PhysicsWorld.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Mutex.h"
  29. #include "PhysicsEvents.h"
  30. #include "PhysicsUtils.h"
  31. #include "PhysicsWorld.h"
  32. #include "Profiler.h"
  33. #include "Ray.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "Sort.h"
  38. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  41. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  42. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  43. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  44. namespace Urho3D
  45. {
  46. const char* PHYSICS_CATEGORY = "Physics";
  47. extern const char* SUBSYSTEM_CATEGORY;
  48. static const int DEFAULT_FPS = 60;
  49. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  50. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  51. {
  52. return lhs.distance_ < rhs.distance_;
  53. }
  54. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  55. {
  56. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  57. }
  58. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  59. {
  60. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  61. }
  62. /// Callback for physics world queries.
  63. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  64. {
  65. /// Construct.
  66. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  67. {
  68. }
  69. /// Add a contact result.
  70. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObject *colObj0, int, int, const btCollisionObject *colObj1, int, int)
  71. {
  72. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0->getUserPointer());
  73. if (body && !result_.Contains(body))
  74. result_.Push(body);
  75. body = reinterpret_cast<RigidBody*>(colObj1->getUserPointer());
  76. if (body && !result_.Contains(body))
  77. result_.Push(body);
  78. return 0.0f;
  79. }
  80. /// Found rigid bodies.
  81. PODVector<RigidBody*>& result_;
  82. };
  83. OBJECTTYPESTATIC(PhysicsWorld);
  84. PhysicsWorld::PhysicsWorld(Context* context) :
  85. Component(context),
  86. collisionConfiguration_(0),
  87. collisionDispatcher_(0),
  88. broadphase_(0),
  89. solver_(0),
  90. world_(0),
  91. fps_(DEFAULT_FPS),
  92. timeAcc_(0.0f),
  93. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  94. interpolation_(true),
  95. applyingTransforms_(false),
  96. debugRenderer_(0),
  97. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  98. {
  99. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  100. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  101. broadphase_ = new btDbvtBroadphase();
  102. solver_ = new btSequentialImpulseConstraintSolver();
  103. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  104. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  105. world_->getDispatchInfo().m_useContinuous = true;
  106. world_->setDebugDrawer(this);
  107. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  108. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  109. }
  110. PhysicsWorld::~PhysicsWorld()
  111. {
  112. if (scene_)
  113. {
  114. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  115. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  116. (*i)->ReleaseConstraint();
  117. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  118. (*i)->ReleaseBody();
  119. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  120. (*i)->ReleaseShape();
  121. }
  122. delete world_;
  123. world_ = 0;
  124. delete solver_;
  125. solver_ = 0;
  126. delete broadphase_;
  127. broadphase_ = 0;
  128. delete collisionDispatcher_;
  129. collisionDispatcher_ = 0;
  130. delete collisionConfiguration_;
  131. collisionConfiguration_ = 0;
  132. }
  133. void PhysicsWorld::RegisterObject(Context* context)
  134. {
  135. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  136. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  137. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  138. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  139. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  140. }
  141. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  142. {
  143. if (debugRenderer_)
  144. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  145. else
  146. return false;
  147. }
  148. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  149. {
  150. if (debugRenderer_)
  151. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  152. }
  153. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  154. {
  155. if (debug)
  156. {
  157. PROFILE(PhysicsDrawDebug);
  158. debugRenderer_ = debug;
  159. debugDepthTest_ = depthTest;
  160. world_->debugDrawWorld();
  161. debugRenderer_ = 0;
  162. }
  163. }
  164. void PhysicsWorld::reportErrorWarning(const char* warningString)
  165. {
  166. LOGWARNING("Physics: " + String(warningString));
  167. }
  168. void PhysicsWorld::Update(float timeStep)
  169. {
  170. PROFILE(UpdatePhysics);
  171. float internalTimeStep = 1.0f / fps_;
  172. delayedWorldTransforms_.Clear();
  173. if (interpolation_)
  174. {
  175. int maxSubSteps = (int)(timeStep * fps_) + 1;
  176. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  177. }
  178. else
  179. {
  180. timeAcc_ += timeStep;
  181. while (timeAcc_ >= internalTimeStep)
  182. {
  183. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  184. timeAcc_ -= internalTimeStep;
  185. }
  186. }
  187. // Apply delayed (parented) world transforms now
  188. while (!delayedWorldTransforms_.Empty())
  189. {
  190. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  191. i != delayedWorldTransforms_.End(); ++i)
  192. {
  193. const DelayedWorldTransform& transform = i->second_;
  194. // If parent's transform has already been assigned, can proceed
  195. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  196. {
  197. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  198. delayedWorldTransforms_.Erase(i);
  199. }
  200. }
  201. }
  202. }
  203. void PhysicsWorld::UpdateCollisions()
  204. {
  205. world_->performDiscreteCollisionDetection();
  206. }
  207. void PhysicsWorld::SetFps(int fps)
  208. {
  209. fps_ = Clamp(fps, 1, 1000);
  210. }
  211. void PhysicsWorld::SetGravity(Vector3 gravity)
  212. {
  213. world_->setGravity(ToBtVector3(gravity));
  214. }
  215. void PhysicsWorld::SetInterpolation(bool enable)
  216. {
  217. interpolation_ = enable;
  218. }
  219. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  220. {
  221. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  222. }
  223. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  224. {
  225. PROFILE(PhysicsRaycast);
  226. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  227. maxDistance * ray.direction_));
  228. rayCallback.m_collisionFilterGroup = (short)0xffff;
  229. rayCallback.m_collisionFilterMask = collisionMask;
  230. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  231. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  232. {
  233. PhysicsRaycastResult newResult;
  234. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  235. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  236. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  237. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  238. result.Push(newResult);
  239. }
  240. Sort(result.Begin(), result.End(), CompareRaycastResults);
  241. }
  242. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  243. {
  244. PROFILE(PhysicsRaycastSingle);
  245. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  246. maxDistance * ray.direction_));
  247. rayCallback.m_collisionFilterGroup = (short)0xffff;
  248. rayCallback.m_collisionFilterMask = collisionMask;
  249. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  250. if (rayCallback.hasHit())
  251. {
  252. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  253. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  254. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  255. result.distance_ = (result.position_ - ray.origin_).Length();
  256. }
  257. else
  258. {
  259. result.body_ = 0;
  260. result.position_ = Vector3::ZERO;
  261. result.normal_ = Vector3::ZERO;
  262. result.distance_ = M_INFINITY;
  263. }
  264. }
  265. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  266. {
  267. PROFILE(PhysicsSphereCast);
  268. btSphereShape shape(radius);
  269. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  270. maxDistance * ray.direction_));
  271. convexCallback.m_collisionFilterGroup = (short)0xffff;
  272. convexCallback.m_collisionFilterMask = collisionMask;
  273. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  274. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  275. if (convexCallback.hasHit())
  276. {
  277. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  278. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  279. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  280. result.distance_ = (result.position_ - ray.origin_).Length();
  281. }
  282. else
  283. {
  284. result.body_ = 0;
  285. result.position_ = Vector3::ZERO;
  286. result.normal_ = Vector3::ZERO;
  287. result.distance_ = M_INFINITY;
  288. }
  289. }
  290. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  291. {
  292. PROFILE(PhysicsSphereQuery);
  293. result.Clear();
  294. btSphereShape sphereShape(sphere.radius_);
  295. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  296. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  297. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  298. tempRigidBody->activate();
  299. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  300. PhysicsQueryCallback callback(result);
  301. world_->contactTest(tempRigidBody, callback);
  302. world_->removeRigidBody(tempRigidBody);
  303. delete tempRigidBody;
  304. }
  305. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  306. {
  307. PROFILE(PhysicsBoxQuery);
  308. result.Clear();
  309. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  310. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  311. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  312. tempRigidBody->activate();
  313. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  314. PhysicsQueryCallback callback(result);
  315. world_->contactTest(tempRigidBody, callback);
  316. world_->removeRigidBody(tempRigidBody);
  317. delete tempRigidBody;
  318. }
  319. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  320. {
  321. PROFILE(GetCollidingBodies);
  322. result.Clear();
  323. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  324. i != currentCollisions_.End(); ++i)
  325. {
  326. if (i->first_.first_ == body)
  327. result.Push(i->first_.second_);
  328. else if (i->first_.second_ == body)
  329. result.Push(i->first_.first_);
  330. }
  331. }
  332. Vector3 PhysicsWorld::GetGravity() const
  333. {
  334. return ToVector3(world_->getGravity());
  335. }
  336. void PhysicsWorld::AddRigidBody(RigidBody* body)
  337. {
  338. rigidBodies_.Push(body);
  339. }
  340. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  341. {
  342. rigidBodies_.Remove(body);
  343. }
  344. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  345. {
  346. collisionShapes_.Push(shape);
  347. }
  348. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  349. {
  350. collisionShapes_.Remove(shape);
  351. }
  352. void PhysicsWorld::AddConstraint(Constraint* constraint)
  353. {
  354. constraints_.Push(constraint);
  355. }
  356. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  357. {
  358. constraints_.Remove(constraint);
  359. }
  360. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  361. {
  362. delayedWorldTransforms_[transform.rigidBody_] = transform;
  363. }
  364. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  365. {
  366. DebugRenderer* debug = GetComponent<DebugRenderer>();
  367. DrawDebugGeometry(debug, depthTest);
  368. }
  369. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  370. {
  371. debugRenderer_ = debug;
  372. }
  373. void PhysicsWorld::SetDebugDepthTest(bool enable)
  374. {
  375. debugDepthTest_ = enable;
  376. }
  377. void PhysicsWorld::CleanupGeometryCache()
  378. {
  379. // Remove cached shapes whose only reference is the cache itself
  380. for (HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  381. i != geometryCache_.End();)
  382. {
  383. HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  384. if (current->second_.Refs() == 1)
  385. geometryCache_.Erase(current);
  386. }
  387. }
  388. void PhysicsWorld::OnNodeSet(Node* node)
  389. {
  390. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  391. if (node)
  392. {
  393. scene_ = GetScene();
  394. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  395. }
  396. }
  397. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  398. {
  399. using namespace SceneSubsystemUpdate;
  400. Update(eventData[P_TIMESTEP].GetFloat());
  401. }
  402. void PhysicsWorld::PreStep(float timeStep)
  403. {
  404. // Send pre-step event
  405. using namespace PhysicsPreStep;
  406. VariantMap eventData;
  407. eventData[P_WORLD] = (void*)this;
  408. eventData[P_TIMESTEP] = timeStep;
  409. SendEvent(E_PHYSICSPRESTEP, eventData);
  410. // Start profiling block for the actual simulation step
  411. #ifdef ENABLE_PROFILING
  412. Profiler* profiler = GetSubsystem<Profiler>();
  413. if (profiler)
  414. profiler->BeginBlock("StepSimulation");
  415. #endif
  416. }
  417. void PhysicsWorld::PostStep(float timeStep)
  418. {
  419. #ifdef ENABLE_PROFILING
  420. Profiler* profiler = GetSubsystem<Profiler>();
  421. if (profiler)
  422. profiler->EndBlock();
  423. #endif
  424. SendCollisionEvents();
  425. // Send post-step event
  426. using namespace PhysicsPreStep;
  427. VariantMap eventData;
  428. eventData[P_WORLD] = (void*)this;
  429. eventData[P_TIMESTEP] = timeStep;
  430. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  431. }
  432. void PhysicsWorld::SendCollisionEvents()
  433. {
  434. PROFILE(SendCollisionEvents);
  435. currentCollisions_.Clear();
  436. int numManifolds = collisionDispatcher_->getNumManifolds();
  437. if (numManifolds)
  438. {
  439. VariantMap physicsCollisionData;
  440. VariantMap nodeCollisionData;
  441. VectorBuffer contacts;
  442. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  443. for (int i = 0; i < numManifolds; ++i)
  444. {
  445. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  446. int numContacts = contactManifold->getNumContacts();
  447. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  448. if (!numContacts)
  449. continue;
  450. btCollisionObject* objectA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  451. btCollisionObject* objectB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  452. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  453. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  454. // If it's not a rigidbody, maybe a ghost object
  455. if (!bodyA || !bodyB)
  456. continue;
  457. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  458. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  459. continue;
  460. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  461. continue;
  462. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  463. !bodyA->IsActive() && !bodyB->IsActive())
  464. continue;
  465. WeakPtr<RigidBody> bodyWeakA(bodyA);
  466. WeakPtr<RigidBody> bodyWeakB(bodyB);
  467. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  468. if (bodyA < bodyB)
  469. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  470. else
  471. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  472. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  473. // objects during collision event handling
  474. currentCollisions_[bodyPair] = contactManifold;
  475. }
  476. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  477. i != currentCollisions_.End(); ++i)
  478. {
  479. RigidBody* bodyA = i->first_.first_;
  480. RigidBody* bodyB = i->first_.second_;
  481. if (!bodyA || !bodyB)
  482. continue;
  483. btPersistentManifold* contactManifold = i->second_;
  484. int numContacts = contactManifold->getNumContacts();
  485. Node* nodeA = bodyA->GetNode();
  486. Node* nodeB = bodyB->GetNode();
  487. WeakPtr<Node> nodeWeakA(nodeA);
  488. WeakPtr<Node> nodeWeakB(nodeB);
  489. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  490. bool newCollision = !previousCollisions_.Contains(i->first_);
  491. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  492. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  493. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  494. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  495. physicsCollisionData[PhysicsCollision::P_PHANTOM] = phantom;
  496. contacts.Clear();
  497. for (int j = 0; j < numContacts; ++j)
  498. {
  499. btManifoldPoint& point = contactManifold->getContactPoint(j);
  500. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  501. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  502. contacts.WriteFloat(point.m_distance1);
  503. contacts.WriteFloat(point.m_appliedImpulse);
  504. }
  505. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  506. // Send separate collision start event if collision is new
  507. if (newCollision)
  508. {
  509. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData);
  510. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  511. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  512. continue;
  513. }
  514. // Then send the ongoing collision event
  515. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  516. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  517. continue;
  518. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  519. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  520. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  521. nodeCollisionData[NodeCollision::P_PHANTOM] = phantom;
  522. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  523. if (newCollision)
  524. {
  525. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  526. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  527. continue;
  528. }
  529. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData);
  530. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  531. continue;
  532. contacts.Clear();
  533. for (int j = 0; j < numContacts; ++j)
  534. {
  535. btManifoldPoint& point = contactManifold->getContactPoint(j);
  536. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  537. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  538. contacts.WriteFloat(point.m_distance1);
  539. contacts.WriteFloat(point.m_appliedImpulse);
  540. }
  541. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  542. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  543. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  544. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  545. if (newCollision)
  546. {
  547. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  548. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  549. continue;
  550. }
  551. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData);
  552. }
  553. }
  554. // Send collision end events as applicable
  555. {
  556. VariantMap physicsCollisionData;
  557. VariantMap nodeCollisionData;
  558. physicsCollisionData[PhysicsCollisionEnd::P_WORLD] = (void*)this;
  559. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  560. {
  561. if (!currentCollisions_.Contains(i->first_))
  562. {
  563. RigidBody* bodyA = i->first_.first_;
  564. RigidBody* bodyB = i->first_.second_;
  565. if (!bodyA || !bodyB)
  566. continue;
  567. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  568. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  569. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  570. continue;
  571. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  572. continue;
  573. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  574. !bodyA->IsActive() && !bodyB->IsActive())
  575. continue;
  576. Node* nodeA = bodyA->GetNode();
  577. Node* nodeB = bodyB->GetNode();
  578. WeakPtr<Node> nodeWeakA(nodeA);
  579. WeakPtr<Node> nodeWeakB(nodeB);
  580. physicsCollisionData[PhysicsCollisionEnd::P_BODYA] = (void*)bodyA;
  581. physicsCollisionData[PhysicsCollisionEnd::P_BODYB] = (void*)bodyB;
  582. physicsCollisionData[PhysicsCollisionEnd::P_NODEA] = (void*)nodeA;
  583. physicsCollisionData[PhysicsCollisionEnd::P_NODEB] = (void*)nodeB;
  584. physicsCollisionData[PhysicsCollisionEnd::P_PHANTOM] = phantom;
  585. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData);
  586. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  587. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  588. continue;
  589. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyA;
  590. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeB;
  591. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyB;
  592. nodeCollisionData[NodeCollisionEnd::P_PHANTOM] = phantom;
  593. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  594. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  595. continue;
  596. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyB;
  597. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeA;
  598. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyA;
  599. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  600. }
  601. }
  602. }
  603. previousCollisions_ = currentCollisions_;
  604. }
  605. void RegisterPhysicsLibrary(Context* context)
  606. {
  607. CollisionShape::RegisterObject(context);
  608. RigidBody::RegisterObject(context);
  609. Constraint::RegisterObject(context);
  610. PhysicsWorld::RegisterObject(context);
  611. }
  612. }