)
  285. {
  286. debugDepthTest_ = enable;
  287. }
  288. void PhysicsWorld::CleanupGeometryCache()
  289. {
  290. // Remove cached shapes whose only reference is the cache itself
  291. for (Map<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  292. i != geometryCache_.End();)
  293. {
  294. Map<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  295. if (current->second_.Refs() == 1)
  296. geometryCache_.Erase(current);
  297. }
  298. }
  299. void PhysicsWorld::OnNodeSet(Node* node)
  300. {
  301. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  302. if (node)
  303. {
  304. scene_ = GetScene();
  305. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  306. }
  307. }
  308. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  309. {
  310. using namespace SceneSubsystemUpdate;
  311. Update(eventData[P_TIMESTEP].GetFloat());
  312. }
  313. void PhysicsWorld::PreStep(float timeStep)
  314. {
  315. // Send pre-step event
  316. using namespace PhysicsPreStep;
  317. VariantMap eventData;
  318. eventData[P_WORLD] = (void*)this;
  319. eventData[P_TIMESTEP] = timeStep;
  320. SendEvent(E_PHYSICSPRESTEP, eventData);
  321. delayedWorldTransforms_.Clear();
  322. // Start profiling block for the actual simulation step
  323. #ifdef ENABLE_PROFILING
  324. Profiler* profiler = GetSubsystem<Profiler>();
  325. if (profiler)
  326. profiler->BeginBlock("StepSimulation");
  327. #endif
  328. }
  329. void PhysicsWorld::PostStep(float timeStep)
  330. {
  331. #ifdef ENABLE_PROFILING
  332. Profiler* profiler = GetSubsystem<Profiler>();
  333. if (profiler)
  334. profiler->EndBlock();
  335. #endif
  336. // Apply delayed (parented) world transforms now
  337. while (!delayedWorldTransforms_.Empty())
  338. {
  339. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  340. i != delayedWorldTransforms_.End(); )
  341. {
  342. HashMap<RigidBody*, DelayedWorldTransform>::Iterator current = i++;
  343. const DelayedWorldTransform& transform = current->second_;
  344. // If parent's transform has already been assigned, can proceed
  345. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  346. {
  347. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  348. delayedWorldTransforms_.Erase(current);
  349. }
  350. }
  351. }
  352. SendCollisionEvents();
  353. // Send post-step event
  354. using namespace PhysicsPreStep;
  355. VariantMap eventData;
  356. eventData[P_WORLD] = (void*)this;
  357. eventData[P_TIMESTEP] = timeStep;
  358. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  359. }
  360. void PhysicsWorld::SendCollisionEvents()
  361. {
  362. PROFILE(SendCollisionEvents);
  363. currentCollisions_.Clear();
  364. int numManifolds = collisionDispatcher_->getNumManifolds();
  365. if (numManifolds)
  366. {
  367. VariantMap physicsCollisionData;
  368. VariantMap nodeCollisionData;
  369. VectorBuffer contacts;
  370. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  371. for (int i = 0; i < numManifolds; ++i)
  372. {
  373. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  374. int numContacts = contactManifold->getNumContacts();
  375. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  376. if (!numContacts)
  377. continue;
  378. btCollisionObject* objectA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  379. btCollisionObject* objectB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  380. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  381. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  382. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  383. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  384. continue;
  385. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  386. continue;
  387. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  388. !bodyA->IsActive() && !bodyB->IsActive())
  389. continue;
  390. Node* nodeA = bodyA->GetNode();
  391. Node* nodeB = bodyB->GetNode();
  392. WeakPtr<Node> nodeWeakA(nodeA);
  393. WeakPtr<Node> nodeWeakB(nodeB);
  394. Pair<RigidBody*, RigidBody*> bodyPair;
  395. if (bodyA < bodyB)
  396. bodyPair = MakePair(bodyA, bodyB);
  397. else
  398. bodyPair = MakePair(bodyB, bodyA);
  399. currentCollisions_.Insert(bodyPair);
  400. bool newCollision = !previousCollisions_.Contains(bodyPair);
  401. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  402. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  403. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  404. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  405. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = !previousCollisions_.Contains(bodyPair);
  406. contacts.Clear();
  407. for (int j = 0; j < numContacts; ++j)
  408. {
  409. btManifoldPoint& point = contactManifold->getContactPoint(j);
  410. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  411. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  412. contacts.WriteFloat(point.m_distance1);
  413. contacts.WriteFloat(point.m_appliedImpulse);
  414. }
  415. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  416. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  417. // Skip if either of the nodes has been removed as a response to the event
  418. if (!nodeWeakA || !nodeWeakB)
  419. continue;
  420. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  421. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  422. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  423. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = newCollision;
  424. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  425. SendEvent(nodeA, E_NODECOLLISION, nodeCollisionData);
  426. // Skip if either of the nodes has been removed as a response to the event
  427. if (!nodeWeakA || !nodeWeakB)
  428. continue;
  429. contacts.Clear();
  430. for (int j = 0; j < numContacts; ++j)
  431. {
  432. btManifoldPoint& point = contactManifold->getContactPoint(j);
  433. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  434. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  435. contacts.WriteFloat(point.m_distance1);
  436. contacts.WriteFloat(point.m_appliedImpulse);
  437. }
  438. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  439. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  440. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  441. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  442. SendEvent(nodeB, E_NODECOLLISION, nodeCollisionData);
  443. }
  444. }
  445. previousCollisions_ = currentCollisions_;
  446. }
  447. void RegisterPhysicsLibrary(Context* context)
  448. {
  449. CollisionShape::RegisterObject(context);
  450. RigidBody::RegisterObject(context);
  451. Constraint::RegisterObject(context);
  452. PhysicsWorld::RegisterObject(context);
  453. }