04_StaticScene.as 7.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155
  1. // Static 3D scene example.
  2. // This sample demonstrates:
  3. // - Creating a 3D scene with static content
  4. // - Displaying the scene using the Renderer subsystem
  5. // - Handling keyboard and mouse input to move a freelook camera
  6. #include "Scripts/Utilities/Sample.as"
  7. Scene@ scene_;
  8. Node@ cameraNode;
  9. float yaw = 0.0f;
  10. float pitch = 0.0f;
  11. void Start()
  12. {
  13. // Execute the common startup for samples
  14. SampleStart();
  15. // Create the scene content
  16. CreateScene();
  17. // Create the UI content
  18. CreateInstructions();
  19. // Setup the viewport for displaying the scene
  20. SetupViewport();
  21. // Hook up to the frame update events
  22. SubscribeToEvents();
  23. }
  24. void CreateScene()
  25. {
  26. scene_ = Scene();
  27. // Create the Octree component to the scene. This is required before adding any drawable components, or else nothing will
  28. // show up. The default octree volume will be from (-1000, -1000, -1000) to (1000, 1000, 1000) in world coordinates; it
  29. // is also legal to place objects outside the volume but their visibility can then not be checked in a hierarchically
  30. // optimizing manner
  31. scene_.CreateComponent("Octree");
  32. // Create a child scene node (at world origin) and a StaticModel component into it. Set the StaticModel to show a simple
  33. // plane mesh with a "stone" material. Note that naming the scene nodes is optional. Scale the scene node larger
  34. // (100 x 100 world units)
  35. Node@ planeNode = scene_.CreateChild("Plane");
  36. planeNode.scale = Vector3(100.0f, 1.0f, 100.0f);
  37. StaticModel@ planeObject = planeNode.CreateComponent("StaticModel");
  38. planeObject.model = cache.GetResource("Model", "Models/Plane.mdl");
  39. planeObject.material = cache.GetResource("Material", "Materials/StoneTiled.xml");
  40. // Create a directional light to the world so that we can see something. The light scene node's orientation controls the
  41. // light direction; we will use the SetDirection() function which calculates the orientation from a forward direction vector.
  42. // The light will use default settings (white light, no shadows)
  43. Node@ lightNode = scene_.CreateChild("DirectionalLight");
  44. lightNode.direction = Vector3(0.6f, -1.0f, 0.8f); // The direction vector does not need to be normalized
  45. Light@ light = lightNode.CreateComponent("Light");
  46. light.lightType = LIGHT_DIRECTIONAL;
  47. // Create more StaticModel objects to the scene, randomly positioned, rotated and scaled. For rotation, we construct a
  48. // quaternion from Euler angles where the Y angle (rotation about the Y axis) is randomized. The mushroom model contains
  49. // LOD levels, so the StaticModel component will automatically select the LOD level according to the view distance (you'll
  50. // see the model get simpler as it moves further away). Finally, rendering a large number of the same object with the
  51. // same material allows instancing to be used, if the GPU supports it. This reduces the amount of CPU work in rendering the
  52. // scene.
  53. const uint NUM_OBJECTS = 200;
  54. for (uint i = 0; i < NUM_OBJECTS; ++i)
  55. {
  56. Node@ mushroomNode = scene_.CreateChild("Mushroom");
  57. mushroomNode.position = Vector3(Random(90.0f) - 45.0f, 0.0f, Random(90.0f) - 45.0f);
  58. mushroomNode.rotation = Quaternion(0.0f, Random(360.0f), 0.0f);
  59. mushroomNode.SetScale(0.5f + Random(2.0f));
  60. StaticModel@ mushroomObject = mushroomNode.CreateComponent("StaticModel");
  61. mushroomObject.model = cache.GetResource("Model", "Models/Mushroom.mdl");
  62. mushroomObject.material = cache.GetResource("Material", "Materials/Mushroom.xml");
  63. }
  64. // Create a scene node for the camera, which we will move around
  65. // The camera will use default settings (1000 far clip distance, 45 degrees FOV, set aspect ratio automatically)
  66. cameraNode = scene_.CreateChild("Camera");
  67. cameraNode.CreateComponent("Camera");
  68. // Set an initial position for the camera scene node above the plane
  69. cameraNode.position = Vector3(0.0f, 5.0f, 0.0f);
  70. }
  71. void CreateInstructions()
  72. {
  73. // Construct new Text object, set string to display and font to use
  74. Text@ instructionText = ui.root.CreateChild("Text");
  75. instructionText.text = "Use WASD keys and mouse to move";
  76. instructionText.SetFont(cache.GetResource("Font", "Fonts/Anonymous Pro.ttf"), 15);
  77. // Position the text relative to the screen center
  78. instructionText.horizontalAlignment = HA_CENTER;
  79. instructionText.verticalAlignment = VA_CENTER;
  80. instructionText.SetPosition(0, ui.root.height / 4);
  81. }
  82. void SetupViewport()
  83. {
  84. // Set up a viewport to the Renderer subsystem so that the 3D scene can be seen. We need to define the scene and the camera
  85. // at minimum. Additionally we could configure the viewport screen size and the rendering path (eg. forward / deferred) to
  86. // use, but now we just use full screen and default render path configured in the engine command line options
  87. Viewport@ viewport = Viewport(scene_, cameraNode.GetComponent("Camera"));
  88. renderer.viewports[0] = viewport;
  89. }
  90. void MoveCamera(float timeStep)
  91. {
  92. // Do not move if the UI has a focused element (the console)
  93. if (ui.focusElement !is null)
  94. return;
  95. // Movement speed as world units per second
  96. const float MOVE_SPEED = 20.0f;
  97. // Mouse sensitivity as degrees per pixel
  98. const float MOUSE_SENSITIVITY = 0.1f;
  99. // Use this frame's mouse motion to adjust camera node yaw and pitch. Clamp the pitch between -90 and 90 degrees
  100. IntVector2 mouseMove = input.mouseMove;
  101. yaw += MOUSE_SENSITIVITY * mouseMove.x;
  102. pitch += MOUSE_SENSITIVITY * mouseMove.y;
  103. pitch = Clamp(pitch, -90.0f, 90.0f);
  104. // Construct new orientation for the camera scene node from yaw and pitch. Roll is fixed to zero
  105. cameraNode.rotation = Quaternion(pitch, yaw, 0.0f);
  106. // Read WASD keys and move the camera scene node to the corresponding direction if they are pressed
  107. // Use the TranslateRelative() function to move relative to the node's orientation. Alternatively we could
  108. // multiply the desired direction with the node's orientation quaternion, and use just Translate()
  109. if (input.keyDown['W'])
  110. cameraNode.TranslateRelative(Vector3(0.0f, 0.0f, 1.0f) * MOVE_SPEED * timeStep);
  111. if (input.keyDown['S'])
  112. cameraNode.TranslateRelative(Vector3(0.0f, 0.0f, -1.0f) * MOVE_SPEED * timeStep);
  113. if (input.keyDown['A'])
  114. cameraNode.TranslateRelative(Vector3(-1.0f, 0.0f, 0.0f) * MOVE_SPEED * timeStep);
  115. if (input.keyDown['D'])
  116. cameraNode.TranslateRelative(Vector3(1.0f, 0.0f, 0.0f) * MOVE_SPEED * timeStep);
  117. }
  118. void SubscribeToEvents()
  119. {
  120. // Subscribe HandleUpdate() function for processing update events
  121. SubscribeToEvent("Update", "HandleUpdate");
  122. }
  123. void HandleUpdate(StringHash eventType, VariantMap& eventData)
  124. {
  125. // Take the frame time step, which is stored as a float
  126. float timeStep = eventData["TimeStep"].GetFloat();
  127. // Move the camera, scale movement with time step
  128. MoveCamera(timeStep);
  129. }