View.cpp 86 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "OctreeQuery.h"
  34. #include "Renderer.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderVariation.h"
  38. #include "Sort.h"
  39. #include "Technique.h"
  40. #include "Texture2D.h"
  41. #include "TextureCube.h"
  42. #include "VertexBuffer.h"
  43. #include "View.h"
  44. #include "Zone.h"
  45. #include "DebugNew.h"
  46. static const Vector3 directions[] =
  47. {
  48. Vector3(1.0f, 0.0f, 0.0f),
  49. Vector3(-1.0f, 0.0f, 0.0f),
  50. Vector3(0.0f, 1.0f, 0.0f),
  51. Vector3(0.0f, -1.0f, 0.0f),
  52. Vector3(0.0f, 0.0f, 1.0f),
  53. Vector3(0.0f, 0.0f, -1.0f)
  54. };
  55. OBJECTTYPESTATIC(View);
  56. View::View(Context* context) :
  57. Object(context),
  58. graphics_(GetSubsystem<Graphics>()),
  59. renderer_(GetSubsystem<Renderer>()),
  60. octree_(0),
  61. camera_(0),
  62. zone_(0),
  63. renderTarget_(0),
  64. depthStencil_(0)
  65. {
  66. frame_.camera_ = 0;
  67. }
  68. View::~View()
  69. {
  70. }
  71. bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
  72. {
  73. if (!viewport.scene_ || !viewport.camera_)
  74. return false;
  75. // If scene is loading asynchronously, it is incomplete and should not be rendered
  76. if (viewport.scene_->IsAsyncLoading())
  77. return false;
  78. Octree* octree = viewport.scene_->GetComponent<Octree>();
  79. if (!octree)
  80. return false;
  81. mode_ = graphics_->GetRenderMode();
  82. // In deferred mode, check for the render texture being too large
  83. if (mode_ != RENDER_FORWARD && renderTarget)
  84. {
  85. if (renderTarget->GetWidth() > graphics_->GetWidth() || renderTarget->GetHeight() > graphics_->GetHeight())
  86. {
  87. // Display message only once per rendertarget, do not spam each frame
  88. if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
  89. {
  90. gBufferErrorDisplayed_.Insert(renderTarget);
  91. LOGERROR("Render texture is larger than the G-buffer, can not render");
  92. }
  93. return false;
  94. }
  95. }
  96. octree_ = octree;
  97. camera_ = viewport.camera_;
  98. renderTarget_ = renderTarget;
  99. if (!renderTarget)
  100. depthStencil_ = 0;
  101. else
  102. {
  103. // In Direct3D9 deferred rendering, always use the system depth stencil for the whole time
  104. // to ensure it is as large as the G-buffer
  105. #ifdef USE_OPENGL
  106. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  107. #else
  108. if (mode_ == RENDER_FORWARD)
  109. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  110. else
  111. depthStencil_ = 0;
  112. #endif
  113. }
  114. zone_ = renderer_->GetDefaultZone();
  115. // Validate the rect and calculate size. If zero rect, use whole render target size
  116. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  117. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  118. if (viewport.rect_ != IntRect::ZERO)
  119. {
  120. screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
  121. screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
  122. screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
  123. screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
  124. }
  125. else
  126. screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
  127. width_ = screenRect_.right_ - screenRect_.left_;
  128. height_ = screenRect_.bottom_ - screenRect_.top_;
  129. // Set possible quality overrides from the camera
  130. drawShadows_ = renderer_->GetDrawShadows();
  131. materialQuality_ = renderer_->GetMaterialQuality();
  132. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  133. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  134. if (viewOverrideFlags & VOF_LOW_MATERIAL_QUALITY)
  135. materialQuality_ = QUALITY_LOW;
  136. if (viewOverrideFlags & VOF_DISABLE_SHADOWS)
  137. drawShadows_ = false;
  138. if (viewOverrideFlags & VOF_DISABLE_OCCLUSION)
  139. maxOccluderTriangles_ = 0;
  140. return true;
  141. }
  142. void View::Update(const FrameInfo& frame)
  143. {
  144. if (!camera_ || !octree_)
  145. return;
  146. frame_.camera_ = camera_;
  147. frame_.timeStep_ = frame.timeStep_;
  148. frame_.frameNumber_ = frame.frameNumber_;
  149. frame_.viewSize_ = IntVector2(width_, height_);
  150. // Clear old light scissor cache, geometry, light, occluder & batch lists
  151. lightScissorCache_.Clear();
  152. geometries_.Clear();
  153. geometryDepthBounds_.Clear();
  154. lights_.Clear();
  155. occluders_.Clear();
  156. shadowOccluders_.Clear();
  157. gBufferQueue_.Clear();
  158. baseQueue_.Clear();
  159. extraQueue_.Clear();
  160. transparentQueue_.Clear();
  161. noShadowLightQueue_.Clear();
  162. lightQueues_.Clear();
  163. // Set automatic aspect ratio if required
  164. if (camera_->GetAutoAspectRatio())
  165. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  166. // Reset projection jitter if was used last frame
  167. camera_->SetProjectionOffset(Vector2::ZERO);
  168. // Reset shadow map use count; they can be reused between views as each is rendered completely at a time
  169. renderer_->ResetShadowMapUseCount();
  170. GetDrawables();
  171. GetBatches();
  172. }
  173. void View::Render()
  174. {
  175. if (!octree_ || !camera_)
  176. return;
  177. // Forget parameter sources from the previous view
  178. graphics_->ClearParameterSources();
  179. // If stream offset is supported, write all instance transforms to a single large buffer
  180. // Else we must lock the instance buffer for each batch group
  181. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  182. PrepareInstancingBuffer();
  183. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  184. // again to ensure correct projection will be used
  185. if (camera_->GetAutoAspectRatio())
  186. camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_));
  187. // Set the "view texture" to ensure the rendertarget will not be bound as a texture during rendering
  188. if (renderTarget_)
  189. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  190. else
  191. graphics_->SetViewTexture(0);
  192. graphics_->SetFillMode(FILL_SOLID);
  193. // Calculate view-global shader parameters
  194. CalculateShaderParameters();
  195. // If not reusing shadowmaps, render all of them first
  196. if (!renderer_->reuseShadowMaps_)
  197. {
  198. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  199. {
  200. LightBatchQueue& queue = lightQueues_[i];
  201. if (queue.light_->GetShadowMap())
  202. RenderShadowMap(queue);
  203. }
  204. }
  205. if (mode_ == RENDER_FORWARD)
  206. RenderBatchesForward();
  207. else
  208. RenderBatchesDeferred();
  209. graphics_->SetViewTexture(0);
  210. // If this is a main view, draw the associated debug geometry now
  211. if (!renderTarget_)
  212. {
  213. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  214. if (scene)
  215. {
  216. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  217. if (debug)
  218. {
  219. debug->SetView(camera_);
  220. debug->Render();
  221. }
  222. }
  223. }
  224. // "Forget" the camera, octree and zone after rendering
  225. camera_ = 0;
  226. octree_ = 0;
  227. zone_ = 0;
  228. frame_.camera_ = 0;
  229. }
  230. void View::GetDrawables()
  231. {
  232. PROFILE(GetDrawables);
  233. Vector3 cameraPos = camera_->GetWorldPosition();
  234. // Get zones & find the zone camera is in
  235. PODVector<Zone*> zones;
  236. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>& >(zones), cameraPos, DRAWABLE_ZONE, camera_->GetViewMask());
  237. octree_->GetDrawables(query);
  238. int highestZonePriority = M_MIN_INT;
  239. for (unsigned i = 0; i < zones.Size(); ++i)
  240. {
  241. Zone* zone = zones[i];
  242. if (zone->IsInside(cameraPos) && zone->GetPriority() > highestZonePriority)
  243. {
  244. zone_ = zone;
  245. highestZonePriority = zone->GetPriority();
  246. }
  247. }
  248. // If occlusion in use, get & render the occluders, then build the depth buffer hierarchy
  249. bool useOcclusion = false;
  250. OcclusionBuffer* buffer = 0;
  251. if (maxOccluderTriangles_ > 0)
  252. {
  253. FrustumOctreeQuery query(occluders_, camera_->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask(), true, false);
  254. octree_->GetDrawables(query);
  255. UpdateOccluders(occluders_, camera_);
  256. if (occluders_.Size())
  257. {
  258. buffer = renderer_->GetOrCreateOcclusionBuffer(camera_, maxOccluderTriangles_);
  259. DrawOccluders(buffer, occluders_);
  260. buffer->BuildDepthHierarchy();
  261. useOcclusion = true;
  262. }
  263. }
  264. if (!useOcclusion)
  265. {
  266. // Get geometries & lights without occlusion
  267. FrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  268. octree_->GetDrawables(query);
  269. }
  270. else
  271. {
  272. // Get geometries & lights using occlusion
  273. OccludedFrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), buffer, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT,
  274. camera_->GetViewMask());
  275. octree_->GetDrawables(query);
  276. }
  277. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  278. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  279. sceneBox_.defined_ = false;
  280. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  281. sceneViewBox_.defined_ = false;
  282. Matrix3x4 view(camera_->GetInverseWorldTransform());
  283. for (unsigned i = 0; i < tempDrawables_.Size(); ++i)
  284. {
  285. Drawable* drawable = tempDrawables_[i];
  286. drawable->UpdateDistance(frame_);
  287. // If draw distance non-zero, check it
  288. float maxDistance = drawable->GetDrawDistance();
  289. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  290. continue;
  291. unsigned flags = drawable->GetDrawableFlags();
  292. if (flags & DRAWABLE_GEOMETRY)
  293. {
  294. drawable->ClearBasePass();
  295. drawable->MarkInView(frame_);
  296. drawable->UpdateGeometry(frame_);
  297. // Expand the scene bounding boxes
  298. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  299. BoundingBox geoview_Box = geomBox.Transformed(view);
  300. sceneBox_.Merge(geomBox);
  301. sceneViewBox_.Merge(geoview_Box);
  302. // Store depth info to speed up split directional light queries
  303. GeometryDepthBounds bounds;
  304. bounds.min_ = geoview_Box.min_.z_;
  305. bounds.max_ = geoview_Box.max_.z_;
  306. geometryDepthBounds_.Push(bounds);
  307. geometries_.Push(drawable);
  308. }
  309. else if (flags & DRAWABLE_LIGHT)
  310. {
  311. Light* light = static_cast<Light*>(drawable);
  312. // Skip if light is culled by the zone
  313. if (!(light->GetViewMask() & zone_->GetViewMask()))
  314. continue;
  315. light->MarkInView(frame_);
  316. lights_.Push(light);
  317. }
  318. }
  319. // Sort the lights to brightest/closest first
  320. for (unsigned i = 0; i < lights_.Size(); ++i)
  321. lights_[i]->SetIntensitySortValue(cameraPos);
  322. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  323. }
  324. void View::GetBatches()
  325. {
  326. HashSet<LitTransparencyCheck> litTransparencies;
  327. HashSet<Drawable*> maxLightsDrawables;
  328. Map<Light*, unsigned> lightQueueIndex;
  329. // Go through lights
  330. {
  331. PROFILE_MULTIPLE(GetLightBatches, lights_.Size());
  332. unsigned lightQueueCount = 0;
  333. for (unsigned i = 0; i < lights_.Size(); ++i)
  334. {
  335. Light* light = lights_[i];
  336. unsigned splits = ProcessLight(light);
  337. if (!splits)
  338. continue;
  339. // Prepare lit object + shadow caster queues for each split
  340. if (lightQueues_.Size() < lightQueueCount + splits)
  341. lightQueues_.Resize(lightQueueCount + splits);
  342. unsigned prevLightQueueCount = lightQueueCount;
  343. for (unsigned j = 0; j < splits; ++j)
  344. {
  345. Light* splitLight = splitLights_[j];
  346. LightBatchQueue& lightQueue = lightQueues_[lightQueueCount];
  347. lightQueue.light_ = splitLight;
  348. lightQueue.shadowBatches_.Clear();
  349. lightQueue.litBatches_.Clear();
  350. lightQueue.volumeBatches_.Clear();
  351. lightQueue.lastSplit_ = false;
  352. // Loop through shadow casters
  353. Camera* shadowCamera = splitLight->GetShadowCamera();
  354. for (unsigned k = 0; k < shadowCasters_[j].Size(); ++k)
  355. {
  356. Drawable* drawable = shadowCasters_[j][k];
  357. unsigned numBatches = drawable->GetNumBatches();
  358. for (unsigned l = 0; l < numBatches; ++l)
  359. {
  360. Batch shadowBatch;
  361. drawable->GetBatch(frame_, l, shadowBatch);
  362. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  363. if (!shadowBatch.geometry_ || !tech)
  364. continue;
  365. Pass* pass = tech->GetPass(PASS_SHADOW);
  366. // Skip if material has no shadow pass
  367. if (!pass)
  368. continue;
  369. // Fill the rest of the batch
  370. shadowBatch.camera_ = shadowCamera;
  371. shadowBatch.distance_ = shadowCamera->GetDistance(drawable->GetWorldPosition());
  372. shadowBatch.light_ = splitLight;
  373. shadowBatch.hasPriority_ = !pass->GetAlphaTest() && !pass->GetAlphaMask();
  374. renderer_->SetBatchShaders(shadowBatch, tech, pass);
  375. lightQueue.shadowBatches_.AddBatch(shadowBatch);
  376. }
  377. }
  378. // Loop through lit geometries
  379. if (litGeometries_[j].Size())
  380. {
  381. bool storeLightQueue = true;
  382. for (unsigned k = 0; k < litGeometries_[j].Size(); ++k)
  383. {
  384. Drawable* drawable = litGeometries_[j][k];
  385. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  386. if (!drawable->GetMaxLights())
  387. GetLitBatches(drawable, light, splitLight, &lightQueue, litTransparencies);
  388. else
  389. {
  390. drawable->AddLight(splitLight);
  391. maxLightsDrawables.Insert(drawable);
  392. }
  393. }
  394. // Store the light queue, and light volume batch in deferred mode
  395. if (mode_ != RENDER_FORWARD)
  396. {
  397. Batch volumeBatch;
  398. volumeBatch.geometry_ = renderer_->GetLightGeometry(splitLight);
  399. volumeBatch.worldTransform_ = &splitLight->GetVolumeTransform(*camera_);
  400. volumeBatch.overrideView_ = splitLight->GetLightType() == LIGHT_DIRECTIONAL;
  401. volumeBatch.camera_ = camera_;
  402. volumeBatch.light_ = splitLight;
  403. volumeBatch.distance_ = splitLight->GetDistance();
  404. renderer_->SetLightVolumeShaders(volumeBatch);
  405. // If light is a split point light, it must be treated as shadowed in any case for correct stencil clearing
  406. if (splitLight->GetShadowMap() || splitLight->GetLightType() == LIGHT_SPLITPOINT)
  407. lightQueue.volumeBatches_.Push(volumeBatch);
  408. else
  409. {
  410. storeLightQueue = false;
  411. noShadowLightQueue_.AddBatch(volumeBatch, true);
  412. }
  413. }
  414. if (storeLightQueue)
  415. {
  416. lightQueueIndex[splitLight] = lightQueueCount;
  417. ++lightQueueCount;
  418. }
  419. }
  420. }
  421. // Mark the last split
  422. if (lightQueueCount != prevLightQueueCount)
  423. lightQueues_[lightQueueCount - 1].lastSplit_ = true;
  424. }
  425. // Resize the light queue vector now that final size is known
  426. lightQueues_.Resize(lightQueueCount);
  427. }
  428. // Process drawables with limited light count
  429. if (maxLightsDrawables.Size())
  430. {
  431. PROFILE(GetMaxLightsBatches);
  432. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables.Begin(); i != maxLightsDrawables.End(); ++i)
  433. {
  434. Drawable* drawable = *i;
  435. drawable->LimitLights();
  436. const PODVector<Light*>& lights = drawable->GetLights();
  437. for (unsigned i = 0; i < lights.Size(); ++i)
  438. {
  439. Light* splitLight = lights[i];
  440. Light* light = splitLight->GetOriginalLight();
  441. if (!light)
  442. light = splitLight;
  443. // Find the correct light queue again
  444. LightBatchQueue* queue = 0;
  445. Map<Light*, unsigned>::Iterator j = lightQueueIndex.Find(splitLight);
  446. if (j != lightQueueIndex.End())
  447. queue = &lightQueues_[j->second_];
  448. GetLitBatches(drawable, light, splitLight, queue, litTransparencies);
  449. }
  450. }
  451. }
  452. // Go through geometries for base pass batches
  453. {
  454. PROFILE(GetBaseBatches);
  455. for (unsigned i = 0; i < geometries_.Size(); ++i)
  456. {
  457. Drawable* drawable = geometries_[i];
  458. unsigned numBatches = drawable->GetNumBatches();
  459. for (unsigned j = 0; j < numBatches; ++j)
  460. {
  461. Batch baseBatch;
  462. drawable->GetBatch(frame_, j, baseBatch);
  463. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  464. if (!baseBatch.geometry_ || !tech)
  465. continue;
  466. // Check here if the material technique refers to a render target texture with camera(s) attached
  467. // Only check this for the main view (null rendertarget)
  468. if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
  469. CheckMaterialForAuxView(baseBatch.material_);
  470. // If object already has a lit base pass, can skip the unlit base pass
  471. if (drawable->HasBasePass(j))
  472. continue;
  473. // Fill the rest of the batch
  474. baseBatch.camera_ = camera_;
  475. baseBatch.distance_ = drawable->GetDistance();
  476. Pass* pass = 0;
  477. // In deferred mode, check for a G-buffer batch first
  478. if (mode_ != RENDER_FORWARD)
  479. {
  480. pass = tech->GetPass(PASS_GBUFFER);
  481. if (pass)
  482. {
  483. renderer_->SetBatchShaders(baseBatch, tech, pass);
  484. baseBatch.hasPriority_ = !pass->GetAlphaTest() && !pass->GetAlphaMask();
  485. gBufferQueue_.AddBatch(baseBatch);
  486. // Check also for an additional pass (possibly for emissive)
  487. pass = tech->GetPass(PASS_EXTRA);
  488. if (pass)
  489. {
  490. renderer_->SetBatchShaders(baseBatch, tech, pass);
  491. baseQueue_.AddBatch(baseBatch);
  492. }
  493. continue;
  494. }
  495. }
  496. // Then check for forward rendering base pass
  497. pass = tech->GetPass(PASS_BASE);
  498. if (pass)
  499. {
  500. renderer_->SetBatchShaders(baseBatch, tech, pass);
  501. if (pass->GetBlendMode() == BLEND_REPLACE)
  502. {
  503. baseBatch.hasPriority_ = !pass->GetAlphaTest() && !pass->GetAlphaMask();
  504. baseQueue_.AddBatch(baseBatch);
  505. }
  506. else
  507. {
  508. baseBatch.hasPriority_ = true;
  509. transparentQueue_.AddBatch(baseBatch, true);
  510. }
  511. continue;
  512. }
  513. else
  514. {
  515. // If no base pass, finally check for extra / custom pass
  516. pass = tech->GetPass(PASS_EXTRA);
  517. if (pass)
  518. {
  519. baseBatch.hasPriority_ = false;
  520. renderer_->SetBatchShaders(baseBatch, tech, pass);
  521. extraQueue_.AddBatch(baseBatch);
  522. }
  523. }
  524. }
  525. }
  526. }
  527. // All batches have been collected. Sort them now
  528. SortBatches();
  529. }
  530. void View::GetLitBatches(Drawable* drawable, Light* light, Light* splitLight, LightBatchQueue* lightQueue,
  531. HashSet<LitTransparencyCheck>& litTransparencies)
  532. {
  533. bool splitPointLight = splitLight->GetLightType() == LIGHT_SPLITPOINT;
  534. // Whether to allow shadows for transparencies, or for forward lit objects in deferred mode
  535. bool allowShadows = !renderer_->reuseShadowMaps_ && !splitPointLight;
  536. unsigned numBatches = drawable->GetNumBatches();
  537. for (unsigned i = 0; i < numBatches; ++i)
  538. {
  539. Batch litBatch;
  540. drawable->GetBatch(frame_, i, litBatch);
  541. Technique* tech = GetTechnique(drawable, litBatch.material_);
  542. if (!litBatch.geometry_ || !tech)
  543. continue;
  544. // If material uses opaque G-buffer rendering, skip
  545. if (mode_ != RENDER_FORWARD && tech->HasPass(PASS_GBUFFER))
  546. continue;
  547. Pass* pass = 0;
  548. bool priority = false;
  549. // For directional light, check for lit base pass
  550. if (splitLight->GetLightType() == LIGHT_DIRECTIONAL)
  551. {
  552. if (!drawable->HasBasePass(i))
  553. {
  554. pass = tech->GetPass(PASS_LITBASE);
  555. if (pass)
  556. {
  557. priority = true;
  558. drawable->SetBasePass(i);
  559. }
  560. }
  561. }
  562. // If no lit base pass, get ordinary light pass
  563. if (!pass)
  564. pass = tech->GetPass(PASS_LIGHT);
  565. // Skip if material does not receive light at all
  566. if (!pass)
  567. continue;
  568. // Fill the rest of the batch
  569. litBatch.camera_ = camera_;
  570. litBatch.distance_ = drawable->GetDistance();
  571. litBatch.light_ = splitLight;
  572. litBatch.hasPriority_ = priority;
  573. // Check from the ambient pass whether the object is opaque
  574. Pass* ambientPass = tech->GetPass(PASS_BASE);
  575. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  576. {
  577. if (mode_ == RENDER_FORWARD)
  578. {
  579. if (lightQueue)
  580. {
  581. renderer_->SetBatchShaders(litBatch, tech, pass);
  582. lightQueue->litBatches_.AddBatch(litBatch);
  583. }
  584. }
  585. else
  586. {
  587. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  588. baseQueue_.AddBatch(litBatch);
  589. }
  590. }
  591. else
  592. {
  593. if (splitPointLight)
  594. {
  595. // Check if already lit
  596. LitTransparencyCheck check(light, drawable, i);
  597. if (litTransparencies.Find(check) != litTransparencies.End())
  598. continue;
  599. // Use the original light instead of the split one, to choose correct scissor
  600. litBatch.light_ = light;
  601. litTransparencies.Insert(check);
  602. }
  603. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  604. transparentQueue_.AddBatch(litBatch, true);
  605. }
  606. }
  607. }
  608. void View::RenderBatchesForward()
  609. {
  610. {
  611. // Render opaque objects' base passes
  612. PROFILE(RenderBasePass);
  613. graphics_->SetColorWrite(true);
  614. graphics_->SetStencilTest(false);
  615. graphics_->SetRenderTarget(0, renderTarget_);
  616. graphics_->SetDepthStencil(depthStencil_);
  617. graphics_->SetViewport(screenRect_);
  618. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, zone_->GetFogColor());
  619. RenderBatchQueue(baseQueue_);
  620. }
  621. {
  622. // Render shadow maps + opaque objects' shadowed additive lighting
  623. PROFILE(RenderLights);
  624. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  625. {
  626. LightBatchQueue& queue = lightQueues_[i];
  627. // If reusing shadowmaps, render each of them before the lit batches
  628. if (renderer_->reuseShadowMaps_ && queue.light_->GetShadowMap())
  629. RenderShadowMap(queue);
  630. graphics_->SetRenderTarget(0, renderTarget_);
  631. graphics_->SetDepthStencil(depthStencil_);
  632. graphics_->SetViewport(screenRect_);
  633. RenderForwardLightBatchQueue(queue.litBatches_, queue.light_);
  634. // Clear the stencil buffer after the last split
  635. if (queue.lastSplit_)
  636. {
  637. LightType type = queue.light_->GetLightType();
  638. if (type == LIGHT_SPLITPOINT || type == LIGHT_DIRECTIONAL)
  639. DrawSplitLightToStencil(*camera_, queue.light_, true);
  640. }
  641. }
  642. }
  643. graphics_->SetRenderTarget(0, renderTarget_);
  644. graphics_->SetDepthStencil(depthStencil_);
  645. graphics_->SetViewport(screenRect_);
  646. if (!extraQueue_.IsEmpty())
  647. {
  648. // Render extra / custom passes
  649. PROFILE(RenderExtraPass);
  650. RenderBatchQueue(extraQueue_);
  651. }
  652. if (!transparentQueue_.IsEmpty())
  653. {
  654. // Render transparent objects last (both base passes & additive lighting)
  655. PROFILE(RenderTransparent);
  656. RenderBatchQueue(transparentQueue_, true);
  657. }
  658. }
  659. void View::RenderBatchesDeferred()
  660. {
  661. Texture2D* diffBuffer = graphics_->GetDiffBuffer();
  662. Texture2D* normalBuffer = graphics_->GetNormalBuffer();
  663. Texture2D* depthBuffer = graphics_->GetDepthBuffer();
  664. // Check for deferred antialiasing (edge filter) in deferred mode. Only use it on the main view (null rendertarget)
  665. bool edgeFilter = !renderTarget_ && graphics_->GetMultiSample() > 1;
  666. RenderSurface* renderBuffer = edgeFilter ? graphics_->GetScreenBuffer()->GetRenderSurface() : renderTarget_;
  667. // Calculate shader parameters needed only in deferred rendering
  668. Vector3 nearVector, farVector;
  669. camera_->GetFrustumSize(nearVector, farVector);
  670. Vector4 viewportParams(farVector.x_, farVector.y_, farVector.z_, 0.0f);
  671. float gBufferWidth = (float)diffBuffer->GetWidth();
  672. float gBufferHeight = (float)diffBuffer->GetHeight();
  673. float widthRange = 0.5f * width_ / gBufferWidth;
  674. float heightRange = 0.5f * height_ / gBufferHeight;
  675. #ifdef USE_OPENGL
  676. Vector4 bufferUVOffset(((float)screenRect_.left_) / gBufferWidth + widthRange,
  677. ((float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  678. // Hardware depth is non-linear in perspective views, so calculate the depth reconstruction parameters
  679. float farClip = camera_->GetFarClip();
  680. float nearClip = camera_->GetNearClip();
  681. Vector4 depthReconstruct = Vector4::ZERO;
  682. depthReconstruct.x_ = farClip / (farClip - nearClip);
  683. depthReconstruct.y_ = -nearClip / (farClip - nearClip);
  684. shaderParameters_[PSP_DEPTHRECONSTRUCT] = depthReconstruct;
  685. #else
  686. Vector4 bufferUVOffset((0.5f + (float)screenRect_.left_) / gBufferWidth + widthRange,
  687. (0.5f + (float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  688. #endif
  689. Vector4 viewportSize((float)screenRect_.left_ / gBufferWidth, (float)screenRect_.top_ / gBufferHeight,
  690. (float)screenRect_.right_ / gBufferWidth, (float)screenRect_.bottom_ / gBufferHeight);
  691. shaderParameters_[VSP_FRUSTUMSIZE] = viewportParams;
  692. shaderParameters_[VSP_GBUFFEROFFSETS] = bufferUVOffset;
  693. {
  694. // Clear and render the G-buffer
  695. PROFILE(RenderGBuffer);
  696. graphics_->SetColorWrite(true);
  697. graphics_->SetScissorTest(false);
  698. graphics_->SetStencilTest(false);
  699. #ifdef USE_OPENGL
  700. // On OpenGL, clear the diffuse and depth buffers normally
  701. graphics_->SetRenderTarget(0, diffBuffer);
  702. graphics_->SetDepthStencil(depthBuffer);
  703. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL);
  704. graphics_->SetRenderTarget(1, normalBuffer);
  705. #else
  706. // On Direct3D9, clear only depth and stencil at first (fillrate optimization)
  707. graphics_->SetRenderTarget(0, diffBuffer);
  708. graphics_->SetRenderTarget(1, normalBuffer);
  709. graphics_->SetRenderTarget(2, depthBuffer);
  710. graphics_->SetDepthStencil(depthStencil_);
  711. graphics_->SetViewport(screenRect_);
  712. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  713. #endif
  714. RenderBatchQueue(gBufferQueue_);
  715. graphics_->SetAlphaTest(false);
  716. graphics_->SetBlendMode(BLEND_REPLACE);
  717. #ifndef USE_OPENGL
  718. // On Direct3D9, clear now the parts of G-Buffer that were not rendered into
  719. graphics_->SetDepthTest(CMP_LESSEQUAL);
  720. graphics_->SetDepthWrite(false);
  721. graphics_->ResetRenderTarget(2);
  722. graphics_->SetRenderTarget(1, depthBuffer);
  723. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("GBufferFill"),
  724. renderer_->GetPixelShader("GBufferFill"), false, shaderParameters_);
  725. #endif
  726. }
  727. {
  728. PROFILE(RenderAmbientQuad);
  729. // Render ambient color & fog. On OpenGL the depth buffer will be copied now
  730. graphics_->SetDepthTest(CMP_ALWAYS);
  731. graphics_->SetRenderTarget(0, renderBuffer);
  732. graphics_->ResetRenderTarget(1);
  733. #ifdef USE_OPENGL
  734. graphics_->SetDepthWrite(true);
  735. #else
  736. graphics_->ResetRenderTarget(2);
  737. #endif
  738. graphics_->SetDepthStencil(depthStencil_);
  739. graphics_->SetViewport(screenRect_);
  740. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  741. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  742. String pixelShaderName = "Ambient";
  743. #ifdef USE_OPENGL
  744. if (camera_->IsOrthographic())
  745. pixelShaderName += "Ortho";
  746. // On OpenGL, set up a stencil operation to reset the stencil during ambient quad rendering
  747. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_ZERO, OP_KEEP, OP_KEEP);
  748. #endif
  749. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("Ambient"),
  750. renderer_->GetPixelShader("Ambient"), false, shaderParameters_);
  751. #ifdef USE_OPENGL
  752. graphics_->SetStencilTest(false);
  753. #endif
  754. }
  755. {
  756. // Render lights
  757. PROFILE(RenderLights);
  758. // Shadowed lights
  759. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  760. {
  761. LightBatchQueue& queue = lightQueues_[i];
  762. // If reusing shadowmaps, render each of them before the lit batches
  763. if (renderer_->reuseShadowMaps_ && queue.light_->GetShadowMap())
  764. RenderShadowMap(queue);
  765. // Light volume batches are not sorted as there should be only one of them
  766. if (queue.volumeBatches_.Size())
  767. {
  768. graphics_->SetRenderTarget(0, renderBuffer);
  769. graphics_->SetDepthStencil(depthStencil_);
  770. graphics_->SetViewport(screenRect_);
  771. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  772. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  773. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  774. for (unsigned j = 0; j < queue.volumeBatches_.Size(); ++j)
  775. {
  776. renderer_->SetupLightBatch(queue.volumeBatches_[j]);
  777. queue.volumeBatches_[j].Draw(graphics_, shaderParameters_);
  778. }
  779. // If was the last split of a split point light, clear the stencil by rendering the point light again
  780. if (queue.lastSplit_ && queue.light_->GetLightType() == LIGHT_SPLITPOINT)
  781. DrawSplitLightToStencil(*camera_, queue.light_, true);
  782. }
  783. }
  784. // Non-shadowed lights
  785. if (noShadowLightQueue_.sortedBatches_.Size())
  786. {
  787. graphics_->SetRenderTarget(0, renderBuffer);
  788. graphics_->SetDepthStencil(depthStencil_);
  789. graphics_->SetViewport(screenRect_);
  790. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  791. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  792. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  793. for (unsigned i = 0; i < noShadowLightQueue_.sortedBatches_.Size(); ++i)
  794. {
  795. renderer_->SetupLightBatch(*noShadowLightQueue_.sortedBatches_[i]);
  796. noShadowLightQueue_.sortedBatches_[i]->Draw(graphics_, shaderParameters_);
  797. }
  798. }
  799. }
  800. {
  801. // Render base passes
  802. PROFILE(RenderBasePass);
  803. graphics_->SetStencilTest(false);
  804. graphics_->SetTexture(TU_DIFFBUFFER, 0);
  805. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  806. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  807. graphics_->SetRenderTarget(0, renderBuffer);
  808. graphics_->SetDepthStencil(depthStencil_);
  809. graphics_->SetViewport(screenRect_);
  810. RenderBatchQueue(baseQueue_, true);
  811. }
  812. if (!extraQueue_.IsEmpty())
  813. {
  814. // Render extra / custom passes
  815. PROFILE(RenderExtraPass);
  816. RenderBatchQueue(extraQueue_);
  817. }
  818. if (!transparentQueue_.IsEmpty())
  819. {
  820. // Render transparent objects last (both ambient & additive lighting)
  821. PROFILE(RenderTransparent);
  822. RenderBatchQueue(transparentQueue_, true);
  823. }
  824. // Render deferred antialiasing now if enabled
  825. if (edgeFilter)
  826. {
  827. PROFILE(RenderEdgeFilter);
  828. const EdgeFilterParameters& parameters = renderer_->GetEdgeFilter();
  829. ShaderVariation* vs = renderer_->GetVertexShader("EdgeFilter");
  830. ShaderVariation* ps = renderer_->GetPixelShader("EdgeFilter");
  831. HashMap<StringHash, Vector4> shaderParameters(shaderParameters_);
  832. shaderParameters[PSP_EDGEFILTERPARAMS] = Vector4(parameters.radius_, parameters.threshold_, parameters.strength_, 0.0f);
  833. shaderParameters[PSP_SAMPLEOFFSETS] = Vector4(1.0f / gBufferWidth, 1.0f / gBufferHeight, 0.0f, 0.0f);
  834. graphics_->SetAlphaTest(false);
  835. graphics_->SetBlendMode(BLEND_REPLACE);
  836. graphics_->SetDepthTest(CMP_ALWAYS),
  837. graphics_->SetStencilTest(false);
  838. graphics_->SetRenderTarget(0, renderTarget_);
  839. graphics_->SetDepthStencil(depthStencil_);
  840. graphics_->SetViewport(screenRect_);
  841. graphics_->SetTexture(TU_DIFFBUFFER, graphics_->GetScreenBuffer());
  842. renderer_->DrawFullScreenQuad(*camera_, vs, ps, false, shaderParameters);
  843. }
  844. }
  845. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  846. {
  847. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  848. float halfViewSize = camera->GetHalfViewSize();
  849. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  850. Vector3 cameraPos = camera->GetWorldPosition();
  851. for (unsigned i = 0; i < occluders.Size(); ++i)
  852. {
  853. Drawable* occluder = occluders[i];
  854. occluder->UpdateDistance(frame_);
  855. bool erase = false;
  856. // Check occluder's draw distance (in main camera view)
  857. float maxDistance = occluder->GetDrawDistance();
  858. if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
  859. erase = true;
  860. // Check that occluder is big enough on the screen
  861. const BoundingBox& box = occluder->GetWorldBoundingBox();
  862. float diagonal = (box.max_ - box.min_).LengthFast();
  863. float compare;
  864. if (!camera->IsOrthographic())
  865. compare = diagonal * halfViewSize / occluder->GetDistance();
  866. else
  867. compare = diagonal * invOrthoSize;
  868. if (compare < occluderSizeThreshold_)
  869. erase = true;
  870. if (!erase)
  871. {
  872. unsigned totalTriangles = 0;
  873. unsigned batches = occluder->GetNumBatches();
  874. Batch tempBatch;
  875. for (unsigned j = 0; j < batches; ++j)
  876. {
  877. occluder->GetBatch(frame_, j, tempBatch);
  878. if (tempBatch.geometry_)
  879. totalTriangles += tempBatch.geometry_->GetIndexCount() / 3;
  880. }
  881. // Store amount of triangles divided by screen size as a sorting key
  882. // (best occluders are big and have few triangles)
  883. occluder->SetSortValue((float)totalTriangles / compare);
  884. }
  885. else
  886. {
  887. occluders.Erase(occluders.Begin() + i);
  888. --i;
  889. }
  890. }
  891. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  892. if (occluders.Size())
  893. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  894. }
  895. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  896. {
  897. for (unsigned i = 0; i < occluders.Size(); ++i)
  898. {
  899. Drawable* occluder = occluders[i];
  900. if (i > 0)
  901. {
  902. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  903. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  904. continue;
  905. }
  906. occluder->UpdateGeometry(frame_);
  907. // Check for running out of triangles
  908. if (!occluder->DrawOcclusion(buffer))
  909. return;
  910. }
  911. }
  912. unsigned View::ProcessLight(Light* light)
  913. {
  914. unsigned numLitGeometries = 0;
  915. unsigned numShadowCasters = 0;
  916. unsigned numSplits;
  917. // Check if light should be shadowed
  918. bool isShadowed = drawShadows_ && light->GetCastShadows();
  919. // If shadow distance non-zero, check it
  920. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  921. isShadowed = false;
  922. // If light has no ramp textures defined, set defaults
  923. if (light->GetLightType() != LIGHT_DIRECTIONAL && !light->GetRampTexture())
  924. light->SetRampTexture(renderer_->GetDefaultLightRamp());
  925. if (light->GetLightType() == LIGHT_SPOT && !light->GetShapeTexture())
  926. light->SetShapeTexture(renderer_->GetDefaultLightSpot());
  927. // Split the light if necessary
  928. if (isShadowed)
  929. numSplits = SplitLight(light);
  930. else
  931. {
  932. // No splitting, use the original light
  933. splitLights_[0] = light;
  934. numSplits = 1;
  935. }
  936. // For a shadowed directional light, get occluders once using the whole (non-split) light frustum
  937. bool useOcclusion = false;
  938. OcclusionBuffer* buffer = 0;
  939. if (maxOccluderTriangles_ > 0 && isShadowed && light->GetLightType() == LIGHT_DIRECTIONAL)
  940. {
  941. // This shadow camera is never used for actually querying shadow casters, just occluders
  942. Camera* shadowCamera = renderer_->CreateShadowCamera();
  943. light->SetShadowCamera(shadowCamera);
  944. SetupShadowCamera(light, true);
  945. // Get occluders, which must be shadow-casting themselves
  946. FrustumOctreeQuery query(shadowOccluders_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask(), true,
  947. true);
  948. octree_->GetDrawables(query);
  949. UpdateOccluders(shadowOccluders_, shadowCamera);
  950. if (shadowOccluders_.Size())
  951. {
  952. // Shadow viewport is rectangular and consumes more CPU fillrate, so halve size
  953. buffer = renderer_->GetOrCreateOcclusionBuffer(shadowCamera, maxOccluderTriangles_, true);
  954. DrawOccluders(buffer, shadowOccluders_);
  955. buffer->BuildDepthHierarchy();
  956. useOcclusion = true;
  957. }
  958. }
  959. // Process each split for shadow camera update, lit geometries, and shadow casters
  960. for (unsigned i = 0; i < numSplits; ++i)
  961. {
  962. litGeometries_[i].Clear();
  963. shadowCasters_[i].Clear();
  964. }
  965. for (unsigned i = 0; i < numSplits; ++i)
  966. {
  967. Light* split = splitLights_[i];
  968. LightType type = split->GetLightType();
  969. bool isSplitShadowed = isShadowed && split->GetCastShadows();
  970. Camera* shadowCamera = 0;
  971. // If shadow casting, choose the shadow map & update shadow camera
  972. if (isSplitShadowed)
  973. {
  974. shadowCamera = renderer_->CreateShadowCamera();
  975. split->SetShadowMap(renderer_->GetShadowMap(splitLights_[i]->GetShadowResolution()));
  976. // Check if managed to get a shadow map. Otherwise must convert to non-shadowed
  977. if (split->GetShadowMap())
  978. {
  979. split->SetShadowCamera(shadowCamera);
  980. SetupShadowCamera(split);
  981. }
  982. else
  983. {
  984. isSplitShadowed = false;
  985. split->SetShadowCamera(0);
  986. }
  987. }
  988. else
  989. {
  990. split->SetShadowCamera(0);
  991. split->SetShadowMap(0);
  992. }
  993. BoundingBox geometryBox;
  994. BoundingBox shadowCasterBox;
  995. switch (type)
  996. {
  997. case LIGHT_DIRECTIONAL:
  998. // Loop through visible geometries and check if they belong to this split
  999. {
  1000. float nearSplit = split->GetNearSplit() - split->GetNearFadeRange();
  1001. float farSplit = split->GetFarSplit();
  1002. // If split extends to the whole visible frustum, no depth check necessary
  1003. bool optimize = nearSplit <= camera_->GetNearClip() && farSplit >= camera_->GetFarClip();
  1004. // If whole visible scene is outside the split, can reject trivially
  1005. if (sceneViewBox_.min_.z_ > farSplit || sceneViewBox_.max_.z_ < nearSplit)
  1006. {
  1007. split->SetShadowMap(0);
  1008. continue;
  1009. }
  1010. bool generateBoxes = isSplitShadowed && split->GetShadowFocus().focus_;
  1011. Matrix3x4 lightView;
  1012. if (shadowCamera)
  1013. lightView = shadowCamera->GetInverseWorldTransform();
  1014. if (!optimize)
  1015. {
  1016. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1017. {
  1018. Drawable* drawable = geometries_[j];
  1019. const GeometryDepthBounds& bounds = geometryDepthBounds_[j];
  1020. // Check bounds and light mask
  1021. if (bounds.min_ <= farSplit && bounds.max_ >= nearSplit && drawable->GetLightMask() &
  1022. split->GetLightMask())
  1023. {
  1024. litGeometries_[i].Push(drawable);
  1025. if (generateBoxes)
  1026. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1027. }
  1028. }
  1029. }
  1030. else
  1031. {
  1032. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1033. {
  1034. Drawable* drawable = geometries_[j];
  1035. // Need to check light mask only
  1036. if (drawable->GetLightMask() & split->GetLightMask())
  1037. {
  1038. litGeometries_[i].Push(drawable);
  1039. if (generateBoxes)
  1040. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1041. }
  1042. }
  1043. }
  1044. }
  1045. // Then get shadow casters by shadow camera frustum query. Use occlusion because of potentially many geometries
  1046. if (isSplitShadowed && litGeometries_[i].Size())
  1047. {
  1048. Camera* shadowCamera = split->GetShadowCamera();
  1049. if (!useOcclusion)
  1050. {
  1051. // Get potential shadow casters without occlusion
  1052. FrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY,
  1053. camera_->GetViewMask());
  1054. octree_->GetDrawables(query);
  1055. }
  1056. else
  1057. {
  1058. // Get potential shadow casters with occlusion
  1059. OccludedFrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), buffer,
  1060. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1061. octree_->GetDrawables(query);
  1062. }
  1063. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, false, isSplitShadowed);
  1064. }
  1065. break;
  1066. case LIGHT_POINT:
  1067. {
  1068. SphereOctreeQuery query(tempDrawables_, Sphere(split->GetWorldPosition(), split->GetRange()), DRAWABLE_GEOMETRY,
  1069. camera_->GetViewMask());
  1070. octree_->GetDrawables(query);
  1071. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, false);
  1072. }
  1073. break;
  1074. case LIGHT_SPOT:
  1075. case LIGHT_SPLITPOINT:
  1076. {
  1077. FrustumOctreeQuery query(tempDrawables_, splitLights_[i]->GetFrustum(), DRAWABLE_GEOMETRY,
  1078. camera_->GetViewMask());
  1079. octree_->GetDrawables(query);
  1080. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, isSplitShadowed);
  1081. }
  1082. break;
  1083. }
  1084. // Optimization: if a particular split has no shadow casters, render as unshadowed
  1085. if (!shadowCasters_[i].Size())
  1086. split->SetShadowMap(0);
  1087. // Focus shadow camera as applicable
  1088. if (split->GetShadowMap())
  1089. {
  1090. if (split->GetShadowFocus().focus_)
  1091. FocusShadowCamera(split, geometryBox, shadowCasterBox);
  1092. // Set a zoom factor to ensure that we do not render to the shadow map border
  1093. // (clamp addressing is necessary because border mode /w hardware shadow maps is not supported by all GPUs)
  1094. Camera* shadowCamera = split->GetShadowCamera();
  1095. Texture2D* shadowMap = split->GetShadowMap();
  1096. if (shadowCamera->GetZoom() >= 1.0f)
  1097. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((float)(shadowMap->GetWidth() - 2) /
  1098. (float)shadowMap->GetWidth()));
  1099. }
  1100. // Update count of total lit geometries & shadow casters
  1101. numLitGeometries += litGeometries_[i].Size();
  1102. numShadowCasters += shadowCasters_[i].Size();
  1103. }
  1104. // If no lit geometries at all, no need to process further
  1105. if (!numLitGeometries)
  1106. numSplits = 0;
  1107. // If no shadow casters at all, concatenate lit geometries into one & return the original light
  1108. else if (!numShadowCasters)
  1109. {
  1110. if (numSplits > 1)
  1111. {
  1112. // Make sure there are no duplicates
  1113. HashSet<Drawable*> allLitGeometries;
  1114. for (unsigned i = 0; i < numSplits; ++i)
  1115. {
  1116. for (Vector<Drawable*>::Iterator j = litGeometries_[i].Begin(); j != litGeometries_[i].End(); ++j)
  1117. allLitGeometries.Insert(*j);
  1118. }
  1119. litGeometries_[0].Resize(allLitGeometries.Size());
  1120. unsigned index = 0;
  1121. for (HashSet<Drawable*>::Iterator i = allLitGeometries.Begin(); i != allLitGeometries.End(); ++i)
  1122. litGeometries_[0][index++] = *i;
  1123. }
  1124. splitLights_[0] = light;
  1125. splitLights_[0]->SetShadowMap(0);
  1126. numSplits = 1;
  1127. }
  1128. return numSplits;
  1129. }
  1130. void View::ProcessLightQuery(unsigned splitIndex, const PODVector<Drawable*>& result, BoundingBox& geometryBox,
  1131. BoundingBox& shadowCasterBox, bool getLitGeometries, bool getShadowCasters)
  1132. {
  1133. Light* light = splitLights_[splitIndex];
  1134. Matrix3x4 lightView;
  1135. Matrix4 lightProj;
  1136. Frustum lightViewFrustum;
  1137. BoundingBox lightViewFrustumBox;
  1138. bool mergeBoxes = light->GetLightType() != LIGHT_SPLITPOINT && light->GetShadowMap() && light->GetShadowFocus().focus_;
  1139. bool projectBoxes = false;
  1140. Camera* shadowCamera = light->GetShadowCamera();
  1141. if (shadowCamera)
  1142. {
  1143. bool projectBoxes = !shadowCamera->IsOrthographic();
  1144. lightView = shadowCamera->GetInverseWorldTransform();
  1145. lightProj = shadowCamera->GetProjection();
  1146. // Transform scene frustum into shadow camera's view space for shadow caster visibility check
  1147. // For point & spot lights, we can use the whole scene frustum. For directional lights, use the
  1148. // intersection of the scene frustum and the split frustum, so that shadow casters do not get
  1149. // rendered into unnecessary splits
  1150. if (light->GetLightType() != LIGHT_DIRECTIONAL)
  1151. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1152. else
  1153. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, light->GetNearSplit() -
  1154. light->GetNearFadeRange()), Min(sceneViewBox_.max_.z_, light->GetFarSplit())).Transformed(lightView);
  1155. lightViewFrustumBox.Define(lightViewFrustum);
  1156. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1157. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1158. getShadowCasters = false;
  1159. }
  1160. else
  1161. getShadowCasters = false;
  1162. BoundingBox lightViewBox;
  1163. BoundingBox lightProjBox;
  1164. for (unsigned i = 0; i < result.Size(); ++i)
  1165. {
  1166. Drawable* drawable = static_cast<Drawable*>(result[i]);
  1167. drawable->UpdateDistance(frame_);
  1168. bool boxGenerated = false;
  1169. // If draw distance non-zero, check it
  1170. float maxDistance = drawable->GetDrawDistance();
  1171. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  1172. continue;
  1173. // Check light mask
  1174. if (!(drawable->GetLightMask() & light->GetLightMask()))
  1175. continue;
  1176. // Get lit geometry only if inside main camera frustum this frame
  1177. if (getLitGeometries && drawable->IsInView(frame_))
  1178. {
  1179. if (mergeBoxes)
  1180. {
  1181. // Transform bounding box into light view space, and to projection space if needed
  1182. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1183. if (!projectBoxes)
  1184. geometryBox.Merge(lightViewBox);
  1185. else
  1186. {
  1187. lightProjBox = lightViewBox.Projected(lightProj);
  1188. geometryBox.Merge(lightProjBox);
  1189. }
  1190. boxGenerated = true;
  1191. }
  1192. litGeometries_[splitIndex].Push(drawable);
  1193. }
  1194. // Shadow caster need not be inside main camera frustum: in that case try to detect whether
  1195. // the shadow projection intersects the view
  1196. if (getShadowCasters && drawable->GetCastShadows())
  1197. {
  1198. // If shadow distance non-zero, check it
  1199. float maxShadowDistance = drawable->GetShadowDistance();
  1200. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1201. continue;
  1202. if (!boxGenerated)
  1203. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1204. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1205. {
  1206. if (mergeBoxes)
  1207. {
  1208. if (!projectBoxes)
  1209. shadowCasterBox.Merge(lightViewBox);
  1210. else
  1211. {
  1212. if (!boxGenerated)
  1213. lightProjBox = lightViewBox.Projected(lightProj);
  1214. shadowCasterBox.Merge(lightProjBox);
  1215. }
  1216. }
  1217. // Update geometry now if not updated yet
  1218. if (!drawable->IsInView(frame_))
  1219. {
  1220. drawable->MarkInShadowView(frame_);
  1221. drawable->UpdateGeometry(frame_);
  1222. }
  1223. shadowCasters_[splitIndex].Push(drawable);
  1224. }
  1225. }
  1226. }
  1227. }
  1228. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1229. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1230. {
  1231. // If shadow caster is also an occluder, must let it be visible, because it has potentially already culled
  1232. // away other shadow casters (could also check the actual shadow occluder vector, but that would be slower)
  1233. if (drawable->IsOccluder())
  1234. return true;
  1235. if (shadowCamera->IsOrthographic())
  1236. {
  1237. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1238. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1239. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1240. }
  1241. else
  1242. {
  1243. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1244. if (drawable->IsInView(frame_))
  1245. return true;
  1246. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1247. Vector3 center = lightViewBox.Center();
  1248. Ray extrusionRay(center, center.Normalized());
  1249. float extrusionDistance = shadowCamera->GetFarClip();
  1250. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  1251. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1252. float sizeFactor = extrusionDistance / originalDistance;
  1253. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1254. // than necessary, so the test will be conservative
  1255. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1256. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1257. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1258. lightViewBox.Merge(extrudedBox);
  1259. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1260. }
  1261. }
  1262. void View::SetupShadowCamera(Light* light, bool shadowOcclusion)
  1263. {
  1264. Camera* shadowCamera = light->GetShadowCamera();
  1265. Node* cameraNode = shadowCamera->GetNode();
  1266. const FocusParameters& parameters = light->GetShadowFocus();
  1267. // Reset zoom
  1268. shadowCamera->SetZoom(1.0f);
  1269. switch (light->GetLightType())
  1270. {
  1271. case LIGHT_DIRECTIONAL:
  1272. {
  1273. float extrusionDistance = camera_->GetFarClip();
  1274. // Calculate initial position & rotation
  1275. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1276. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1277. Quaternion rot(Vector3::FORWARD, lightWorldDirection);
  1278. cameraNode->SetTransform(pos, rot);
  1279. // Calculate main camera shadowed frustum in light's view space
  1280. float sceneMaxZ = camera_->GetFarClip();
  1281. // When shadow focusing is enabled, use the scene far Z to limit maximum frustum size
  1282. if (shadowOcclusion || parameters.focus_)
  1283. sceneMaxZ = Min(sceneViewBox_.max_.z_, sceneMaxZ);
  1284. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1285. Frustum lightViewSplitFrustum = camera_->GetSplitFrustum(light->GetNearSplit() - light->GetNearFadeRange(),
  1286. Min(light->GetFarSplit(), sceneMaxZ)).Transformed(lightView);
  1287. // Fit the frustum inside a bounding box. If uniform size, use a sphere instead
  1288. BoundingBox shadowBox;
  1289. if (!shadowOcclusion && parameters.nonUniform_)
  1290. shadowBox.Define(lightViewSplitFrustum);
  1291. else
  1292. {
  1293. Sphere shadowSphere;
  1294. shadowSphere.Define(lightViewSplitFrustum);
  1295. shadowBox.Define(shadowSphere);
  1296. }
  1297. shadowCamera->SetOrthographic(true);
  1298. shadowCamera->SetNearClip(0.0f);
  1299. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1300. // Center shadow camera on the bounding box, snap to whole texels
  1301. QuantizeDirShadowCamera(light, shadowBox);
  1302. }
  1303. break;
  1304. case LIGHT_SPOT:
  1305. case LIGHT_SPLITPOINT:
  1306. {
  1307. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1308. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1309. shadowCamera->SetFarClip(light->GetRange());
  1310. shadowCamera->SetOrthographic(false);
  1311. shadowCamera->SetFov(light->GetFov());
  1312. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1313. // For spot lights, zoom out shadowmap if far away (reduces fillrate)
  1314. if (light->GetLightType() == LIGHT_SPOT && parameters.zoomOut_)
  1315. {
  1316. // Make sure the out-zooming does not start while we are inside the spot
  1317. float distance = Max((camera_->GetInverseWorldTransform() * light->GetWorldPosition()).z_ - light->GetRange(),
  1318. 1.0f);
  1319. float lightPixels = (((float)height_ * light->GetRange() * camera_->GetZoom() * 0.5f) / distance);
  1320. // Clamp pixel amount to a sufficient minimum to avoid self-shadowing artifacts due to loss of precision
  1321. if (lightPixels < SHADOW_MIN_PIXELS)
  1322. lightPixels = SHADOW_MIN_PIXELS;
  1323. float zoolevel_ = Min(lightPixels / (float)light->GetShadowMap()->GetHeight(), 1.0f);
  1324. shadowCamera->SetZoom(zoolevel_);
  1325. }
  1326. }
  1327. break;
  1328. }
  1329. }
  1330. void View::FocusShadowCamera(Light* light, const BoundingBox& geometryBox, const BoundingBox& shadowCasterBox)
  1331. {
  1332. // If either no geometries or no shadow casters, do nothing
  1333. if (!geometryBox.defined_ || !shadowCasterBox.defined_)
  1334. return;
  1335. Camera* shadowCamera = light->GetShadowCamera();
  1336. const FocusParameters& parameters = light->GetShadowFocus();
  1337. switch (light->GetLightType())
  1338. {
  1339. case LIGHT_DIRECTIONAL:
  1340. {
  1341. BoundingBox combinedBox;
  1342. combinedBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1343. combinedBox.max_.x_ = shadowCamera->GetAspectRatio() * combinedBox.max_.y_;
  1344. combinedBox.min_.y_ = -combinedBox.max_.y_;
  1345. combinedBox.min_.x_ = -combinedBox.max_.x_;
  1346. combinedBox.Intersect(geometryBox);
  1347. combinedBox.Intersect(shadowCasterBox);
  1348. QuantizeDirShadowCamera(light, combinedBox);
  1349. }
  1350. break;
  1351. case LIGHT_SPOT:
  1352. // Can not move, but can zoom the shadow camera. Check for out-zooming (distant shadow map), do nothing in that case
  1353. if (shadowCamera->GetZoom() >= 1.0f)
  1354. {
  1355. BoundingBox combinedBox(-1.0f, 1.0f);
  1356. combinedBox.Intersect(geometryBox);
  1357. combinedBox.Intersect(shadowCasterBox);
  1358. float viewSizeX = Max(fabsf(combinedBox.min_.x_), fabsf(combinedBox.max_.x_));
  1359. float viewSizeY = Max(fabsf(combinedBox.min_.y_), fabsf(combinedBox.max_.y_));
  1360. float viewSize = Max(viewSizeX, viewSizeY);
  1361. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1362. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1363. float quantize = parameters.quantize_ * invOrthoSize;
  1364. float minView = parameters.minView_ * invOrthoSize;
  1365. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1366. if (viewSize < 1.0f)
  1367. shadowCamera->SetZoom(1.0f / viewSize);
  1368. }
  1369. break;
  1370. }
  1371. }
  1372. void View::QuantizeDirShadowCamera(Light* light, const BoundingBox& viewBox)
  1373. {
  1374. Camera* shadowCamera = light->GetShadowCamera();
  1375. Node* cameraNode = shadowCamera->GetNode();
  1376. const FocusParameters& parameters = light->GetShadowFocus();
  1377. float minX = viewBox.min_.x_;
  1378. float minY = viewBox.min_.y_;
  1379. float maxX = viewBox.max_.x_;
  1380. float maxY = viewBox.max_.y_;
  1381. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1382. Vector2 viewSize(maxX - minX, maxY - minY);
  1383. // Quantize size to reduce swimming
  1384. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1385. if (parameters.nonUniform_)
  1386. {
  1387. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1388. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1389. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1390. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1391. }
  1392. else if (parameters.focus_)
  1393. {
  1394. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1395. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1396. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1397. viewSize.y_ = viewSize.x_;
  1398. }
  1399. shadowCamera->SetOrthoSize(viewSize);
  1400. // Center shadow camera to the view space bounding box
  1401. Vector3 pos = shadowCamera->GetWorldPosition();
  1402. Quaternion rot = shadowCamera->GetWorldRotation();
  1403. Vector3 adjust(center.x_, center.y_, 0.0f);
  1404. cameraNode->Translate(rot * adjust);
  1405. // If there is a shadow map, snap to its whole texels
  1406. Texture2D* shadowMap = light->GetShadowMap();
  1407. if (shadowMap)
  1408. {
  1409. Vector3 viewPos(rot.Inverse() * shadowCamera->GetWorldPosition());
  1410. // Take into account that shadow map border will not be used
  1411. float invActualSize = 1.0f / (float)(shadowMap->GetWidth() - 2);
  1412. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1413. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1414. cameraNode->Translate(rot * snap);
  1415. }
  1416. }
  1417. void View::OptimizeLightByScissor(Light* light)
  1418. {
  1419. if (light)
  1420. graphics_->SetScissorTest(true, GetLightScissor(light));
  1421. else
  1422. graphics_->SetScissorTest(false);
  1423. }
  1424. const Rect& View::GetLightScissor(Light* light)
  1425. {
  1426. Map<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1427. if (i != lightScissorCache_.End())
  1428. return i->second_;
  1429. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1430. Matrix4 projection(camera_->GetProjection());
  1431. switch (light->GetLightType())
  1432. {
  1433. case LIGHT_POINT:
  1434. {
  1435. BoundingBox viewBox = light->GetWorldBoundingBox().Transformed(view);
  1436. return lightScissorCache_[light] = viewBox.Projected(projection);
  1437. }
  1438. case LIGHT_SPOT:
  1439. case LIGHT_SPLITPOINT:
  1440. {
  1441. Frustum viewFrustum = light->GetFrustum().Transformed(view);
  1442. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1443. }
  1444. default:
  1445. return lightScissorCache_[light] = Rect::FULL;
  1446. }
  1447. }
  1448. unsigned View::SplitLight(Light* light)
  1449. {
  1450. LightType type = light->GetLightType();
  1451. if (type == LIGHT_DIRECTIONAL)
  1452. {
  1453. const CascadeParameters& cascade = light->GetShadowCascade();
  1454. unsigned splits = cascade.splits_;
  1455. if (splits > MAX_LIGHT_SPLITS - 1)
  1456. splits = MAX_LIGHT_SPLITS;
  1457. // Orthographic view actually has near clip 0, but clamp it to a theoretical minimum
  1458. float farClip = Min(cascade.shadowRange_, camera_->GetFarClip()); // Shadow range end
  1459. float nearClip = Max(camera_->GetNearClip(), M_MIN_NEARCLIP); // Shadow range start
  1460. bool createExtraSplit = farClip < camera_->GetFarClip();
  1461. // Practical split scheme (Zhang et al.)
  1462. unsigned i;
  1463. for (i = 0; i < splits; ++i)
  1464. {
  1465. // Set a minimum for the fade range to avoid boundary artifacts (missing lighting)
  1466. float splitFadeRange = Max(cascade.splitFadeRange_, 0.001f);
  1467. float iPerM = (float)i / (float)splits;
  1468. float log = nearClip * powf(farClip / nearClip, iPerM);
  1469. float uniform = nearClip + (farClip - nearClip) * iPerM;
  1470. float nearSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1471. float nearFadeRange = nearSplit * splitFadeRange;
  1472. iPerM = (float)(i + 1) / (float)splits;
  1473. log = nearClip * powf(farClip / nearClip, iPerM);
  1474. uniform = nearClip + (farClip - nearClip) * iPerM;
  1475. float farSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1476. float farFadeRange = farSplit * splitFadeRange;
  1477. // If split is completely beyond camera far clip, we are done
  1478. if ((nearSplit - nearFadeRange) > camera_->GetFarClip())
  1479. break;
  1480. Light* splitLight = renderer_->CreateSplitLight(light);
  1481. splitLights_[i] = splitLight;
  1482. // Though the near clip was previously clamped, use the real near clip value for the first split,
  1483. // so that there are no unlit portions
  1484. if (i)
  1485. splitLight->SetNearSplit(nearSplit);
  1486. else
  1487. splitLight->SetNearSplit(camera_->GetNearClip());
  1488. splitLight->SetNearFadeRange(nearFadeRange);
  1489. splitLight->SetFarSplit(farSplit);
  1490. // The final split will not fade
  1491. if (createExtraSplit || i < splits - 1)
  1492. splitLight->SetFarFadeRange(farFadeRange);
  1493. // Create an extra unshadowed split if necessary
  1494. if (createExtraSplit && i == splits - 1)
  1495. {
  1496. Light* splitLight = renderer_->CreateSplitLight(light);
  1497. splitLights_[i + 1] = splitLight;
  1498. splitLight->SetNearSplit(farSplit);
  1499. splitLight->SetNearFadeRange(farFadeRange);
  1500. splitLight->SetCastShadows(false);
  1501. }
  1502. }
  1503. if (createExtraSplit)
  1504. return i + 1;
  1505. else
  1506. return i;
  1507. }
  1508. if (type == LIGHT_POINT)
  1509. {
  1510. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1511. {
  1512. Light* splitLight = renderer_->CreateSplitLight(light);
  1513. Node* lightNode = splitLight->GetNode();
  1514. splitLights_[i] = splitLight;
  1515. splitLight->SetLightType(LIGHT_SPLITPOINT);
  1516. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1517. lightNode->SetDirection(directions[i]);
  1518. splitLight->SetFov(90.0f);
  1519. splitLight->SetAspectRatio(1.0f);
  1520. }
  1521. return MAX_CUBEMAP_FACES;
  1522. }
  1523. // A spot light does not actually need splitting. However, we may be rendering several views,
  1524. // and in some the light might be unshadowed, so better create an unique copy
  1525. Light* splitLight = renderer_->CreateSplitLight(light);
  1526. splitLights_[0] = splitLight;
  1527. return 1;
  1528. }
  1529. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1530. {
  1531. if (!material)
  1532. material = renderer_->GetDefaultMaterial();
  1533. if (!material)
  1534. return 0;
  1535. float lodDistance = drawable->GetLodDistance();
  1536. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1537. if (techniques.Empty())
  1538. return 0;
  1539. // Check for suitable technique. Techniques should be ordered like this:
  1540. // Most distant & highest quality
  1541. // Most distant & lowest quality
  1542. // Second most distant & highest quality
  1543. // ...
  1544. for (unsigned i = 0; i < techniques.Size(); ++i)
  1545. {
  1546. const TechniqueEntry& entry = techniques[i];
  1547. Technique* technique = entry.technique_;
  1548. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1549. continue;
  1550. if (lodDistance >= entry.lodDistance_)
  1551. return technique;
  1552. }
  1553. // If no suitable technique found, fallback to the last
  1554. return techniques.Back().technique_;
  1555. }
  1556. void View::CheckMaterialForAuxView(Material* material)
  1557. {
  1558. const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
  1559. for (unsigned i = 0; i < textures.Size(); ++i)
  1560. {
  1561. // Have to check cube & 2D textures separately
  1562. Texture* texture = textures[i];
  1563. if (texture)
  1564. {
  1565. if (texture->GetType() == Texture2D::GetTypeStatic())
  1566. {
  1567. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1568. RenderSurface* target = tex2D->GetRenderSurface();
  1569. if (target)
  1570. {
  1571. const Viewport& viewport = target->GetViewport();
  1572. if (viewport.scene_ && viewport.camera_)
  1573. renderer_->AddView(target, viewport);
  1574. }
  1575. }
  1576. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1577. {
  1578. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1579. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1580. {
  1581. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1582. if (target)
  1583. {
  1584. const Viewport& viewport = target->GetViewport();
  1585. if (viewport.scene_ && viewport.camera_)
  1586. renderer_->AddView(target, viewport);
  1587. }
  1588. }
  1589. }
  1590. }
  1591. }
  1592. // Set frame number so that we can early-out next time we come across this material on the same frame
  1593. material->MarkForAuxView(frame_.frameNumber_);
  1594. }
  1595. void View::SortBatches()
  1596. {
  1597. PROFILE(SortBatches);
  1598. if (mode_ != RENDER_FORWARD)
  1599. {
  1600. gBufferQueue_.SortFrontToBack();
  1601. noShadowLightQueue_.SortFrontToBack();
  1602. }
  1603. baseQueue_.SortFrontToBack();
  1604. extraQueue_.SortFrontToBack();
  1605. transparentQueue_.SortBackToFront();
  1606. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1607. {
  1608. lightQueues_[i].shadowBatches_.SortFrontToBack();
  1609. lightQueues_[i].litBatches_.SortFrontToBack();
  1610. }
  1611. }
  1612. void View::PrepareInstancingBuffer()
  1613. {
  1614. PROFILE(PrepareInstancingBuffer);
  1615. unsigned totalInstances = 0;
  1616. if (mode_ != RENDER_FORWARD)
  1617. totalInstances += gBufferQueue_.GetNumInstances();
  1618. totalInstances += baseQueue_.GetNumInstances();
  1619. totalInstances += extraQueue_.GetNumInstances();
  1620. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1621. {
  1622. totalInstances += lightQueues_[i].shadowBatches_.GetNumInstances();
  1623. totalInstances += lightQueues_[i].litBatches_.GetNumInstances();
  1624. }
  1625. // If fail to set buffer size, fall back to per-group locking
  1626. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  1627. {
  1628. unsigned freeIndex = 0;
  1629. void* lockedData = renderer_->instancingBuffer_->Lock(0, totalInstances, LOCK_DISCARD);
  1630. if (lockedData)
  1631. {
  1632. if (mode_ != RENDER_FORWARD)
  1633. gBufferQueue_.SetTransforms(lockedData, freeIndex);
  1634. baseQueue_.SetTransforms(lockedData, freeIndex);
  1635. extraQueue_.SetTransforms(lockedData, freeIndex);
  1636. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1637. {
  1638. lightQueues_[i].shadowBatches_.SetTransforms(lockedData, freeIndex);
  1639. lightQueues_[i].litBatches_.SetTransforms(lockedData, freeIndex);
  1640. }
  1641. renderer_->instancingBuffer_->Unlock();
  1642. }
  1643. }
  1644. }
  1645. void View::CalculateShaderParameters()
  1646. {
  1647. Time* time = GetSubsystem<Time>();
  1648. float fogStart = zone_->GetFogStart();
  1649. float fogEnd = zone_->GetFogEnd();
  1650. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  1651. float farClip = camera_->GetFarClip();
  1652. float nearClip = camera_->GetNearClip();
  1653. Vector4 fogParams(fogStart / farClip, fogEnd / farClip, 1.0f / (fogRange / farClip), 0.0f);
  1654. Vector4 elapsedTime((time->GetTotalMSec() & 0x3fffff) / 1000.0f, 0.0f, 0.0f, 0.0f);
  1655. shaderParameters_.Clear();
  1656. shaderParameters_[VSP_ELAPSEDTIME] = elapsedTime;
  1657. shaderParameters_[PSP_AMBIENTCOLOR] = zone_->GetAmbientColor().ToVector4();
  1658. shaderParameters_[PSP_ELAPSEDTIME] = elapsedTime;
  1659. shaderParameters_[PSP_FOGCOLOR] = zone_->GetFogColor().ToVector4(),
  1660. shaderParameters_[PSP_FOGPARAMS] = fogParams;
  1661. }
  1662. void View::DrawSplitLightToStencil(Camera& camera, Light* light, bool clear)
  1663. {
  1664. Matrix3x4 view(camera.GetInverseWorldTransform());
  1665. switch (light->GetLightType())
  1666. {
  1667. case LIGHT_SPLITPOINT:
  1668. if (!clear)
  1669. {
  1670. Matrix4 projection(camera.GetProjection());
  1671. const Matrix3x4& model = light->GetVolumeTransform(camera);
  1672. float lightExtent = light->GetVolumeExtent();
  1673. float lightViewDist = (light->GetWorldPosition() - camera.GetWorldPosition()).LengthFast();
  1674. bool drawBackFaces = lightViewDist < (lightExtent + camera.GetNearClip());
  1675. graphics_->SetAlphaTest(false);
  1676. graphics_->SetColorWrite(false);
  1677. graphics_->SetDepthWrite(false);
  1678. graphics_->SetCullMode(drawBackFaces ? CULL_CW : CULL_CCW);
  1679. graphics_->SetDepthTest(drawBackFaces ? CMP_GREATEREQUAL : CMP_LESSEQUAL);
  1680. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1681. graphics_->SetShaderParameter(VSP_MODEL, model);
  1682. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1683. graphics_->ClearTransformSources();
  1684. // Draw the faces to stencil which we should draw (where no light has not been rendered yet)
  1685. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 0);
  1686. renderer_->spotLightGeometry_->Draw(graphics_);
  1687. // Draw the other faces to stencil to mark where we should not draw ("frees up" the pixels for other faces)
  1688. graphics_->SetCullMode(drawBackFaces ? CULL_CCW : CULL_CW);
  1689. graphics_->SetStencilTest(true, CMP_EQUAL, OP_DECR, OP_KEEP, OP_KEEP, 1);
  1690. renderer_->spotLightGeometry_->Draw(graphics_);
  1691. // Now set stencil test for rendering the lit geometries (also marks the pixels so that they will not be used again)
  1692. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 1);
  1693. graphics_->SetColorWrite(true);
  1694. }
  1695. else
  1696. {
  1697. // Clear stencil with a scissored clear operation
  1698. OptimizeLightByScissor(light->GetOriginalLight());
  1699. graphics_->Clear(CLEAR_STENCIL);
  1700. graphics_->SetScissorTest(false);
  1701. graphics_->SetStencilTest(false);
  1702. }
  1703. break;
  1704. case LIGHT_DIRECTIONAL:
  1705. // If light encompasses whole frustum, no drawing to stencil necessary
  1706. if (light->GetNearSplit() <= camera.GetNearClip() && light->GetFarSplit() >= camera.GetFarClip())
  1707. {
  1708. graphics_->SetStencilTest(false);
  1709. return;
  1710. }
  1711. else
  1712. {
  1713. if (!clear)
  1714. {
  1715. // Get projection without jitter offset to ensure the whole screen is filled
  1716. Matrix4 projection(camera.GetProjection(false));
  1717. Matrix3x4 nearTransform(light->GetDirLightTransform(camera, true));
  1718. Matrix3x4 farTransform(light->GetDirLightTransform(camera, false));
  1719. graphics_->SetAlphaTest(false);
  1720. graphics_->SetColorWrite(false);
  1721. graphics_->SetDepthWrite(false);
  1722. graphics_->SetCullMode(CULL_NONE);
  1723. // If the split begins at the near plane (first split), draw at split far plane, otherwise at near plane
  1724. bool firstSplit = light->GetNearSplit() <= camera.GetNearClip();
  1725. graphics_->SetDepthTest(firstSplit ? CMP_GREATEREQUAL : CMP_LESSEQUAL);
  1726. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1727. graphics_->SetShaderParameter(VSP_MODEL, firstSplit ? farTransform : nearTransform);
  1728. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1729. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1730. graphics_->ClearTransformSources();
  1731. renderer_->dirLightGeometry_->Draw(graphics_);
  1732. graphics_->SetColorWrite(true);
  1733. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 1);
  1734. }
  1735. else
  1736. {
  1737. // Clear the whole stencil
  1738. graphics_->SetScissorTest(false);
  1739. graphics_->Clear(CLEAR_STENCIL);
  1740. graphics_->SetStencilTest(false);
  1741. }
  1742. }
  1743. break;
  1744. }
  1745. }
  1746. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor, bool disableScissor)
  1747. {
  1748. VertexBuffer* instancingBuffer = 0;
  1749. if (renderer_->GetDynamicInstancing())
  1750. instancingBuffer = renderer_->instancingBuffer_;
  1751. if (disableScissor)
  1752. graphics_->SetScissorTest(false);
  1753. graphics_->SetStencilTest(false);
  1754. // Priority instanced
  1755. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1756. queue.priorityBatchGroups_.End(); ++i)
  1757. {
  1758. const BatchGroup& group = i->second_;
  1759. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1760. }
  1761. // Priority non-instanced
  1762. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1763. {
  1764. Batch* batch = *i;
  1765. batch->Draw(graphics_, shaderParameters_);
  1766. }
  1767. // Non-priority instanced
  1768. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1769. queue.batchGroups_.End(); ++i)
  1770. {
  1771. const BatchGroup& group = i->second_;
  1772. if (useScissor && group.light_)
  1773. OptimizeLightByScissor(group.light_);
  1774. else
  1775. graphics_->SetScissorTest(false);
  1776. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1777. }
  1778. // Non-priority non-instanced
  1779. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1780. {
  1781. Batch* batch = *i;
  1782. // For the transparent queue, both priority and non-priority batches are copied here, so check the flag
  1783. if (useScissor && batch->light_ && !batch->hasPriority_)
  1784. OptimizeLightByScissor(batch->light_);
  1785. else
  1786. graphics_->SetScissorTest(false);
  1787. batch->Draw(graphics_, shaderParameters_);
  1788. }
  1789. }
  1790. void View::RenderForwardLightBatchQueue(const BatchQueue& queue, Light* light)
  1791. {
  1792. VertexBuffer* instancingBuffer = 0;
  1793. if (renderer_->GetDynamicInstancing())
  1794. instancingBuffer = renderer_->instancingBuffer_;
  1795. graphics_->SetScissorTest(false);
  1796. graphics_->SetStencilTest(false);
  1797. // Priority instanced
  1798. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1799. queue.priorityBatchGroups_.End(); ++i)
  1800. {
  1801. const BatchGroup& group = i->second_;
  1802. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1803. }
  1804. // Priority non-instanced
  1805. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1806. {
  1807. Batch* batch = *i;
  1808. batch->Draw(graphics_, shaderParameters_);
  1809. }
  1810. // All base passes have been drawn. Optimize at this point by both scissor and stencil
  1811. if (light)
  1812. {
  1813. OptimizeLightByScissor(light);
  1814. LightType type = light->GetLightType();
  1815. if (type == LIGHT_SPLITPOINT || type == LIGHT_DIRECTIONAL)
  1816. DrawSplitLightToStencil(*camera_, light);
  1817. }
  1818. // Non-priority instanced
  1819. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1820. queue.batchGroups_.End(); ++i)
  1821. {
  1822. const BatchGroup& group = i->second_;
  1823. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1824. }
  1825. // Non-priority non-instanced
  1826. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1827. {
  1828. Batch* batch = *i;
  1829. batch->Draw(graphics_, shaderParameters_);
  1830. }
  1831. }
  1832. void View::RenderShadowMap(const LightBatchQueue& queue)
  1833. {
  1834. PROFILE(RenderShadowMap);
  1835. Texture2D* shadowMap = queue.light_->GetShadowMap();
  1836. graphics_->SetColorWrite(false);
  1837. graphics_->SetStencilTest(false);
  1838. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1839. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1840. graphics_->SetDepthStencil(shadowMap);
  1841. graphics_->Clear(CLEAR_DEPTH);
  1842. // Set shadow depth bias
  1843. BiasParameters parameters = queue.light_->GetShadowBias();
  1844. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1845. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1846. // However, do not do this for point lights
  1847. if (queue.light_->GetLightType() != LIGHT_SPLITPOINT)
  1848. {
  1849. float zoom = Min(queue.light_->GetShadowCamera()->GetZoom(),
  1850. (float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth());
  1851. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1852. graphics_->SetScissorTest(true, zoomRect, false);
  1853. }
  1854. else
  1855. graphics_->SetScissorTest(false);
  1856. // Draw instanced and non-instanced shadow casters
  1857. RenderBatchQueue(queue.shadowBatches_, false, false);
  1858. graphics_->SetColorWrite(true);
  1859. graphics_->SetDepthBias(0.0f, 0.0f);
  1860. }