View.cpp 86 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "OctreeQuery.h"
  34. #include "Renderer.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderVariation.h"
  38. #include "Technique.h"
  39. #include "Texture2D.h"
  40. #include "TextureCube.h"
  41. #include "VertexBuffer.h"
  42. #include "View.h"
  43. #include "Zone.h"
  44. #include "DebugNew.h"
  45. static const Vector3 directions[] =
  46. {
  47. Vector3::RIGHT,
  48. Vector3::LEFT,
  49. Vector3::UP,
  50. Vector3::DOWN,
  51. Vector3::FORWARD,
  52. Vector3::BACK,
  53. };
  54. OBJECTTYPESTATIC(View);
  55. View::View(Context* context) :
  56. Object(context),
  57. graphics_(GetSubsystem<Graphics>()),
  58. renderer_(GetSubsystem<Renderer>()),
  59. octree_(0),
  60. camera_(0),
  61. zone_(0),
  62. renderTarget_(0),
  63. depthStencil_(0)
  64. {
  65. frame_.camera_ = 0;
  66. }
  67. View::~View()
  68. {
  69. }
  70. bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
  71. {
  72. if (!viewport.scene_ || !viewport.camera_)
  73. return false;
  74. // If scene is loading asynchronously, it is incomplete and should not be rendered
  75. if (viewport.scene_->IsAsyncLoading())
  76. return false;
  77. Octree* octree = viewport.scene_->GetComponent<Octree>();
  78. if (!octree)
  79. return false;
  80. mode_ = graphics_->GetRenderMode();
  81. // In deferred mode, check for the render texture being too large
  82. if (mode_ != RENDER_FORWARD && renderTarget)
  83. {
  84. if (renderTarget->GetWidth() > graphics_->GetWidth() || renderTarget->GetHeight() > graphics_->GetHeight())
  85. {
  86. // Display message only once per rendertarget, do not spam each frame
  87. if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
  88. {
  89. gBufferErrorDisplayed_.Insert(renderTarget);
  90. LOGERROR("Render texture is larger than the G-buffer, can not render");
  91. }
  92. return false;
  93. }
  94. }
  95. octree_ = octree;
  96. camera_ = viewport.camera_;
  97. renderTarget_ = renderTarget;
  98. if (!renderTarget)
  99. depthStencil_ = 0;
  100. else
  101. {
  102. // In Direct3D9 deferred rendering, always use the system depth stencil for the whole time
  103. // to ensure it is as large as the G-buffer
  104. #ifdef USE_OPENGL
  105. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  106. #else
  107. if (mode_ == RENDER_FORWARD)
  108. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  109. else
  110. depthStencil_ = 0;
  111. #endif
  112. }
  113. zone_ = renderer_->GetDefaultZone();
  114. // Validate the rect and calculate size. If zero rect, use whole render target size
  115. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  116. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  117. if (viewport.rect_ != IntRect::ZERO)
  118. {
  119. screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
  120. screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
  121. screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
  122. screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
  123. }
  124. else
  125. screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
  126. width_ = screenRect_.right_ - screenRect_.left_;
  127. height_ = screenRect_.bottom_ - screenRect_.top_;
  128. // Set possible quality overrides from the camera
  129. drawShadows_ = renderer_->GetDrawShadows();
  130. materialQuality_ = renderer_->GetMaterialQuality();
  131. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  132. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  133. if (viewOverrideFlags & VOF_LOW_MATERIAL_QUALITY)
  134. materialQuality_ = QUALITY_LOW;
  135. if (viewOverrideFlags & VOF_DISABLE_SHADOWS)
  136. drawShadows_ = false;
  137. if (viewOverrideFlags & VOF_DISABLE_OCCLUSION)
  138. maxOccluderTriangles_ = 0;
  139. return true;
  140. }
  141. void View::Update(const FrameInfo& frame)
  142. {
  143. if (!camera_ || !octree_)
  144. return;
  145. frame_.camera_ = camera_;
  146. frame_.timeStep_ = frame.timeStep_;
  147. frame_.frameNumber_ = frame.frameNumber_;
  148. frame_.viewSize_ = IntVector2(width_, height_);
  149. // Clear old light scissor cache, geometry, light, occluder & batch lists
  150. lightScissorCache_.Clear();
  151. geometries_.Clear();
  152. geometryDepthBounds_.Clear();
  153. lights_.Clear();
  154. occluders_.Clear();
  155. shadowOccluders_.Clear();
  156. gBufferQueue_.Clear();
  157. baseQueue_.Clear();
  158. extraQueue_.Clear();
  159. transparentQueue_.Clear();
  160. noShadowLightQueue_.Clear();
  161. lightQueues_.Clear();
  162. // Set automatic aspect ratio if required
  163. if (camera_->GetAutoAspectRatio())
  164. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  165. // Reset projection jitter if was used last frame
  166. camera_->SetProjectionOffset(Vector2::ZERO);
  167. // Reset shadow map use count; they can be reused between views as each is rendered completely at a time
  168. renderer_->ResetShadowMapUseCount();
  169. GetDrawables();
  170. GetBatches();
  171. }
  172. void View::Render()
  173. {
  174. if (!octree_ || !camera_)
  175. return;
  176. // Forget parameter sources from the previous view
  177. graphics_->ClearParameterSources();
  178. // If stream offset is supported, write all instance transforms to a single large buffer
  179. // Else we must lock the instance buffer for each batch group
  180. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  181. PrepareInstancingBuffer();
  182. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  183. // again to ensure correct projection will be used
  184. if (camera_->GetAutoAspectRatio())
  185. camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_));
  186. // Set the "view texture" to ensure the rendertarget will not be bound as a texture during rendering
  187. if (renderTarget_)
  188. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  189. else
  190. graphics_->SetViewTexture(0);
  191. graphics_->SetFillMode(FILL_SOLID);
  192. // Calculate view-global shader parameters
  193. CalculateShaderParameters();
  194. // If not reusing shadowmaps, render all of them first
  195. if (!renderer_->reuseShadowMaps_)
  196. {
  197. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  198. {
  199. LightBatchQueue& queue = lightQueues_[i];
  200. if (queue.light_->GetShadowMap())
  201. RenderShadowMap(queue);
  202. }
  203. }
  204. if (mode_ == RENDER_FORWARD)
  205. RenderBatchesForward();
  206. else
  207. RenderBatchesDeferred();
  208. graphics_->SetViewTexture(0);
  209. // If this is a main view, draw the associated debug geometry now
  210. if (!renderTarget_)
  211. {
  212. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  213. if (scene)
  214. {
  215. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  216. if (debug)
  217. {
  218. debug->SetView(camera_);
  219. debug->Render();
  220. }
  221. }
  222. }
  223. // "Forget" the camera, octree and zone after rendering
  224. camera_ = 0;
  225. octree_ = 0;
  226. zone_ = 0;
  227. frame_.camera_ = 0;
  228. }
  229. void View::GetDrawables()
  230. {
  231. PROFILE(GetDrawables);
  232. Vector3 cameraPos = camera_->GetWorldPosition();
  233. // Get zones & find the zone camera is in
  234. PODVector<Zone*> zones;
  235. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>& >(zones), cameraPos, DRAWABLE_ZONE);
  236. octree_->GetDrawables(query);
  237. int highestZonePriority = M_MIN_INT;
  238. for (unsigned i = 0; i < zones.Size(); ++i)
  239. {
  240. Zone* zone = zones[i];
  241. if (zone->IsInside(cameraPos) && zone->GetPriority() > highestZonePriority)
  242. {
  243. zone_ = zone;
  244. highestZonePriority = zone->GetPriority();
  245. }
  246. }
  247. // If occlusion in use, get & render the occluders, then build the depth buffer hierarchy
  248. bool useOcclusion = false;
  249. OcclusionBuffer* buffer = 0;
  250. if (maxOccluderTriangles_ > 0)
  251. {
  252. FrustumOctreeQuery query(occluders_, camera_->GetFrustum(), DRAWABLE_GEOMETRY, true, false);
  253. octree_->GetDrawables(query);
  254. UpdateOccluders(occluders_, camera_);
  255. if (occluders_.Size())
  256. {
  257. buffer = renderer_->GetOrCreateOcclusionBuffer(camera_, maxOccluderTriangles_);
  258. DrawOccluders(buffer, occluders_);
  259. buffer->BuildDepthHierarchy();
  260. useOcclusion = true;
  261. }
  262. }
  263. if (!useOcclusion)
  264. {
  265. // Get geometries & lights without occlusion
  266. FrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  267. octree_->GetDrawables(query);
  268. }
  269. else
  270. {
  271. // Get geometries & lights using occlusion
  272. OccludedFrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), buffer, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  273. octree_->GetDrawables(query);
  274. }
  275. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  276. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  277. sceneBox_.defined_ = false;
  278. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  279. sceneViewBox_.defined_ = false;
  280. Matrix3x4 view(camera_->GetInverseWorldTransform());
  281. unsigned cameraViewMask = camera_->GetViewMask();
  282. for (unsigned i = 0; i < tempDrawables_.Size(); ++i)
  283. {
  284. Drawable* drawable = tempDrawables_[i];
  285. // Check view mask
  286. if (!(cameraViewMask & drawable->GetViewMask()))
  287. continue;
  288. drawable->UpdateDistance(frame_);
  289. // If draw distance non-zero, check it
  290. float maxDistance = drawable->GetDrawDistance();
  291. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  292. continue;
  293. unsigned flags = drawable->GetDrawableFlags();
  294. if (flags & DRAWABLE_GEOMETRY)
  295. {
  296. drawable->ClearBasePass();
  297. drawable->MarkInView(frame_);
  298. drawable->UpdateGeometry(frame_);
  299. // Expand the scene bounding boxes
  300. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  301. BoundingBox geoview_Box = geomBox.Transformed(view);
  302. sceneBox_.Merge(geomBox);
  303. sceneViewBox_.Merge(geoview_Box);
  304. // Store depth info to speed up split directional light queries
  305. GeometryDepthBounds bounds;
  306. bounds.min_ = geoview_Box.min_.z_;
  307. bounds.max_ = geoview_Box.max_.z_;
  308. geometryDepthBounds_.Push(bounds);
  309. geometries_.Push(drawable);
  310. }
  311. else if (flags & DRAWABLE_LIGHT)
  312. {
  313. Light* light = static_cast<Light*>(drawable);
  314. // Skip if light is culled by the zone
  315. if (!(light->GetViewMask() & zone_->GetViewMask()))
  316. continue;
  317. light->MarkInView(frame_);
  318. lights_.Push(light);
  319. }
  320. }
  321. // Sort the lights to brightest/closest first
  322. for (unsigned i = 0; i < lights_.Size(); ++i)
  323. lights_[i]->SetIntensitySortValue(cameraPos);
  324. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  325. }
  326. void View::GetBatches()
  327. {
  328. HashSet<LitTransparencyCheck> litTransparencies;
  329. HashSet<Drawable*> maxLightsDrawables;
  330. Map<Light*, unsigned> lightQueueIndex;
  331. // Go through lights
  332. {
  333. PROFILE_MULTIPLE(GetLightBatches, lights_.Size());
  334. unsigned lightQueueCount = 0;
  335. for (unsigned i = 0; i < lights_.Size(); ++i)
  336. {
  337. Light* light = lights_[i];
  338. unsigned splits = ProcessLight(light);
  339. if (!splits)
  340. continue;
  341. // Prepare lit object + shadow caster queues for each split
  342. if (lightQueues_.Size() < lightQueueCount + splits)
  343. lightQueues_.Resize(lightQueueCount + splits);
  344. unsigned prevLightQueueCount = lightQueueCount;
  345. for (unsigned j = 0; j < splits; ++j)
  346. {
  347. Light* splitLight = splitLights_[j];
  348. LightBatchQueue& lightQueue = lightQueues_[lightQueueCount];
  349. lightQueue.light_ = splitLight;
  350. lightQueue.shadowBatches_.Clear();
  351. lightQueue.litBatches_.Clear();
  352. lightQueue.volumeBatches_.Clear();
  353. lightQueue.lastSplit_ = false;
  354. // Loop through shadow casters
  355. Camera* shadowCamera = splitLight->GetShadowCamera();
  356. for (unsigned k = 0; k < shadowCasters_[j].Size(); ++k)
  357. {
  358. Drawable* drawable = shadowCasters_[j][k];
  359. unsigned numBatches = drawable->GetNumBatches();
  360. for (unsigned l = 0; l < numBatches; ++l)
  361. {
  362. Batch shadowBatch;
  363. drawable->GetBatch(frame_, l, shadowBatch);
  364. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  365. if (!shadowBatch.geometry_ || !tech)
  366. continue;
  367. Pass* pass = tech->GetPass(PASS_SHADOW);
  368. // Skip if material has no shadow pass
  369. if (!pass)
  370. continue;
  371. // Fill the rest of the batch
  372. shadowBatch.camera_ = shadowCamera;
  373. shadowBatch.distance_ = shadowCamera->GetDistance(drawable->GetWorldPosition());
  374. shadowBatch.light_ = splitLight;
  375. shadowBatch.hasPriority_ = !pass->GetAlphaTest() && !pass->GetAlphaMask();
  376. renderer_->SetBatchShaders(shadowBatch, tech, pass);
  377. lightQueue.shadowBatches_.AddBatch(shadowBatch);
  378. }
  379. }
  380. // Loop through lit geometries
  381. if (litGeometries_[j].Size())
  382. {
  383. bool storeLightQueue = true;
  384. for (unsigned k = 0; k < litGeometries_[j].Size(); ++k)
  385. {
  386. Drawable* drawable = litGeometries_[j][k];
  387. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  388. if (!drawable->GetMaxLights())
  389. GetLitBatches(drawable, light, splitLight, &lightQueue, litTransparencies);
  390. else
  391. {
  392. drawable->AddLight(splitLight);
  393. maxLightsDrawables.Insert(drawable);
  394. }
  395. }
  396. // Store the light queue, and light volume batch in deferred mode
  397. if (mode_ != RENDER_FORWARD)
  398. {
  399. Batch volumeBatch;
  400. volumeBatch.geometry_ = renderer_->GetLightGeometry(splitLight);
  401. volumeBatch.worldTransform_ = &splitLight->GetVolumeTransform(*camera_);
  402. volumeBatch.overrideView_ = splitLight->GetLightType() == LIGHT_DIRECTIONAL;
  403. volumeBatch.camera_ = camera_;
  404. volumeBatch.light_ = splitLight;
  405. volumeBatch.distance_ = splitLight->GetDistance();
  406. renderer_->SetLightVolumeShaders(volumeBatch);
  407. // If light is a split point light, it must be treated as shadowed in any case for correct stencil clearing
  408. if (splitLight->GetShadowMap() || splitLight->GetLightType() == LIGHT_SPLITPOINT)
  409. lightQueue.volumeBatches_.Push(volumeBatch);
  410. else
  411. {
  412. storeLightQueue = false;
  413. noShadowLightQueue_.AddBatch(volumeBatch, true);
  414. }
  415. }
  416. if (storeLightQueue)
  417. {
  418. lightQueueIndex[splitLight] = lightQueueCount;
  419. ++lightQueueCount;
  420. }
  421. }
  422. }
  423. // Mark the last split
  424. if (lightQueueCount != prevLightQueueCount)
  425. lightQueues_[lightQueueCount - 1].lastSplit_ = true;
  426. }
  427. // Resize the light queue vector now that final size is known
  428. lightQueues_.Resize(lightQueueCount);
  429. }
  430. // Process drawables with limited light count
  431. if (maxLightsDrawables.Size())
  432. {
  433. PROFILE(GetMaxLightsBatches);
  434. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables.Begin(); i != maxLightsDrawables.End(); ++i)
  435. {
  436. Drawable* drawable = *i;
  437. drawable->LimitLights();
  438. const PODVector<Light*>& lights = drawable->GetLights();
  439. for (unsigned i = 0; i < lights.Size(); ++i)
  440. {
  441. Light* SplitLight = lights[i];
  442. Light* light = SplitLight->GetOriginalLight();
  443. if (!light)
  444. light = SplitLight;
  445. // Find the correct light queue again
  446. LightBatchQueue* queue = 0;
  447. Map<Light*, unsigned>::Iterator j = lightQueueIndex.Find(SplitLight);
  448. if (j != lightQueueIndex.End())
  449. queue = &lightQueues_[j->second_];
  450. GetLitBatches(drawable, light, SplitLight, queue, litTransparencies);
  451. }
  452. }
  453. }
  454. // Go through geometries for base pass batches
  455. {
  456. PROFILE(GetBaseBatches);
  457. for (unsigned i = 0; i < geometries_.Size(); ++i)
  458. {
  459. Drawable* drawable = geometries_[i];
  460. unsigned numBatches = drawable->GetNumBatches();
  461. for (unsigned j = 0; j < numBatches; ++j)
  462. {
  463. Batch baseBatch;
  464. drawable->GetBatch(frame_, j, baseBatch);
  465. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  466. if (!baseBatch.geometry_ || !tech)
  467. continue;
  468. // Check here if the material technique refers to a render target texture with camera(s) attached
  469. // Only check this for the main view (null rendertarget)
  470. if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
  471. CheckMaterialForAuxView(baseBatch.material_);
  472. // If object already has a lit base pass, can skip the unlit base pass
  473. if (drawable->HasBasePass(j))
  474. continue;
  475. // Fill the rest of the batch
  476. baseBatch.camera_ = camera_;
  477. baseBatch.distance_ = drawable->GetDistance();
  478. Pass* pass = 0;
  479. // In deferred mode, check for a G-buffer batch first
  480. if (mode_ != RENDER_FORWARD)
  481. {
  482. pass = tech->GetPass(PASS_GBUFFER);
  483. if (pass)
  484. {
  485. renderer_->SetBatchShaders(baseBatch, tech, pass);
  486. baseBatch.hasPriority_ = !pass->GetAlphaTest() && !pass->GetAlphaMask();
  487. gBufferQueue_.AddBatch(baseBatch);
  488. // Check also for an additional pass (possibly for emissive)
  489. pass = tech->GetPass(PASS_EXTRA);
  490. if (pass)
  491. {
  492. renderer_->SetBatchShaders(baseBatch, tech, pass);
  493. baseQueue_.AddBatch(baseBatch);
  494. }
  495. continue;
  496. }
  497. }
  498. // Then check for forward rendering base pass
  499. pass = tech->GetPass(PASS_BASE);
  500. if (pass)
  501. {
  502. renderer_->SetBatchShaders(baseBatch, tech, pass);
  503. if (pass->GetBlendMode() == BLEND_REPLACE)
  504. {
  505. baseBatch.hasPriority_ = !pass->GetAlphaTest() && !pass->GetAlphaMask();
  506. baseQueue_.AddBatch(baseBatch);
  507. }
  508. else
  509. {
  510. baseBatch.hasPriority_ = true;
  511. transparentQueue_.AddBatch(baseBatch, true);
  512. }
  513. continue;
  514. }
  515. else
  516. {
  517. // If no base pass, finally check for extra / custom pass
  518. pass = tech->GetPass(PASS_EXTRA);
  519. if (pass)
  520. {
  521. baseBatch.hasPriority_ = false;
  522. renderer_->SetBatchShaders(baseBatch, tech, pass);
  523. extraQueue_.AddBatch(baseBatch);
  524. }
  525. }
  526. }
  527. }
  528. }
  529. // All batches have been collected. Sort them now
  530. SortBatches();
  531. }
  532. void View::GetLitBatches(Drawable* drawable, Light* light, Light* SplitLight, LightBatchQueue* lightQueue,
  533. HashSet<LitTransparencyCheck>& litTransparencies)
  534. {
  535. bool splitPointLight = SplitLight->GetLightType() == LIGHT_SPLITPOINT;
  536. // Whether to allow shadows for transparencies, or for forward lit objects in deferred mode
  537. bool allowShadows = !renderer_->reuseShadowMaps_ && !splitPointLight;
  538. unsigned numBatches = drawable->GetNumBatches();
  539. for (unsigned i = 0; i < numBatches; ++i)
  540. {
  541. Batch litBatch;
  542. drawable->GetBatch(frame_, i, litBatch);
  543. Technique* tech = GetTechnique(drawable, litBatch.material_);
  544. if (!litBatch.geometry_ || !tech)
  545. continue;
  546. // If material uses opaque G-buffer rendering, skip
  547. if (mode_ != RENDER_FORWARD && tech->HasPass(PASS_GBUFFER))
  548. continue;
  549. Pass* pass = 0;
  550. bool priority = false;
  551. // For directional light, check for lit base pass
  552. if (SplitLight->GetLightType() == LIGHT_DIRECTIONAL)
  553. {
  554. if (!drawable->HasBasePass(i))
  555. {
  556. pass = tech->GetPass(PASS_LITBASE);
  557. if (pass)
  558. {
  559. priority = true;
  560. drawable->SetBasePass(i);
  561. }
  562. }
  563. }
  564. // If no first light pass, get ordinary light pass
  565. if (!pass)
  566. pass = tech->GetPass(PASS_LIGHT);
  567. // Skip if material does not receive light at all
  568. if (!pass)
  569. continue;
  570. // Fill the rest of the batch
  571. litBatch.camera_ = camera_;
  572. litBatch.distance_ = drawable->GetDistance();
  573. litBatch.light_ = SplitLight;
  574. litBatch.hasPriority_ = priority;
  575. // Check from the ambient pass whether the object is opaque
  576. Pass* ambientPass = tech->GetPass(PASS_BASE);
  577. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  578. {
  579. if (mode_ == RENDER_FORWARD)
  580. {
  581. if (lightQueue)
  582. {
  583. renderer_->SetBatchShaders(litBatch, tech, pass);
  584. lightQueue->litBatches_.AddBatch(litBatch);
  585. }
  586. }
  587. else
  588. {
  589. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  590. baseQueue_.AddBatch(litBatch);
  591. }
  592. }
  593. else
  594. {
  595. if (splitPointLight)
  596. {
  597. // Check if already lit
  598. LitTransparencyCheck check(light, drawable, i);
  599. if (litTransparencies.Find(check) != litTransparencies.End())
  600. continue;
  601. // Use the original light instead of the split one, to choose correct scissor
  602. litBatch.light_ = light;
  603. litTransparencies.Insert(check);
  604. }
  605. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  606. transparentQueue_.AddBatch(litBatch, true);
  607. }
  608. }
  609. }
  610. void View::RenderBatchesForward()
  611. {
  612. {
  613. // Render opaque objects' base passes
  614. PROFILE(RenderBasePass);
  615. graphics_->SetColorWrite(true);
  616. graphics_->SetStencilTest(false);
  617. graphics_->SetRenderTarget(0, renderTarget_);
  618. graphics_->SetDepthStencil(depthStencil_);
  619. graphics_->SetViewport(screenRect_);
  620. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, zone_->GetFogColor());
  621. RenderBatchQueue(baseQueue_);
  622. }
  623. {
  624. // Render shadow maps + opaque objects' shadowed additive lighting
  625. PROFILE(RenderLights);
  626. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  627. {
  628. LightBatchQueue& queue = lightQueues_[i];
  629. // If reusing shadowmaps, render each of them before the lit batches
  630. if (renderer_->reuseShadowMaps_ && queue.light_->GetShadowMap())
  631. RenderShadowMap(queue);
  632. graphics_->SetRenderTarget(0, renderTarget_);
  633. graphics_->SetDepthStencil(depthStencil_);
  634. graphics_->SetViewport(screenRect_);
  635. RenderForwardLightBatchQueue(queue.litBatches_, queue.light_);
  636. // Clear the stencil buffer after the last split
  637. if (queue.lastSplit_)
  638. {
  639. LightType type = queue.light_->GetLightType();
  640. if (type == LIGHT_SPLITPOINT || type == LIGHT_DIRECTIONAL)
  641. DrawSplitLightToStencil(*camera_, queue.light_, true);
  642. }
  643. }
  644. }
  645. {
  646. // Render extra / custom passes
  647. PROFILE(RenderExtraPass);
  648. graphics_->SetRenderTarget(0, renderTarget_);
  649. graphics_->SetDepthStencil(depthStencil_);
  650. graphics_->SetViewport(screenRect_);
  651. RenderBatchQueue(extraQueue_);
  652. }
  653. {
  654. // Render transparent objects last (both base passes & additive lighting)
  655. PROFILE(RenderTransparent);
  656. RenderBatchQueue(transparentQueue_, true);
  657. }
  658. }
  659. void View::RenderBatchesDeferred()
  660. {
  661. Texture2D* diffBuffer = graphics_->GetDiffBuffer();
  662. Texture2D* normalBuffer = graphics_->GetNormalBuffer();
  663. Texture2D* depthBuffer = graphics_->GetDepthBuffer();
  664. // Check for deferred antialiasing (edge filter) in deferred mode. Only use it on the main view (null rendertarget)
  665. bool edgeFilter = !renderTarget_ && graphics_->GetMultiSample() > 1;
  666. RenderSurface* renderBuffer = edgeFilter ? graphics_->GetScreenBuffer()->GetRenderSurface() : renderTarget_;
  667. // Calculate shader parameters needed only in deferred rendering
  668. Vector3 nearVector, farVector;
  669. camera_->GetFrustumSize(nearVector, farVector);
  670. Vector4 viewportParams(farVector.x_, farVector.y_, farVector.z_, 0.0f);
  671. float gBufferWidth = (float)diffBuffer->GetWidth();
  672. float gBufferHeight = (float)diffBuffer->GetHeight();
  673. float widthRange = 0.5f * width_ / gBufferWidth;
  674. float heightRange = 0.5f * height_ / gBufferHeight;
  675. #ifdef USE_OPENGL
  676. Vector4 bufferUVOffset(((float)screenRect_.left_) / gBufferWidth + widthRange,
  677. ((float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  678. // Hardware depth is non-linear in perspective views, so calculate the depth reconstruction parameters
  679. float farClip = camera_->GetFarClip();
  680. float nearClip = camera_->GetNearClip();
  681. Vector4 depthReconstruct = Vector4::ZERO;
  682. depthReconstruct.x_ = farClip / (farClip - nearClip);
  683. depthReconstruct.y_ = -nearClip / (farClip - nearClip);
  684. shaderParameters_[PSP_DEPTHRECONSTRUCT] = depthReconstruct;
  685. #else
  686. Vector4 bufferUVOffset((0.5f + (float)screenRect_.left_) / gBufferWidth + widthRange,
  687. (0.5f + (float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  688. #endif
  689. Vector4 viewportSize((float)screenRect_.left_ / gBufferWidth, (float)screenRect_.top_ / gBufferHeight,
  690. (float)screenRect_.right_ / gBufferWidth, (float)screenRect_.bottom_ / gBufferHeight);
  691. shaderParameters_[VSP_FRUSTUMSIZE] = viewportParams;
  692. shaderParameters_[VSP_GBUFFEROFFSETS] = bufferUVOffset;
  693. {
  694. // Clear and render the G-buffer
  695. PROFILE(RenderGBuffer);
  696. graphics_->SetColorWrite(true);
  697. graphics_->SetScissorTest(false);
  698. graphics_->SetStencilTest(false);
  699. #ifdef USE_OPENGL
  700. // On OpenGL, clear the diffuse and depth buffers normally
  701. graphics_->SetRenderTarget(0, diffBuffer);
  702. graphics_->SetDepthStencil(depthBuffer);
  703. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL);
  704. graphics_->SetRenderTarget(1, normalBuffer);
  705. #else
  706. // On Direct3D9, clear only depth and stencil at first (fillrate optimization)
  707. graphics_->SetRenderTarget(0, diffBuffer);
  708. graphics_->SetRenderTarget(1, normalBuffer);
  709. graphics_->SetRenderTarget(2, depthBuffer);
  710. graphics_->SetDepthStencil(depthStencil_);
  711. graphics_->SetViewport(screenRect_);
  712. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  713. #endif
  714. RenderBatchQueue(gBufferQueue_);
  715. graphics_->SetAlphaTest(false);
  716. graphics_->SetBlendMode(BLEND_REPLACE);
  717. #ifndef USE_OPENGL
  718. // On Direct3D9, clear now the parts of G-Buffer that were not rendered into
  719. graphics_->SetDepthTest(CMP_LESSEQUAL);
  720. graphics_->SetDepthWrite(false);
  721. graphics_->ResetRenderTarget(2);
  722. graphics_->SetRenderTarget(1, depthBuffer);
  723. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("GBufferFill"),
  724. renderer_->GetPixelShader("GBufferFill"), false, shaderParameters_);
  725. #endif
  726. }
  727. {
  728. PROFILE(RenderAmbientQuad);
  729. // Render ambient color & fog. On OpenGL the depth buffer will be copied now
  730. graphics_->SetDepthTest(CMP_ALWAYS);
  731. graphics_->SetRenderTarget(0, renderBuffer);
  732. graphics_->ResetRenderTarget(1);
  733. #ifdef USE_OPENGL
  734. graphics_->SetDepthWrite(true);
  735. #else
  736. graphics_->ResetRenderTarget(2);
  737. #endif
  738. graphics_->SetDepthStencil(depthStencil_);
  739. graphics_->SetViewport(screenRect_);
  740. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  741. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  742. String pixelShaderName = "Ambient";
  743. #ifdef USE_OPENGL
  744. if (camera_->IsOrthographic())
  745. pixelShaderName += "Ortho";
  746. // On OpenGL, set up a stencil operation to reset the stencil during ambient quad rendering
  747. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_ZERO, OP_KEEP, OP_KEEP);
  748. #endif
  749. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("Ambient"),
  750. renderer_->GetPixelShader("Ambient"), false, shaderParameters_);
  751. #ifdef USE_OPENGL
  752. graphics_->SetStencilTest(false);
  753. #endif
  754. }
  755. {
  756. // Render lights
  757. PROFILE(RenderLights);
  758. // Shadowed lights
  759. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  760. {
  761. LightBatchQueue& queue = lightQueues_[i];
  762. // If reusing shadowmaps, render each of them before the lit batches
  763. if (renderer_->reuseShadowMaps_ && queue.light_->GetShadowMap())
  764. RenderShadowMap(queue);
  765. // Light volume batches are not sorted as there should be only one of them
  766. if (queue.volumeBatches_.Size())
  767. {
  768. graphics_->SetRenderTarget(0, renderBuffer);
  769. graphics_->SetDepthStencil(depthStencil_);
  770. graphics_->SetViewport(screenRect_);
  771. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  772. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  773. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  774. for (unsigned j = 0; j < queue.volumeBatches_.Size(); ++j)
  775. {
  776. renderer_->SetupLightBatch(queue.volumeBatches_[j]);
  777. queue.volumeBatches_[j].Draw(graphics_, shaderParameters_);
  778. }
  779. // If was the last split of a split point light, clear the stencil by rendering the point light again
  780. if (queue.lastSplit_ && queue.light_->GetLightType() == LIGHT_SPLITPOINT)
  781. DrawSplitLightToStencil(*camera_, queue.light_, true);
  782. }
  783. }
  784. // Non-shadowed lights
  785. if (noShadowLightQueue_.sortedBatches_.Size())
  786. {
  787. graphics_->SetRenderTarget(0, renderBuffer);
  788. graphics_->SetDepthStencil(depthStencil_);
  789. graphics_->SetViewport(screenRect_);
  790. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  791. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  792. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  793. for (unsigned i = 0; i < noShadowLightQueue_.sortedBatches_.Size(); ++i)
  794. {
  795. renderer_->SetupLightBatch(*noShadowLightQueue_.sortedBatches_[i]);
  796. noShadowLightQueue_.sortedBatches_[i]->Draw(graphics_, shaderParameters_);
  797. }
  798. }
  799. }
  800. {
  801. // Render base passes
  802. PROFILE(RenderBasePass);
  803. graphics_->SetStencilTest(false);
  804. graphics_->SetTexture(TU_DIFFBUFFER, 0);
  805. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  806. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  807. graphics_->SetRenderTarget(0, renderBuffer);
  808. graphics_->SetDepthStencil(depthStencil_);
  809. graphics_->SetViewport(screenRect_);
  810. RenderBatchQueue(baseQueue_, true);
  811. }
  812. {
  813. // Render extra / custom passes
  814. PROFILE(RenderExtraPass);
  815. RenderBatchQueue(extraQueue_);
  816. }
  817. {
  818. // Render transparent objects last (both ambient & additive lighting)
  819. PROFILE(RenderTransparent);
  820. RenderBatchQueue(transparentQueue_, true);
  821. }
  822. // Render deferred antialiasing now if enabled
  823. if (edgeFilter)
  824. {
  825. PROFILE(RenderEdgeFilter);
  826. const EdgeFilterParameters& parameters = renderer_->GetEdgeFilter();
  827. ShaderVariation* vs = renderer_->GetVertexShader("EdgeFilter");
  828. ShaderVariation* ps = renderer_->GetPixelShader("EdgeFilter");
  829. HashMap<ShaderParameter, Vector4> shaderParameters(shaderParameters_);
  830. shaderParameters[PSP_EDGEFILTERPARAMS] = Vector4(parameters.radius_, parameters.threshold_, parameters.strength_, 0.0f);
  831. shaderParameters[PSP_SAMPLEOFFSETS] = Vector4(1.0f / gBufferWidth, 1.0f / gBufferHeight, 0.0f, 0.0f);
  832. graphics_->SetAlphaTest(false);
  833. graphics_->SetBlendMode(BLEND_REPLACE);
  834. graphics_->SetDepthTest(CMP_ALWAYS),
  835. graphics_->SetStencilTest(false);
  836. graphics_->SetRenderTarget(0, renderTarget_);
  837. graphics_->SetDepthStencil(depthStencil_);
  838. graphics_->SetViewport(screenRect_);
  839. graphics_->SetTexture(TU_DIFFBUFFER, graphics_->GetScreenBuffer());
  840. renderer_->DrawFullScreenQuad(*camera_, vs, ps, false, shaderParameters);
  841. }
  842. }
  843. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  844. {
  845. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  846. float halfViewSize = camera->GetHalfViewSize();
  847. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  848. Vector3 cameraPos = camera->GetWorldPosition();
  849. unsigned cameraViewMask = camera->GetViewMask();
  850. for (unsigned i = 0; i < occluders.Size(); ++i)
  851. {
  852. Drawable* occluder = occluders[i];
  853. occluder->UpdateDistance(frame_);
  854. bool erase = false;
  855. // Check view mask
  856. if (!(cameraViewMask & occluder->GetViewMask()))
  857. erase = true;
  858. // Check occluder's draw distance (in main camera view)
  859. float maxDistance = occluder->GetDrawDistance();
  860. if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
  861. erase = true;
  862. // Check that occluder is big enough on the screen
  863. const BoundingBox& box = occluder->GetWorldBoundingBox();
  864. float diagonal = (box.max_ - box.min_).LengthFast();
  865. float compare;
  866. if (!camera->IsOrthographic())
  867. compare = diagonal * halfViewSize / occluder->GetDistance();
  868. else
  869. compare = diagonal * invOrthoSize;
  870. if (compare < occluderSizeThreshold_)
  871. erase = true;
  872. if (!erase)
  873. {
  874. unsigned totalTriangles = 0;
  875. unsigned batches = occluder->GetNumBatches();
  876. Batch tempBatch;
  877. for (unsigned j = 0; j < batches; ++j)
  878. {
  879. occluder->GetBatch(frame_, j, tempBatch);
  880. if (tempBatch.geometry_)
  881. totalTriangles += tempBatch.geometry_->GetIndexCount() / 3;
  882. }
  883. // Store amount of triangles divided by screen size as a sorting key
  884. // (best occluders are big and have few triangles)
  885. occluder->SetSortValue((float)totalTriangles / compare);
  886. }
  887. else
  888. {
  889. occluders.Erase(occluders.Begin() + i);
  890. --i;
  891. }
  892. }
  893. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  894. if (occluders.Size())
  895. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  896. }
  897. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  898. {
  899. for (unsigned i = 0; i < occluders.Size(); ++i)
  900. {
  901. Drawable* occluder = occluders[i];
  902. if (i > 0)
  903. {
  904. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  905. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  906. continue;
  907. }
  908. occluder->UpdateGeometry(frame_);
  909. // Check for running out of triangles
  910. if (!occluder->DrawOcclusion(buffer))
  911. return;
  912. }
  913. }
  914. unsigned View::ProcessLight(Light* light)
  915. {
  916. unsigned numLitGeometries = 0;
  917. unsigned numShadowCasters = 0;
  918. unsigned numSplits;
  919. // Check if light should be shadowed
  920. bool isShadowed = drawShadows_ && light->GetCastShadows();
  921. // If shadow distance non-zero, check it
  922. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  923. isShadowed = false;
  924. // If light has no ramp textures defined, set defaults
  925. if (light->GetLightType() != LIGHT_DIRECTIONAL && !light->GetRampTexture())
  926. light->SetRampTexture(renderer_->GetDefaultLightRamp());
  927. if (light->GetLightType() == LIGHT_SPOT && !light->GetShapeTexture())
  928. light->SetShapeTexture(renderer_->GetDefaultLightSpot());
  929. // Split the light if necessary
  930. if (isShadowed)
  931. numSplits = SplitLight(light);
  932. else
  933. {
  934. // No splitting, use the original light
  935. splitLights_[0] = light;
  936. numSplits = 1;
  937. }
  938. // For a shadowed directional light, get occluders once using the whole (non-split) light frustum
  939. bool useOcclusion = false;
  940. OcclusionBuffer* buffer = 0;
  941. if (maxOccluderTriangles_ > 0 && isShadowed && light->GetLightType() == LIGHT_DIRECTIONAL)
  942. {
  943. // This shadow camera is never used for actually querying shadow casters, just occluders
  944. Camera* shadowCamera = renderer_->CreateShadowCamera();
  945. light->SetShadowCamera(shadowCamera);
  946. SetupShadowCamera(light, true);
  947. // Get occluders, which must be shadow-casting themselves
  948. FrustumOctreeQuery query(shadowOccluders_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY, true, true);
  949. octree_->GetDrawables(query);
  950. UpdateOccluders(shadowOccluders_, shadowCamera);
  951. if (shadowOccluders_.Size())
  952. {
  953. // Shadow viewport is rectangular and consumes more CPU fillrate, so halve size
  954. buffer = renderer_->GetOrCreateOcclusionBuffer(shadowCamera, maxOccluderTriangles_, true);
  955. DrawOccluders(buffer, shadowOccluders_);
  956. buffer->BuildDepthHierarchy();
  957. useOcclusion = true;
  958. }
  959. }
  960. // Process each split for shadow camera update, lit geometries, and shadow casters
  961. for (unsigned i = 0; i < numSplits; ++i)
  962. {
  963. litGeometries_[i].Clear();
  964. shadowCasters_[i].Clear();
  965. }
  966. for (unsigned i = 0; i < numSplits; ++i)
  967. {
  968. Light* split = splitLights_[i];
  969. LightType type = split->GetLightType();
  970. bool isSplitShadowed = isShadowed && split->GetCastShadows();
  971. Camera* shadowCamera = 0;
  972. // If shadow casting, choose the shadow map & update shadow camera
  973. if (isSplitShadowed)
  974. {
  975. shadowCamera = renderer_->CreateShadowCamera();
  976. split->SetShadowMap(renderer_->GetShadowMap(splitLights_[i]->GetShadowResolution()));
  977. // Check if managed to get a shadow map. Otherwise must convert to non-shadowed
  978. if (split->GetShadowMap())
  979. {
  980. split->SetShadowCamera(shadowCamera);
  981. SetupShadowCamera(split);
  982. }
  983. else
  984. {
  985. isSplitShadowed = false;
  986. split->SetShadowCamera(0);
  987. }
  988. }
  989. else
  990. {
  991. split->SetShadowCamera(0);
  992. split->SetShadowMap(0);
  993. }
  994. BoundingBox geometryBox;
  995. BoundingBox shadowCasterBox;
  996. switch (type)
  997. {
  998. case LIGHT_DIRECTIONAL:
  999. // Loop through visible geometries and check if they belong to this split
  1000. {
  1001. float nearSplit = split->GetNearSplit() - split->GetNearFadeRange();
  1002. float farSplit = split->GetFarSplit();
  1003. // If split extends to the whole visible frustum, no depth check necessary
  1004. bool optimize = nearSplit <= camera_->GetNearClip() && farSplit >= camera_->GetFarClip();
  1005. // If whole visible scene is outside the split, can reject trivially
  1006. if (sceneViewBox_.min_.z_ > farSplit || sceneViewBox_.max_.z_ < nearSplit)
  1007. {
  1008. split->SetShadowMap(0);
  1009. continue;
  1010. }
  1011. bool generateBoxes = isSplitShadowed && split->GetShadowFocus().focus_;
  1012. Matrix3x4 lightView;
  1013. if (shadowCamera)
  1014. lightView = shadowCamera->GetInverseWorldTransform();
  1015. if (!optimize)
  1016. {
  1017. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1018. {
  1019. Drawable* drawable = geometries_[j];
  1020. const GeometryDepthBounds& bounds = geometryDepthBounds_[j];
  1021. // Check bounds and light mask
  1022. if (bounds.min_ <= farSplit && bounds.max_ >= nearSplit && drawable->GetLightMask() &
  1023. split->GetLightMask())
  1024. {
  1025. litGeometries_[i].Push(drawable);
  1026. if (generateBoxes)
  1027. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1028. }
  1029. }
  1030. }
  1031. else
  1032. {
  1033. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1034. {
  1035. Drawable* drawable = geometries_[j];
  1036. // Need to check light mask only
  1037. if (drawable->GetLightMask() & split->GetLightMask())
  1038. {
  1039. litGeometries_[i].Push(drawable);
  1040. if (generateBoxes)
  1041. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1042. }
  1043. }
  1044. }
  1045. }
  1046. // Then get shadow casters by shadow camera frustum query. Use occlusion because of potentially many geometries
  1047. if (isSplitShadowed && litGeometries_[i].Size())
  1048. {
  1049. Camera* shadowCamera = split->GetShadowCamera();
  1050. if (!useOcclusion)
  1051. {
  1052. // Get potential shadow casters without occlusion
  1053. FrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY);
  1054. octree_->GetDrawables(query);
  1055. }
  1056. else
  1057. {
  1058. // Get potential shadow casters with occlusion
  1059. OccludedFrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), buffer,
  1060. DRAWABLE_GEOMETRY);
  1061. octree_->GetDrawables(query);
  1062. }
  1063. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, false, isSplitShadowed);
  1064. }
  1065. break;
  1066. case LIGHT_POINT:
  1067. {
  1068. SphereOctreeQuery query(tempDrawables_, Sphere(split->GetWorldPosition(), split->GetRange()), DRAWABLE_GEOMETRY);
  1069. octree_->GetDrawables(query);
  1070. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, false);
  1071. }
  1072. break;
  1073. case LIGHT_SPOT:
  1074. case LIGHT_SPLITPOINT:
  1075. {
  1076. FrustumOctreeQuery query(tempDrawables_, splitLights_[i]->GetFrustum(), DRAWABLE_GEOMETRY);
  1077. octree_->GetDrawables(query);
  1078. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, isSplitShadowed);
  1079. }
  1080. break;
  1081. }
  1082. // Optimization: if a particular split has no shadow casters, render as unshadowed
  1083. if (!shadowCasters_[i].Size())
  1084. split->SetShadowMap(0);
  1085. // Focus shadow camera as applicable
  1086. if (split->GetShadowMap())
  1087. {
  1088. if (split->GetShadowFocus().focus_)
  1089. FocusShadowCamera(split, geometryBox, shadowCasterBox);
  1090. // Set a zoom factor to ensure that we do not render to the shadow map border
  1091. // (clamp addressing is necessary because border mode /w hardware shadow maps is not supported by all GPUs)
  1092. Camera* shadowCamera = split->GetShadowCamera();
  1093. Texture2D* shadowMap = split->GetShadowMap();
  1094. if (shadowCamera->GetZoom() >= 1.0f)
  1095. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth()));
  1096. }
  1097. // Update count of total lit geometries & shadow casters
  1098. numLitGeometries += litGeometries_[i].Size();
  1099. numShadowCasters += shadowCasters_[i].Size();
  1100. }
  1101. // If no lit geometries at all, no need to process further
  1102. if (!numLitGeometries)
  1103. numSplits = 0;
  1104. // If no shadow casters at all, concatenate lit geometries into one & return the original light
  1105. else if (!numShadowCasters)
  1106. {
  1107. if (numSplits > 1)
  1108. {
  1109. // Make sure there are no duplicates
  1110. HashSet<Drawable*> allLitGeometries;
  1111. for (unsigned i = 0; i < numSplits; ++i)
  1112. {
  1113. for (Vector<Drawable*>::Iterator j = litGeometries_[i].Begin(); j != litGeometries_[i].End(); ++j)
  1114. allLitGeometries.Insert(*j);
  1115. }
  1116. litGeometries_[0].Resize(allLitGeometries.Size());
  1117. unsigned index = 0;
  1118. for (HashSet<Drawable*>::Iterator i = allLitGeometries.Begin(); i != allLitGeometries.End(); ++i)
  1119. litGeometries_[0][index++] = *i;
  1120. }
  1121. splitLights_[0] = light;
  1122. splitLights_[0]->SetShadowMap(0);
  1123. numSplits = 1;
  1124. }
  1125. return numSplits;
  1126. }
  1127. void View::ProcessLightQuery(unsigned splitIndex, const PODVector<Drawable*>& result, BoundingBox& geometryBox,
  1128. BoundingBox& shadowCasterBox, bool getLitGeometries, bool getShadowCasters)
  1129. {
  1130. Light* light = splitLights_[splitIndex];
  1131. Matrix3x4 lightView;
  1132. Matrix4 lightProj;
  1133. Frustum lightViewFrustum;
  1134. BoundingBox lightViewFrustumBox;
  1135. bool mergeBoxes = light->GetLightType() != LIGHT_SPLITPOINT && light->GetShadowMap() && light->GetShadowFocus().focus_;
  1136. bool projectBoxes = false;
  1137. Camera* shadowCamera = light->GetShadowCamera();
  1138. if (shadowCamera)
  1139. {
  1140. bool projectBoxes = !shadowCamera->IsOrthographic();
  1141. lightView = shadowCamera->GetInverseWorldTransform();
  1142. lightProj = shadowCamera->GetProjection();
  1143. // Transform scene frustum into shadow camera's view space for shadow caster visibility check
  1144. // For point & spot lights, we can use the whole scene frustum. For directional lights, use the
  1145. // intersection of the scene frustum and the split frustum, so that shadow casters do not get
  1146. // rendered into unnecessary splits
  1147. if (light->GetLightType() != LIGHT_DIRECTIONAL)
  1148. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1149. else
  1150. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, light->GetNearSplit() - light->GetNearFadeRange()),
  1151. Min(sceneViewBox_.max_.z_, light->GetFarSplit())).Transformed(lightView);
  1152. lightViewFrustumBox.Define(lightViewFrustum);
  1153. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1154. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1155. getShadowCasters = false;
  1156. }
  1157. else
  1158. getShadowCasters = false;
  1159. BoundingBox lightViewBox;
  1160. BoundingBox lightProjBox;
  1161. for (unsigned i = 0; i < result.Size(); ++i)
  1162. {
  1163. Drawable* drawable = static_cast<Drawable*>(result[i]);
  1164. drawable->UpdateDistance(frame_);
  1165. bool boxGenerated = false;
  1166. // If draw distance non-zero, check it
  1167. float maxDistance = drawable->GetDrawDistance();
  1168. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  1169. continue;
  1170. // Check light mask
  1171. if (!(drawable->GetLightMask() & light->GetLightMask()))
  1172. continue;
  1173. // Get lit geometry only if inside main camera frustum this frame
  1174. if (getLitGeometries && drawable->IsInView(frame_))
  1175. {
  1176. if (mergeBoxes)
  1177. {
  1178. // Transform bounding box into light view space, and to projection space if needed
  1179. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1180. if (!projectBoxes)
  1181. geometryBox.Merge(lightViewBox);
  1182. else
  1183. {
  1184. lightProjBox = lightViewBox.Projected(lightProj);
  1185. geometryBox.Merge(lightProjBox);
  1186. }
  1187. boxGenerated = true;
  1188. }
  1189. litGeometries_[splitIndex].Push(drawable);
  1190. }
  1191. // Shadow caster need not be inside main camera frustum: in that case try to detect whether
  1192. // the shadow projection intersects the view
  1193. if (getShadowCasters && drawable->GetCastShadows())
  1194. {
  1195. // If shadow distance non-zero, check it
  1196. float maxShadowDistance = drawable->GetShadowDistance();
  1197. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1198. continue;
  1199. if (!boxGenerated)
  1200. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1201. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1202. {
  1203. if (mergeBoxes)
  1204. {
  1205. if (!projectBoxes)
  1206. shadowCasterBox.Merge(lightViewBox);
  1207. else
  1208. {
  1209. if (!boxGenerated)
  1210. lightProjBox = lightViewBox.Projected(lightProj);
  1211. shadowCasterBox.Merge(lightProjBox);
  1212. }
  1213. }
  1214. // Update geometry now if not updated yet
  1215. if (!drawable->IsInView(frame_))
  1216. {
  1217. drawable->MarkInShadowView(frame_);
  1218. drawable->UpdateGeometry(frame_);
  1219. }
  1220. shadowCasters_[splitIndex].Push(drawable);
  1221. }
  1222. }
  1223. }
  1224. }
  1225. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1226. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1227. {
  1228. // If shadow caster is also an occluder, must let it be visible, because it has potentially already culled
  1229. // away other shadow casters (could also check the actual shadow occluder vector, but that would be slower)
  1230. if (drawable->IsOccluder())
  1231. return true;
  1232. if (shadowCamera->IsOrthographic())
  1233. {
  1234. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1235. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1236. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1237. }
  1238. else
  1239. {
  1240. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1241. if (drawable->IsInView(frame_))
  1242. return true;
  1243. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1244. Vector3 center = lightViewBox.Center();
  1245. Ray extrusionRay(center, center.Normalized());
  1246. float extrusionDistance = shadowCamera->GetFarClip();
  1247. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  1248. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1249. float sizeFactor = extrusionDistance / originalDistance;
  1250. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1251. // than necessary, so the test will be conservative
  1252. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1253. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1254. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1255. lightViewBox.Merge(extrudedBox);
  1256. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1257. }
  1258. }
  1259. void View::SetupShadowCamera(Light* light, bool shadowOcclusion)
  1260. {
  1261. Camera* shadowCamera = light->GetShadowCamera();
  1262. Node* cameraNode = shadowCamera->GetNode();
  1263. const FocusParameters& parameters = light->GetShadowFocus();
  1264. // Reset zoom
  1265. shadowCamera->SetZoom(1.0f);
  1266. switch(light->GetLightType())
  1267. {
  1268. case LIGHT_DIRECTIONAL:
  1269. {
  1270. float extrusionDistance = camera_->GetFarClip();
  1271. // Calculate initial position & rotation
  1272. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1273. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1274. Quaternion rot(Vector3::FORWARD, lightWorldDirection);
  1275. cameraNode->SetTransform(pos, rot);
  1276. // Calculate main camera shadowed frustum in light's view space
  1277. float sceneMaxZ = camera_->GetFarClip();
  1278. // When shadow focusing is enabled, use the scene far Z to limit maximum frustum size
  1279. if (shadowOcclusion || parameters.focus_)
  1280. sceneMaxZ = Min(sceneViewBox_.max_.z_, sceneMaxZ);
  1281. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1282. Frustum lightViewSplitFrustum = camera_->GetSplitFrustum(light->GetNearSplit() - light->GetNearFadeRange(),
  1283. Min(light->GetFarSplit(), sceneMaxZ)).Transformed(lightView);
  1284. // Fit the frustum inside a bounding box. If uniform size, use a sphere instead
  1285. BoundingBox shadowBox;
  1286. if (!shadowOcclusion && parameters.nonUniform_)
  1287. shadowBox.Define(lightViewSplitFrustum);
  1288. else
  1289. {
  1290. Sphere shadowSphere;
  1291. shadowSphere.Define(lightViewSplitFrustum);
  1292. shadowBox.Define(shadowSphere);
  1293. }
  1294. shadowCamera->SetOrthographic(true);
  1295. shadowCamera->SetNearClip(0.0f);
  1296. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1297. // Center shadow camera on the bounding box, snap to whole texels
  1298. QuantizeDirShadowCamera(light, shadowBox);
  1299. }
  1300. break;
  1301. case LIGHT_SPOT:
  1302. case LIGHT_SPLITPOINT:
  1303. {
  1304. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1305. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1306. shadowCamera->SetFarClip(light->GetRange());
  1307. shadowCamera->SetOrthographic(false);
  1308. shadowCamera->SetFov(light->GetFov());
  1309. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1310. // For spot lights, zoom out shadowmap if far away (reduces fillrate)
  1311. if (light->GetLightType() == LIGHT_SPOT && parameters.zoomOut_)
  1312. {
  1313. // Make sure the out-zooming does not start while we are inside the spot
  1314. float distance = Max((camera_->GetInverseWorldTransform() * light->GetWorldPosition()).z_ - light->GetRange(), 1.0f);
  1315. float lightPixels = (((float)height_ * light->GetRange() * camera_->GetZoom() * 0.5f) / distance);
  1316. // Clamp pixel amount to a sufficient minimum to avoid self-shadowing artifacts due to loss of precision
  1317. if (lightPixels < SHADOW_MIN_PIXELS)
  1318. lightPixels = SHADOW_MIN_PIXELS;
  1319. float zoolevel_ = Min(lightPixels / (float)light->GetShadowMap()->GetHeight(), 1.0f);
  1320. shadowCamera->SetZoom(zoolevel_);
  1321. }
  1322. }
  1323. break;
  1324. }
  1325. }
  1326. void View::FocusShadowCamera(Light* light, const BoundingBox& geometryBox, const BoundingBox& shadowCasterBox)
  1327. {
  1328. // If either no geometries or no shadow casters, do nothing
  1329. if (!geometryBox.defined_ || !shadowCasterBox.defined_)
  1330. return;
  1331. Camera* shadowCamera = light->GetShadowCamera();
  1332. const FocusParameters& parameters = light->GetShadowFocus();
  1333. switch (light->GetLightType())
  1334. {
  1335. case LIGHT_DIRECTIONAL:
  1336. {
  1337. BoundingBox combinedBox;
  1338. combinedBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1339. combinedBox.max_.x_ = shadowCamera->GetAspectRatio() * combinedBox.max_.y_;
  1340. combinedBox.min_.y_ = -combinedBox.max_.y_;
  1341. combinedBox.min_.x_ = -combinedBox.max_.x_;
  1342. combinedBox.Intersect(geometryBox);
  1343. combinedBox.Intersect(shadowCasterBox);
  1344. QuantizeDirShadowCamera(light, combinedBox);
  1345. }
  1346. break;
  1347. case LIGHT_SPOT:
  1348. // Can not move, but can zoom the shadow camera. Check for out-zooming (distant shadow map), do nothing in that case
  1349. if (shadowCamera->GetZoom() >= 1.0f)
  1350. {
  1351. BoundingBox combinedBox(-1.0f, 1.0f);
  1352. combinedBox.Intersect(geometryBox);
  1353. combinedBox.Intersect(shadowCasterBox);
  1354. float viewSizeX = Max(fabsf(combinedBox.min_.x_), fabsf(combinedBox.max_.x_));
  1355. float viewSizeY = Max(fabsf(combinedBox.min_.y_), fabsf(combinedBox.max_.y_));
  1356. float viewSize = Max(viewSizeX, viewSizeY);
  1357. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1358. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1359. float quantize = parameters.quantize_ * invOrthoSize;
  1360. float minView = parameters.minView_ * invOrthoSize;
  1361. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1362. if (viewSize < 1.0f)
  1363. shadowCamera->SetZoom(1.0f / viewSize);
  1364. }
  1365. break;
  1366. }
  1367. }
  1368. void View::QuantizeDirShadowCamera(Light* light, const BoundingBox& viewBox)
  1369. {
  1370. Camera* shadowCamera = light->GetShadowCamera();
  1371. Node* cameraNode = shadowCamera->GetNode();
  1372. const FocusParameters& parameters = light->GetShadowFocus();
  1373. float minX = viewBox.min_.x_;
  1374. float minY = viewBox.min_.y_;
  1375. float maxX = viewBox.max_.x_;
  1376. float maxY = viewBox.max_.y_;
  1377. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1378. Vector2 viewSize(maxX - minX, maxY - minY);
  1379. // Quantize size to reduce swimming
  1380. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1381. if (parameters.nonUniform_)
  1382. {
  1383. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1384. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1385. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1386. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1387. }
  1388. else if (parameters.focus_)
  1389. {
  1390. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1391. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1392. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1393. viewSize.y_ = viewSize.x_;
  1394. }
  1395. shadowCamera->SetOrthoSize(viewSize);
  1396. // Center shadow camera to the view space bounding box
  1397. Vector3 pos = shadowCamera->GetWorldPosition();
  1398. Quaternion rot = shadowCamera->GetWorldRotation();
  1399. Vector3 adjust(center.x_, center.y_, 0.0f);
  1400. cameraNode->Translate(rot * adjust);
  1401. // If there is a shadow map, snap to its whole texels
  1402. Texture2D* shadowMap = light->GetShadowMap();
  1403. if (shadowMap)
  1404. {
  1405. Vector3 viewPos(rot.Inverse() * shadowCamera->GetWorldPosition());
  1406. // Take into account that shadow map border will not be used
  1407. float invActualSize = 1.0f / (float)(shadowMap->GetWidth() - 2);
  1408. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1409. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1410. cameraNode->Translate(rot * snap);
  1411. }
  1412. }
  1413. void View::OptimizeLightByScissor(Light* light)
  1414. {
  1415. if (light)
  1416. graphics_->SetScissorTest(true, GetLightScissor(light));
  1417. else
  1418. graphics_->SetScissorTest(false);
  1419. }
  1420. const Rect& View::GetLightScissor(Light* light)
  1421. {
  1422. Map<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1423. if (i != lightScissorCache_.End())
  1424. return i->second_;
  1425. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1426. Matrix4 projection(camera_->GetProjection());
  1427. switch (light->GetLightType())
  1428. {
  1429. case LIGHT_POINT:
  1430. {
  1431. BoundingBox viewBox = light->GetWorldBoundingBox().Transformed(view);
  1432. return lightScissorCache_[light] = viewBox.Projected(projection);
  1433. }
  1434. case LIGHT_SPOT:
  1435. case LIGHT_SPLITPOINT:
  1436. {
  1437. Frustum viewFrustum = light->GetFrustum().Transformed(view);
  1438. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1439. }
  1440. default:
  1441. return lightScissorCache_[light] = Rect::FULL;
  1442. }
  1443. }
  1444. unsigned View::SplitLight(Light* light)
  1445. {
  1446. LightType type = light->GetLightType();
  1447. if (type == LIGHT_DIRECTIONAL)
  1448. {
  1449. const CascadeParameters& cascade = light->GetShadowCascade();
  1450. unsigned splits = cascade.splits_;
  1451. if (splits > MAX_LIGHT_SPLITS - 1)
  1452. splits = MAX_LIGHT_SPLITS;
  1453. // Orthographic view actually has near clip 0, but clamp it to a theoretical minimum
  1454. float farClip = Min(cascade.shadowRange_, camera_->GetFarClip()); // Shadow range end
  1455. float nearClip = Max(camera_->GetNearClip(), M_MIN_NEARCLIP); // Shadow range start
  1456. bool createExtraSplit = farClip < camera_->GetFarClip();
  1457. // Practical split scheme (Zhang et al.)
  1458. unsigned i;
  1459. for (i = 0; i < splits; ++i)
  1460. {
  1461. // Set a minimum for the fade range to avoid boundary artifacts (missing lighting)
  1462. float splitFadeRange = Max(cascade.splitFadeRange_, 0.001f);
  1463. float iPerM = (float)i / (float)splits;
  1464. float log = nearClip * powf(farClip / nearClip, iPerM);
  1465. float uniform = nearClip + (farClip - nearClip) * iPerM;
  1466. float nearSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1467. float nearFadeRange = nearSplit * splitFadeRange;
  1468. iPerM = (float)(i + 1) / (float)splits;
  1469. log = nearClip * powf(farClip / nearClip, iPerM);
  1470. uniform = nearClip + (farClip - nearClip) * iPerM;
  1471. float farSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1472. float farFadeRange = farSplit * splitFadeRange;
  1473. // If split is completely beyond camera far clip, we are done
  1474. if ((nearSplit - nearFadeRange) > camera_->GetFarClip())
  1475. break;
  1476. Light* SplitLight = renderer_->CreateSplitLight(light);
  1477. splitLights_[i] = SplitLight;
  1478. // Though the near clip was previously clamped, use the real near clip value for the first split,
  1479. // so that there are no unlit portions
  1480. if (i)
  1481. SplitLight->SetNearSplit(nearSplit);
  1482. else
  1483. SplitLight->SetNearSplit(camera_->GetNearClip());
  1484. SplitLight->SetNearFadeRange(nearFadeRange);
  1485. SplitLight->SetFarSplit(farSplit);
  1486. // The final split will not fade
  1487. if (createExtraSplit || i < splits - 1)
  1488. SplitLight->SetFarFadeRange(farFadeRange);
  1489. // Create an extra unshadowed split if necessary
  1490. if (createExtraSplit && i == splits - 1)
  1491. {
  1492. Light* SplitLight = renderer_->CreateSplitLight(light);
  1493. splitLights_[i + 1] = SplitLight;
  1494. SplitLight->SetNearSplit(farSplit);
  1495. SplitLight->SetNearFadeRange(farFadeRange);
  1496. SplitLight->SetCastShadows(false);
  1497. }
  1498. }
  1499. if (createExtraSplit)
  1500. return i + 1;
  1501. else
  1502. return i;
  1503. }
  1504. if (type == LIGHT_POINT)
  1505. {
  1506. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1507. {
  1508. Light* SplitLight = renderer_->CreateSplitLight(light);
  1509. Node* lightNode = SplitLight->GetNode();
  1510. splitLights_[i] = SplitLight;
  1511. SplitLight->SetLightType(LIGHT_SPLITPOINT);
  1512. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1513. lightNode->SetDirection(directions[i]);
  1514. SplitLight->SetFov(90.0f);
  1515. SplitLight->SetAspectRatio(1.0f);
  1516. }
  1517. return MAX_CUBEMAP_FACES;
  1518. }
  1519. // A spot light does not actually need splitting. However, we may be rendering several views,
  1520. // and in some the light might be unshadowed, so better create an unique copy
  1521. Light* SplitLight = renderer_->CreateSplitLight(light);
  1522. splitLights_[0] = SplitLight;
  1523. return 1;
  1524. }
  1525. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1526. {
  1527. if (!material)
  1528. material = renderer_->GetDefaultMaterial();
  1529. if (!material)
  1530. return 0;
  1531. float lodDistance = drawable->GetLodDistance();
  1532. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1533. if (techniques.Empty())
  1534. return 0;
  1535. // Check for suitable technique. Techniques should be ordered like this:
  1536. // Most distant & highest quality
  1537. // Most distant & lowest quality
  1538. // Second most distant & highest quality
  1539. // ...
  1540. for (unsigned i = 0; i < techniques.Size(); ++i)
  1541. {
  1542. const TechniqueEntry& entry = techniques[i];
  1543. Technique* technique = entry.technique_;
  1544. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1545. continue;
  1546. if (lodDistance >= entry.lodDistance_)
  1547. return technique;
  1548. }
  1549. // If no suitable technique found, fallback to the last
  1550. return techniques.Back().technique_;
  1551. }
  1552. void View::CheckMaterialForAuxView(Material* material)
  1553. {
  1554. const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
  1555. for (unsigned i = 0; i < textures.Size(); ++i)
  1556. {
  1557. // Have to check cube & 2D textures separately
  1558. Texture* texture = textures[i];
  1559. if (texture)
  1560. {
  1561. if (texture->GetType() == Texture2D::GetTypeStatic())
  1562. {
  1563. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1564. RenderSurface* target = tex2D->GetRenderSurface();
  1565. if (target)
  1566. {
  1567. const Viewport& viewport = target->GetViewport();
  1568. if (viewport.scene_ && viewport.camera_)
  1569. renderer_->AddView(target, viewport);
  1570. }
  1571. }
  1572. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1573. {
  1574. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1575. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1576. {
  1577. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1578. if (target)
  1579. {
  1580. const Viewport& viewport = target->GetViewport();
  1581. if (viewport.scene_ && viewport.camera_)
  1582. renderer_->AddView(target, viewport);
  1583. }
  1584. }
  1585. }
  1586. }
  1587. }
  1588. // Set frame number so that we can early-out next time we come across this material on the same frame
  1589. material->MarkForAuxView(frame_.frameNumber_);
  1590. }
  1591. void View::SortBatches()
  1592. {
  1593. PROFILE(SortBatches);
  1594. if (mode_ != RENDER_FORWARD)
  1595. {
  1596. gBufferQueue_.SortFrontToBack();
  1597. noShadowLightQueue_.SortFrontToBack();
  1598. }
  1599. baseQueue_.SortFrontToBack();
  1600. extraQueue_.SortFrontToBack();
  1601. transparentQueue_.SortBackToFront();
  1602. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1603. {
  1604. lightQueues_[i].shadowBatches_.SortFrontToBack();
  1605. lightQueues_[i].litBatches_.SortFrontToBack();
  1606. }
  1607. }
  1608. void View::PrepareInstancingBuffer()
  1609. {
  1610. PROFILE(PrepareInstancingBuffer);
  1611. unsigned totalInstances = 0;
  1612. if (mode_ != RENDER_FORWARD)
  1613. totalInstances += gBufferQueue_.GetNumInstances();
  1614. totalInstances += baseQueue_.GetNumInstances();
  1615. totalInstances += extraQueue_.GetNumInstances();
  1616. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1617. {
  1618. totalInstances += lightQueues_[i].shadowBatches_.GetNumInstances();
  1619. totalInstances += lightQueues_[i].litBatches_.GetNumInstances();
  1620. }
  1621. // If fail to set buffer size, fall back to per-group locking
  1622. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  1623. {
  1624. unsigned freeIndex = 0;
  1625. void* lockedData = renderer_->instancingBuffer_->Lock(0, totalInstances, LOCK_DISCARD);
  1626. if (lockedData)
  1627. {
  1628. if (mode_ != RENDER_FORWARD)
  1629. gBufferQueue_.SetTransforms(lockedData, freeIndex);
  1630. baseQueue_.SetTransforms(lockedData, freeIndex);
  1631. extraQueue_.SetTransforms(lockedData, freeIndex);
  1632. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1633. {
  1634. lightQueues_[i].shadowBatches_.SetTransforms(lockedData, freeIndex);
  1635. lightQueues_[i].litBatches_.SetTransforms(lockedData, freeIndex);
  1636. }
  1637. renderer_->instancingBuffer_->Unlock();
  1638. }
  1639. }
  1640. }
  1641. void View::CalculateShaderParameters()
  1642. {
  1643. Time* time = GetSubsystem<Time>();
  1644. float fogStart = zone_->GetFogStart();
  1645. float fogEnd = zone_->GetFogEnd();
  1646. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  1647. float farClip = camera_->GetFarClip();
  1648. float nearClip = camera_->GetNearClip();
  1649. Vector4 fogParams(fogStart / farClip, fogEnd / farClip, 1.0f / (fogRange / farClip), 0.0f);
  1650. Vector4 elapsedTime((time->GetTotalMSec() & 0x3fffff) / 1000.0f, 0.0f, 0.0f, 0.0f);
  1651. shaderParameters_.Clear();
  1652. shaderParameters_[VSP_ELAPSEDTIME] = elapsedTime;
  1653. shaderParameters_[PSP_AMBIENTCOLOR] = zone_->GetAmbientColor().ToVector4();
  1654. shaderParameters_[PSP_ELAPSEDTIME] = elapsedTime;
  1655. shaderParameters_[PSP_FOGCOLOR] = zone_->GetFogColor().ToVector4(),
  1656. shaderParameters_[PSP_FOGPARAMS] = fogParams;
  1657. }
  1658. void View::DrawSplitLightToStencil(Camera& camera, Light* light, bool clear)
  1659. {
  1660. Matrix3x4 view(camera.GetInverseWorldTransform());
  1661. switch (light->GetLightType())
  1662. {
  1663. case LIGHT_SPLITPOINT:
  1664. if (!clear)
  1665. {
  1666. Matrix4 projection(camera.GetProjection());
  1667. const Matrix3x4& model = light->GetVolumeTransform(camera);
  1668. float lightExtent = light->GetVolumeExtent();
  1669. float lightViewDist = (light->GetWorldPosition() - camera.GetWorldPosition()).LengthFast();
  1670. bool drawBackFaces = lightViewDist < (lightExtent + camera.GetNearClip());
  1671. graphics_->SetAlphaTest(false);
  1672. graphics_->SetColorWrite(false);
  1673. graphics_->SetDepthWrite(false);
  1674. graphics_->SetCullMode(drawBackFaces ? CULL_CW : CULL_CCW);
  1675. graphics_->SetDepthTest(drawBackFaces ? CMP_GREATER : CMP_LESS);
  1676. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1677. graphics_->SetShaderParameter(VSP_MODEL, model);
  1678. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1679. graphics_->ClearTransformSources();
  1680. // Draw the faces to stencil which we should draw (where no light has not been rendered yet)
  1681. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 0);
  1682. renderer_->spotLightGeometry_->Draw(graphics_);
  1683. // Draw the other faces to stencil to mark where we should not draw ("frees up" the pixels for other faces)
  1684. graphics_->SetCullMode(drawBackFaces ? CULL_CCW : CULL_CW);
  1685. graphics_->SetStencilTest(true, CMP_EQUAL, OP_DECR, OP_KEEP, OP_KEEP, 1);
  1686. renderer_->spotLightGeometry_->Draw(graphics_);
  1687. // Now set stencil test for rendering the lit geometries (also marks the pixels so that they will not be used again)
  1688. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 1);
  1689. graphics_->SetColorWrite(true);
  1690. }
  1691. else
  1692. {
  1693. // Clear stencil with a scissored clear operation
  1694. OptimizeLightByScissor(light->GetOriginalLight());
  1695. graphics_->Clear(CLEAR_STENCIL);
  1696. graphics_->SetScissorTest(false);
  1697. graphics_->SetStencilTest(false);
  1698. }
  1699. break;
  1700. case LIGHT_DIRECTIONAL:
  1701. // If light encompasses whole frustum, no drawing to frustum necessary
  1702. if (light->GetNearSplit() <= camera.GetNearClip() && light->GetFarSplit() >= camera.GetFarClip())
  1703. return;
  1704. else
  1705. {
  1706. if (!clear)
  1707. {
  1708. // Get projection without jitter offset to ensure the whole screen is filled
  1709. Matrix4 projection(camera.GetProjection(false));
  1710. Matrix3x4 nearTransform(light->GetDirLightTransform(camera, true));
  1711. Matrix3x4 farTransform(light->GetDirLightTransform(camera, false));
  1712. graphics_->SetAlphaTest(false);
  1713. graphics_->SetColorWrite(false);
  1714. graphics_->SetDepthWrite(false);
  1715. graphics_->SetCullMode(CULL_NONE);
  1716. // If the split begins at the near plane (first split), draw at split far plane
  1717. if (light->GetNearSplit() <= camera.GetNearClip())
  1718. {
  1719. graphics_->SetDepthTest(CMP_GREATEREQUAL);
  1720. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1721. graphics_->SetShaderParameter(VSP_MODEL, farTransform);
  1722. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1723. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1724. }
  1725. // Otherwise draw at split near plane
  1726. else
  1727. {
  1728. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1729. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1730. graphics_->SetShaderParameter(VSP_MODEL, nearTransform);
  1731. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1732. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1733. }
  1734. graphics_->ClearTransformSources();
  1735. renderer_->dirLightGeometry_->Draw(graphics_);
  1736. graphics_->SetColorWrite(true);
  1737. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 1);
  1738. }
  1739. else
  1740. {
  1741. // Clear the whole stencil
  1742. graphics_->SetScissorTest(false);
  1743. graphics_->Clear(CLEAR_STENCIL);
  1744. graphics_->SetStencilTest(false);
  1745. }
  1746. }
  1747. break;
  1748. }
  1749. }
  1750. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor, bool disableScissor)
  1751. {
  1752. VertexBuffer* instancingBuffer = 0;
  1753. if (renderer_->GetDynamicInstancing())
  1754. instancingBuffer = renderer_->instancingBuffer_;
  1755. if (disableScissor)
  1756. graphics_->SetScissorTest(false);
  1757. graphics_->SetStencilTest(false);
  1758. // Priority instanced
  1759. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1760. queue.priorityBatchGroups_.End(); ++i)
  1761. {
  1762. const BatchGroup& group = i->second_;
  1763. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1764. }
  1765. // Priority non-instanced
  1766. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1767. {
  1768. Batch* batch = *i;
  1769. batch->Draw(graphics_, shaderParameters_);
  1770. }
  1771. // Non-priority instanced
  1772. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1773. queue.batchGroups_.End(); ++i)
  1774. {
  1775. const BatchGroup& group = i->second_;
  1776. if (useScissor && group.light_)
  1777. OptimizeLightByScissor(group.light_);
  1778. else
  1779. graphics_->SetScissorTest(false);
  1780. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1781. }
  1782. // Non-priority non-instanced
  1783. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1784. {
  1785. Batch* batch = *i;
  1786. // For the transparent queue, both priority and non-priority batches are copied here, so check the flag
  1787. if (useScissor && batch->light_ && !batch->hasPriority_)
  1788. OptimizeLightByScissor(batch->light_);
  1789. else
  1790. graphics_->SetScissorTest(false);
  1791. batch->Draw(graphics_, shaderParameters_);
  1792. }
  1793. }
  1794. void View::RenderForwardLightBatchQueue(const BatchQueue& queue, Light* light)
  1795. {
  1796. VertexBuffer* instancingBuffer = 0;
  1797. if (renderer_->GetDynamicInstancing())
  1798. instancingBuffer = renderer_->instancingBuffer_;
  1799. graphics_->SetScissorTest(false);
  1800. graphics_->SetStencilTest(false);
  1801. // Priority instanced
  1802. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1803. queue.priorityBatchGroups_.End(); ++i)
  1804. {
  1805. const BatchGroup& group = i->second_;
  1806. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1807. }
  1808. // Priority non-instanced
  1809. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1810. {
  1811. Batch* batch = *i;
  1812. batch->Draw(graphics_, shaderParameters_);
  1813. }
  1814. // All base passes have been drawn. Optimize at this point by both scissor and stencil
  1815. if (light)
  1816. {
  1817. OptimizeLightByScissor(light);
  1818. LightType type = light->GetLightType();
  1819. if (type == LIGHT_SPLITPOINT || type == LIGHT_DIRECTIONAL)
  1820. DrawSplitLightToStencil(*camera_, light);
  1821. }
  1822. // Non-priority instanced
  1823. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1824. queue.batchGroups_.End(); ++i)
  1825. {
  1826. const BatchGroup& group = i->second_;
  1827. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1828. }
  1829. // Non-priority non-instanced
  1830. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1831. {
  1832. Batch* batch = *i;
  1833. batch->Draw(graphics_, shaderParameters_);
  1834. }
  1835. }
  1836. void View::RenderShadowMap(const LightBatchQueue& queue)
  1837. {
  1838. PROFILE(RenderShadowMap);
  1839. Texture2D* shadowMap = queue.light_->GetShadowMap();
  1840. graphics_->SetColorWrite(false);
  1841. graphics_->SetStencilTest(false);
  1842. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1843. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1844. graphics_->SetDepthStencil(shadowMap);
  1845. graphics_->Clear(CLEAR_DEPTH);
  1846. // Set shadow depth bias
  1847. BiasParameters parameters = queue.light_->GetShadowBias();
  1848. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1849. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1850. // However, do not do this for point lights
  1851. if (queue.light_->GetLightType() != LIGHT_SPLITPOINT)
  1852. {
  1853. float zoom = Min(queue.light_->GetShadowCamera()->GetZoom(),
  1854. (float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth());
  1855. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1856. graphics_->SetScissorTest(true, zoomRect, false);
  1857. }
  1858. else
  1859. graphics_->SetScissorTest(false);
  1860. // Draw instanced and non-instanced shadow casters
  1861. RenderBatchQueue(queue.shadowBatches_, false, false);
  1862. graphics_->SetColorWrite(true);
  1863. graphics_->SetDepthBias(0.0f, 0.0f);
  1864. }