PhysicsWorld.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Joint.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsWorld.h"
  32. #include "ProcessUtils.h"
  33. #include "Profiler.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "StringUtils.h"
  38. #include "VectorBuffer.h"
  39. #include <ode/ode.h>
  40. #include <algorithm>
  41. #include "DebugNew.h"
  42. static const int DEFAULT_FPS = 60;
  43. static const int DEFAULT_MAXCONTACTS = 20;
  44. static const float DEFAULT_BOUNCETHRESHOLD = 0.1f;
  45. static unsigned numInstances = 0;
  46. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  47. {
  48. return lhs.distance_ < rhs.distance_;
  49. }
  50. OBJECTTYPESTATIC(PhysicsWorld);
  51. PhysicsWorld::PhysicsWorld(Context* context) :
  52. Component(context),
  53. physicsWorld_(0),
  54. space_(0),
  55. rayGeometry_(0),
  56. contactJoints_(0),
  57. fps_(DEFAULT_FPS),
  58. maxContacts_(DEFAULT_MAXCONTACTS),
  59. bounceThreshold_(DEFAULT_BOUNCETHRESHOLD),
  60. timeAcc_(0.0f),
  61. randomSeed_(0)
  62. {
  63. {
  64. MutexLock Lock(GetStaticMutex());
  65. if (!numInstances)
  66. dInitODE();
  67. ++numInstances;
  68. }
  69. physicsWorld_ = dWorldCreate();
  70. space_ = dHashSpaceCreate(0);
  71. contactJoints_ = dJointGroupCreate(0);
  72. // Create ray geometry for physics world raycasts
  73. rayGeometry_ = dCreateRay(0, 0.0f);
  74. // Enable automatic resting of rigid bodies
  75. dWorldSetAutoDisableFlag(physicsWorld_, 1);
  76. contacts_ = new std::vector<dContact>(maxContacts_);
  77. }
  78. PhysicsWorld::~PhysicsWorld()
  79. {
  80. // Forcibly remove any cached geometries that still remain
  81. triangleMeshCache_.clear();
  82. heightfieldCache_.clear();
  83. if (contactJoints_)
  84. {
  85. dJointGroupDestroy(contactJoints_);
  86. contactJoints_ = 0;
  87. }
  88. if (rayGeometry_)
  89. {
  90. dGeomDestroy(rayGeometry_);
  91. rayGeometry_ = 0;
  92. }
  93. if (space_)
  94. {
  95. dSpaceDestroy(space_);
  96. space_ = 0;
  97. }
  98. if (contacts_)
  99. {
  100. std::vector<dContact>* contacts = static_cast<std::vector<dContact>*>(contacts_);
  101. delete contacts;
  102. contacts = 0;
  103. }
  104. if (physicsWorld_)
  105. {
  106. dWorldDestroy(physicsWorld_);
  107. physicsWorld_ = 0;
  108. }
  109. {
  110. MutexLock Lock(GetStaticMutex());
  111. --numInstances;
  112. if (!numInstances)
  113. dCloseODE();
  114. }
  115. }
  116. void PhysicsWorld::RegisterObject(Context* context)
  117. {
  118. context->RegisterFactory<PhysicsWorld>();
  119. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS);
  120. ATTRIBUTE(PhysicsWorld, VAR_INT, "Max Contacts", maxContacts_, DEFAULT_MAXCONTACTS);
  121. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Bounce Threshold", bounceThreshold_, DEFAULT_BOUNCETHRESHOLD);
  122. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Time Accumulator", timeAcc_, 0.0f);
  123. ATTRIBUTE(PhysicsWorld, VAR_INT, "Random Seed", randomSeed_, 0);
  124. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, Vector3::ZERO);
  125. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Linear Rest Threshold", GetLinearRestThreshold, SetLinearRestThreshold, float, 0.01f);
  126. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Linear Damping Threshold", GetLinearDampingThreshold, SetLinearDampingThreshold, float, 0.01f);
  127. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Linear Damping Scale", GetLinearDampingScale, SetLinearDampingScale, float, 0.0f);
  128. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Angular Rest Threshold", GetAngularRestThreshold, SetAngularRestThreshold, float, 0.01f);
  129. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Angular Damping Threshold", GetAngularDampingThreshold, SetAngularDampingThreshold, float, 0.01f);
  130. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Angular Damping Scale", GetAngularDampingScale, SetAngularDampingScale, float, 0.0f);
  131. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "ERP", GetERP, SetERP, float, 0.2f);
  132. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "CFM", GetCFM, SetCFM, float, 0.00001f);
  133. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Contact Surface Layer", GetContactSurfaceLayer, SetContactSurfaceLayer, float, 0.0f);
  134. }
  135. void PhysicsWorld::Update(float timeStep)
  136. {
  137. PROFILE(UpdatePhysics);
  138. float internalTimeStep = 1.0f / fps_;
  139. while (timeStep > 0.0f)
  140. {
  141. float currentStep = Min(timeStep, internalTimeStep);
  142. timeAcc_ += currentStep;
  143. timeStep -= currentStep;
  144. if (timeAcc_ >= internalTimeStep)
  145. {
  146. timeAcc_ -= internalTimeStep;
  147. // Send pre-step event
  148. using namespace PhysicsPreStep;
  149. VariantMap eventData;
  150. eventData[P_WORLD] = (void*)this;
  151. eventData[P_TIMESTEP] = internalTimeStep;
  152. SendEvent(E_PHYSICSPRESTEP, eventData);
  153. // Store the previous transforms of the physics objects
  154. for (std::vector<RigidBody*>::iterator i = rigidBodies_.begin(); i != rigidBodies_.end(); ++i)
  155. (*i)->PreStep();
  156. /// \todo ODE random number generation is not threadsafe
  157. dRandSetSeed(randomSeed_);
  158. // Collide, step the world, and clear contact joints
  159. {
  160. PROFILE(CheckCollisions);
  161. dSpaceCollide(space_, this, NearCallback);
  162. }
  163. {
  164. PROFILE(StepPhysics);
  165. dWorldQuickStep(physicsWorld_, internalTimeStep);
  166. dJointGroupEmpty(contactJoints_);
  167. previousCollisions_ = currentCollisions_;
  168. currentCollisions_.clear();
  169. }
  170. randomSeed_ = dRandGetSeed();
  171. // Send accumulated collision events
  172. SendCollisionEvents();
  173. // Interpolate transforms of physics objects
  174. float t = Clamp(timeAcc_ / internalTimeStep, 0.0f, 1.0f);
  175. for (std::vector<RigidBody*>::iterator i = rigidBodies_.begin(); i != rigidBodies_.end(); ++i)
  176. (*i)->PostStep(t);
  177. // Send post-step event
  178. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  179. }
  180. }
  181. }
  182. void PhysicsWorld::SetFps(int fps)
  183. {
  184. fps_ = Max(fps, 1);
  185. }
  186. void PhysicsWorld::SetMaxContacts(unsigned num)
  187. {
  188. maxContacts_ = Max(num, 1);
  189. std::vector<dContact>* contacts = static_cast<std::vector<dContact>*>(contacts_);
  190. contacts->resize(maxContacts_);
  191. }
  192. void PhysicsWorld::SetGravity(Vector3 gravity)
  193. {
  194. dWorldSetGravity(physicsWorld_, gravity.x_, gravity.y_, gravity.z_);;
  195. }
  196. void PhysicsWorld::SetLinearRestThreshold(float threshold)
  197. {
  198. dWorldSetAutoDisableLinearThreshold(physicsWorld_, Max(threshold, 0.0f));
  199. }
  200. void PhysicsWorld::SetLinearDampingThreshold(float threshold)
  201. {
  202. dWorldSetLinearDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  203. }
  204. void PhysicsWorld::SetLinearDampingScale(float scale)
  205. {
  206. dWorldSetLinearDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  207. }
  208. void PhysicsWorld::SetAngularRestThreshold(float threshold)
  209. {
  210. dWorldSetAutoDisableAngularThreshold(physicsWorld_, threshold);
  211. }
  212. void PhysicsWorld::SetAngularDampingThreshold(float threshold)
  213. {
  214. dWorldSetAngularDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  215. }
  216. void PhysicsWorld::SetAngularDampingScale(float scale)
  217. {
  218. dWorldSetAngularDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  219. }
  220. void PhysicsWorld::SetBounceThreshold(float threshold)
  221. {
  222. bounceThreshold_ = Max(threshold, 0.0f);
  223. }
  224. void PhysicsWorld::SetERP(float erp)
  225. {
  226. dWorldSetERP(physicsWorld_, erp);
  227. }
  228. void PhysicsWorld::SetCFM(float cfm)
  229. {
  230. dWorldSetCFM(physicsWorld_, cfm);
  231. }
  232. void PhysicsWorld::SetContactSurfaceLayer(float depth)
  233. {
  234. dWorldSetContactSurfaceLayer(physicsWorld_, depth);
  235. }
  236. void PhysicsWorld::SetTimeAccumulator(float time)
  237. {
  238. timeAcc_ = time;
  239. }
  240. void PhysicsWorld::Raycast(std::vector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  241. {
  242. PROFILE(PhysicsRaycast);
  243. result.clear();
  244. dGeomRaySetLength(rayGeometry_, maxDistance);
  245. dGeomRaySet(rayGeometry_, ray.origin_.x_, ray.origin_.y_, ray.origin_.z_, ray.direction_.x_, ray.direction_.y_, ray.direction_.z_);
  246. dGeomSetCollideBits(rayGeometry_, collisionMask);
  247. dSpaceCollide2(rayGeometry_, (dGeomID)space_, &result, RaycastCallback);
  248. std::sort(result.begin(), result.end(), CompareRaycastResults);
  249. }
  250. Vector3 PhysicsWorld::GetGravity() const
  251. {
  252. dVector3 g;
  253. dWorldGetGravity(physicsWorld_, g);
  254. return Vector3(g[0], g[1], g[2]);
  255. }
  256. float PhysicsWorld::GetLinearRestThreshold() const
  257. {
  258. return dWorldGetAutoDisableLinearThreshold(physicsWorld_);
  259. }
  260. float PhysicsWorld::GetLinearDampingThreshold() const
  261. {
  262. return dWorldGetLinearDampingThreshold(physicsWorld_);
  263. }
  264. float PhysicsWorld::GetLinearDampingScale() const
  265. {
  266. return dWorldGetLinearDamping(physicsWorld_);
  267. }
  268. float PhysicsWorld::GetAngularRestThreshold() const
  269. {
  270. return dWorldGetAutoDisableAngularThreshold(physicsWorld_);
  271. }
  272. float PhysicsWorld::GetAngularDampingThreshold() const
  273. {
  274. return dWorldGetAngularDampingThreshold(physicsWorld_);
  275. }
  276. float PhysicsWorld::GetAngularDampingScale() const
  277. {
  278. return dWorldGetAngularDamping(physicsWorld_);
  279. }
  280. float PhysicsWorld::GetERP() const
  281. {
  282. return dWorldGetERP(physicsWorld_);
  283. }
  284. float PhysicsWorld::GetCFM() const
  285. {
  286. return dWorldGetCFM(physicsWorld_);
  287. }
  288. float PhysicsWorld::GetContactSurfaceLayer() const
  289. {
  290. return dWorldGetContactSurfaceLayer(physicsWorld_);
  291. }
  292. void PhysicsWorld::AddRigidBody(RigidBody* body)
  293. {
  294. rigidBodies_.push_back(body);
  295. }
  296. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  297. {
  298. for (std::vector<RigidBody*>::iterator i = rigidBodies_.begin(); i != rigidBodies_.end(); ++i)
  299. {
  300. if ((*i) == body)
  301. {
  302. rigidBodies_.erase(i);
  303. return;
  304. }
  305. }
  306. }
  307. void PhysicsWorld::SendCollisionEvents()
  308. {
  309. PROFILE(SendCollisionEvents);
  310. VariantMap physicsCollisionData;
  311. VariantMap nodeCollisionData;
  312. VectorBuffer contacts;
  313. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  314. for (std::vector<PhysicsCollisionInfo>::const_iterator i = collisionInfos_.begin(); i != collisionInfos_.end(); ++i)
  315. {
  316. // Skip if either of the nodes has been removed
  317. if ((!i->nodeA_) || (!i->nodeB_))
  318. continue;
  319. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)i->nodeA_;
  320. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)i->nodeB_;
  321. physicsCollisionData[PhysicsCollision::P_SHAPEA] = (void*)i->shapeA_;
  322. physicsCollisionData[PhysicsCollision::P_SHAPEB] = (void*)i->shapeB_;
  323. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = i->newCollision_;
  324. contacts.Clear();
  325. for (unsigned j = 0; j < i->contacts_.size(); ++j)
  326. {
  327. contacts.WriteVector3(i->contacts_[j].position_);
  328. contacts.WriteVector3(i->contacts_[j].normal_);
  329. contacts.WriteFloat(i->contacts_[j].depth_);
  330. contacts.WriteFloat(i->contacts_[j].velocity_);
  331. }
  332. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  333. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  334. // Skip if either of the nodes is null, or has been removed as a response to the event
  335. if ((!i->nodeA_) || (!i->nodeB_))
  336. continue;
  337. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeA_;
  338. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeB_;
  339. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeB_;
  340. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = i->newCollision_;
  341. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  342. SendEvent(i->nodeA_, E_NODECOLLISION, nodeCollisionData);
  343. // Skip if either of the nodes has been removed as a response to the event
  344. if ((!i->nodeA_) || (!i->nodeB_))
  345. continue;
  346. contacts.Clear();
  347. for (unsigned j = 0; j < i->contacts_.size(); ++j)
  348. {
  349. contacts.WriteVector3(i->contacts_[j].position_);
  350. contacts.WriteVector3(-i->contacts_[j].normal_);
  351. contacts.WriteFloat(i->contacts_[j].depth_);
  352. contacts.WriteFloat(i->contacts_[j].velocity_);
  353. }
  354. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeB_;
  355. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeA_;
  356. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeA_;
  357. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  358. SendEvent(i->nodeB_, E_NODECOLLISION, nodeCollisionData);
  359. }
  360. collisionInfos_.clear();
  361. }
  362. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  363. {
  364. PROFILE(PhysicsDrawDebug);
  365. DebugRenderer* debug = GetComponent<DebugRenderer>();
  366. if (!debug)
  367. return;
  368. // Get all geometries, also those that have no rigid bodies
  369. std::vector<Node*> nodes;
  370. std::vector<CollisionShape*> shapes;
  371. node_->GetChildrenWithComponent<CollisionShape>(nodes, true);
  372. for (std::vector<Node*>::iterator i = nodes.begin(); i != nodes.end(); ++i)
  373. {
  374. (*i)->GetComponents<CollisionShape>(shapes);
  375. for (std::vector<CollisionShape*>::iterator j = shapes.begin(); j != shapes.end(); ++j)
  376. (*j)->DrawDebugGeometry(debug, depthTest);
  377. }
  378. }
  379. void PhysicsWorld::CleanupGeometryCache()
  380. {
  381. // Remove cached shapes whose only reference is the cache itself
  382. for (std::map<std::string, SharedPtr<TriangleMeshData> >::iterator i = triangleMeshCache_.begin();
  383. i != triangleMeshCache_.end();)
  384. {
  385. std::map<std::string, SharedPtr<TriangleMeshData> >::iterator current = i++;
  386. if (current->second.GetRefCount() == 1)
  387. triangleMeshCache_.erase(current);
  388. }
  389. for (std::map<std::string, SharedPtr<HeightfieldData> >::iterator i = heightfieldCache_.begin();
  390. i != heightfieldCache_.end();)
  391. {
  392. std::map<std::string, SharedPtr<HeightfieldData> >::iterator current = i++;
  393. if (current->second.GetRefCount() == 1)
  394. heightfieldCache_.erase(current);
  395. }
  396. }
  397. void PhysicsWorld::OnNodeSet(Node* node)
  398. {
  399. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  400. if (node)
  401. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  402. }
  403. void PhysicsWorld::NearCallback(void *userData, dGeomID geomA, dGeomID geomB)
  404. {
  405. dBodyID bodyA = dGeomGetBody(geomA);
  406. dBodyID bodyB = dGeomGetBody(geomB);
  407. // If both geometries are static, no collision
  408. if ((!bodyA) && (!bodyB))
  409. return;
  410. // If the geometries belong to the same body, no collision
  411. if (bodyA == bodyB)
  412. return;
  413. // If the bodies are already connected via other joints, no collision
  414. if ((bodyA) && (bodyB) && (dAreConnectedExcluding(bodyA, bodyB, dJointTypeContact)))
  415. return;
  416. // If both bodies are inactive, no collision
  417. RigidBody* rigidBodyA = bodyA ? static_cast<RigidBody*>(dBodyGetData(bodyA)) : 0;
  418. RigidBody* rigidBodyB = bodyB ? static_cast<RigidBody*>(dBodyGetData(bodyB)) : 0;
  419. if ((rigidBodyA) && (!rigidBodyA->IsActive()) && (rigidBodyB) && (!rigidBodyB->IsActive()))
  420. return;
  421. PhysicsWorld* world = static_cast<PhysicsWorld*>(userData);
  422. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  423. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  424. Node* nodeA = shapeA->GetNode();
  425. Node* nodeB = shapeB->GetNode();
  426. // Calculate average friction & bounce (physically incorrect)
  427. float friction = (shapeA->GetFriction() + shapeB->GetFriction()) * 0.5f;
  428. float bounce = (shapeA->GetBounce() + shapeB->GetBounce()) * 0.5f;
  429. std::vector<dContact>& contacts = *(static_cast<std::vector<dContact>*>(world->contacts_));
  430. for (unsigned i = 0; i < world->maxContacts_; ++i)
  431. {
  432. contacts[i].surface.mode = dContactApprox1;
  433. contacts[i].surface.mu = friction;
  434. if (bounce > 0.0f)
  435. {
  436. contacts[i].surface.mode |= dContactBounce;
  437. contacts[i].surface.bounce = bounce;
  438. contacts[i].surface.bounce_vel = world->bounceThreshold_;
  439. }
  440. }
  441. unsigned numContacts = dCollide(geomA, geomB, world->maxContacts_, &contacts[0].geom, sizeof(dContact));
  442. if (!numContacts)
  443. return;
  444. std::pair<RigidBody*, RigidBody*> bodyPair;
  445. if (rigidBodyA < rigidBodyB)
  446. bodyPair = std::make_pair(rigidBodyA, rigidBodyB);
  447. else
  448. bodyPair = std::make_pair(rigidBodyB, rigidBodyA);
  449. PhysicsCollisionInfo collisionInfo;
  450. collisionInfo.nodeA_ = nodeA;
  451. collisionInfo.nodeB_ = nodeB;
  452. collisionInfo.shapeA_ = shapeA;
  453. collisionInfo.shapeB_ = shapeB;
  454. collisionInfo.newCollision_ = world->previousCollisions_.find(bodyPair) == world->previousCollisions_.end();
  455. collisionInfo.contacts_.clear();
  456. world->currentCollisions_.insert(bodyPair);
  457. for (unsigned i = 0; i < numContacts; ++i)
  458. {
  459. // Calculate isotropic friction direction from relative tangent velocity between bodies
  460. // Adapted from http://www.ode.org/old_list_archives/2005-May/015836.html
  461. dVector3 velA;
  462. if (bodyA)
  463. dBodyGetPointVel(bodyA, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velA);
  464. else
  465. velA[0] = velA[1] = velA[2] = 0.0f;
  466. if (bodyB)
  467. {
  468. dVector3 velB;
  469. dBodyGetPointVel(bodyB, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velB);
  470. velA[0] -= velB[0];
  471. velA[1] -= velB[1];
  472. velA[2] -= velB[2];
  473. }
  474. // Normalize & only use our Calculated friction if it has enough precision
  475. float length = sqrtf(velA[0] * velA[0] + velA[1] * velA[1] + velA[2] * velA[2]);
  476. if (length > M_EPSILON)
  477. {
  478. float invLen = 1.0f / length;
  479. velA[0] *= invLen;
  480. velA[1] *= invLen;
  481. velA[2] *= invLen;
  482. // Make sure friction is also perpendicular to normal
  483. dCROSS(contacts[i].fdir1, =, velA, contacts[i].geom.normal);
  484. contacts[i].surface.mode |= dContactFDir1;
  485. }
  486. // Create contact joint
  487. dJointID contact = dJointCreateContact(world->physicsWorld_, world->contactJoints_, &contacts[i]);
  488. dJointAttach(contact, bodyA, bodyB);
  489. // Store contact info
  490. PhysicsContactInfo contactInfo;
  491. contactInfo.position_ = Vector3(contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2]);
  492. contactInfo.normal_ = Vector3(contacts[i].geom.normal[0], contacts[i].geom.normal[1], contacts[i].geom.normal[2]);
  493. contactInfo.depth_ = contacts[i].geom.depth;
  494. contactInfo.velocity_ = length;
  495. collisionInfo.contacts_.push_back(contactInfo);
  496. }
  497. // Store collision info to be sent later
  498. world->collisionInfos_.push_back(collisionInfo);
  499. }
  500. void PhysicsWorld::RaycastCallback(void *userData, dGeomID geomA, dGeomID geomB)
  501. {
  502. dContact contact;
  503. unsigned numContacts = dCollide(geomA, geomB, 1, &contact.geom, sizeof(dContact));
  504. if (numContacts > 0)
  505. {
  506. std::vector<PhysicsRaycastResult>* result = static_cast<std::vector<PhysicsRaycastResult>*>(userData);
  507. PhysicsRaycastResult newResult;
  508. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  509. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  510. // Check which of the geometries is the raycast ray
  511. if (shapeA)
  512. newResult.node_ = shapeA->GetNode();
  513. else
  514. newResult.node_ = shapeB->GetNode();
  515. newResult.distance_ = contact.geom.depth;
  516. newResult.position_ = Vector3(contact.geom.pos[0], contact.geom.pos[1], contact.geom.pos[2]);
  517. newResult.normal_ = Vector3(contact.geom.normal[0], contact.geom.normal[1], contact.geom.normal[2]);
  518. result->push_back(newResult);
  519. }
  520. }
  521. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  522. {
  523. using namespace SceneSubsystemUpdate;
  524. Update(eventData[P_TIMESTEP].GetFloat());
  525. }
  526. void RegisterPhysicsLibrary(Context* context)
  527. {
  528. CollisionShape::RegisterObject(context);
  529. Joint::RegisterObject(context);
  530. RigidBody::RegisterObject(context);
  531. PhysicsWorld::RegisterObject(context);
  532. }