View.cpp 99 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "ResourceCache.h"
  35. #include "PostProcess.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Sort.h"
  41. #include "Technique.h"
  42. #include "Texture2D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "Zone.h"
  48. #include "DebugNew.h"
  49. static const Vector3 directions[] =
  50. {
  51. Vector3(1.0f, 0.0f, 0.0f),
  52. Vector3(-1.0f, 0.0f, 0.0f),
  53. Vector3(0.0f, 1.0f, 0.0f),
  54. Vector3(0.0f, -1.0f, 0.0f),
  55. Vector3(0.0f, 0.0f, 1.0f),
  56. Vector3(0.0f, 0.0f, -1.0f)
  57. };
  58. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  60. /// %Frustum octree query for shadowcasters.
  61. class ShadowCasterOctreeQuery : public OctreeQuery
  62. {
  63. public:
  64. /// Construct with frustum and query parameters.
  65. ShadowCasterOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  66. unsigned viewMask = DEFAULT_VIEWMASK) :
  67. OctreeQuery(result, drawableFlags, viewMask),
  68. frustum_(frustum)
  69. {
  70. }
  71. /// Intersection test for an octant.
  72. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  73. {
  74. if (inside)
  75. return INSIDE;
  76. else
  77. return frustum_.IsInside(box);
  78. }
  79. /// Intersection test for drawables.
  80. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  81. {
  82. while (start != end)
  83. {
  84. Drawable* drawable = *start;
  85. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->GetCastShadows() && drawable->IsVisible() &&
  86. (drawable->GetViewMask() & viewMask_))
  87. {
  88. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  89. result_.Push(drawable);
  90. }
  91. ++start;
  92. }
  93. }
  94. /// Frustum.
  95. Frustum frustum_;
  96. };
  97. /// %Frustum octree query for zones and occluders.
  98. class ZoneOccluderOctreeQuery : public OctreeQuery
  99. {
  100. public:
  101. /// Construct with frustum and query parameters.
  102. ZoneOccluderOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, unsigned char drawableFlags = DRAWABLE_ANY,
  103. unsigned viewMask = DEFAULT_VIEWMASK) :
  104. OctreeQuery(result, drawableFlags, viewMask),
  105. frustum_(frustum)
  106. {
  107. }
  108. /// Intersection test for an octant.
  109. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  110. {
  111. if (inside)
  112. return INSIDE;
  113. else
  114. return frustum_.IsInside(box);
  115. }
  116. /// Intersection test for drawables.
  117. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  118. {
  119. while (start != end)
  120. {
  121. Drawable* drawable = *start;
  122. unsigned char flags = drawable->GetDrawableFlags();
  123. if ((flags == DRAWABLE_ZONE || (flags == DRAWABLE_GEOMETRY && drawable->IsOccluder())) && drawable->IsVisible() &&
  124. (drawable->GetViewMask() & viewMask_))
  125. {
  126. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  127. result_.Push(drawable);
  128. }
  129. ++start;
  130. }
  131. }
  132. /// Frustum.
  133. Frustum frustum_;
  134. };
  135. /// %Frustum octree query with occlusion.
  136. class OccludedFrustumOctreeQuery : public OctreeQuery
  137. {
  138. public:
  139. /// Construct with frustum, occlusion buffer and query parameters.
  140. OccludedFrustumOctreeQuery(PODVector<Drawable*>& result, const Frustum& frustum, OcclusionBuffer* buffer, unsigned char
  141. drawableFlags = DRAWABLE_ANY, unsigned viewMask = DEFAULT_VIEWMASK) :
  142. OctreeQuery(result, drawableFlags, viewMask),
  143. frustum_(frustum),
  144. buffer_(buffer)
  145. {
  146. }
  147. /// Intersection test for an octant.
  148. virtual Intersection TestOctant(const BoundingBox& box, bool inside)
  149. {
  150. if (inside)
  151. return buffer_->IsVisible(box) ? INSIDE : OUTSIDE;
  152. else
  153. {
  154. Intersection result = frustum_.IsInside(box);
  155. if (result != OUTSIDE && !buffer_->IsVisible(box))
  156. result = OUTSIDE;
  157. return result;
  158. }
  159. }
  160. /// Intersection test for drawables. Note: drawable occlusion is performed later in worker threads.
  161. virtual void TestDrawables(Drawable** start, Drawable** end, bool inside)
  162. {
  163. while (start != end)
  164. {
  165. Drawable* drawable = *start;
  166. if ((drawable->GetDrawableFlags() & drawableFlags_) && drawable->IsVisible() &&
  167. (drawable->GetViewMask() & viewMask_))
  168. {
  169. if (inside || frustum_.IsInsideFast(drawable->GetWorldBoundingBox()))
  170. result_.Push(drawable);
  171. }
  172. ++start;
  173. }
  174. }
  175. /// Frustum.
  176. Frustum frustum_;
  177. /// Occlusion buffer.
  178. OcclusionBuffer* buffer_;
  179. };
  180. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  181. {
  182. View* view = reinterpret_cast<View*>(item->aux_);
  183. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  184. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  185. OcclusionBuffer* buffer = view->occlusionBuffer_;
  186. while (start != end)
  187. {
  188. Drawable* drawable = *start;
  189. unsigned char flags = drawable->GetDrawableFlags();
  190. ++start;
  191. if (flags & DRAWABLE_ZONE)
  192. continue;
  193. drawable->UpdateDistance(view->frame_);
  194. // If draw distance non-zero, check it
  195. float maxDistance = drawable->GetDrawDistance();
  196. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  197. continue;
  198. if (buffer && drawable->IsOccludee() && !buffer->IsVisible(drawable->GetWorldBoundingBox()))
  199. continue;
  200. drawable->MarkInView(view->frame_);
  201. // For geometries, clear lights and find new zone if necessary
  202. if (flags & DRAWABLE_GEOMETRY)
  203. {
  204. drawable->ClearLights();
  205. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  206. view->FindZone(drawable, threadIndex);
  207. }
  208. }
  209. }
  210. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  211. {
  212. View* view = reinterpret_cast<View*>(item->aux_);
  213. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  214. view->ProcessLight(*query, threadIndex);
  215. }
  216. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  217. {
  218. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  219. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  220. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  221. while (start != end)
  222. {
  223. Drawable* drawable = *start;
  224. drawable->UpdateGeometry(frame);
  225. ++start;
  226. }
  227. }
  228. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  229. {
  230. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  231. queue->SortFrontToBack();
  232. }
  233. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  234. {
  235. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  236. queue->SortBackToFront();
  237. }
  238. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  239. {
  240. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  241. start->litBatches_.SortFrontToBack();
  242. }
  243. void SortShadowQueueWork(const WorkItem* item, unsigned threadIndex)
  244. {
  245. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  246. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  247. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  248. }
  249. OBJECTTYPESTATIC(View);
  250. View::View(Context* context) :
  251. Object(context),
  252. graphics_(GetSubsystem<Graphics>()),
  253. renderer_(GetSubsystem<Renderer>()),
  254. octree_(0),
  255. camera_(0),
  256. cameraZone_(0),
  257. farClipZone_(0),
  258. renderTarget_(0)
  259. {
  260. frame_.camera_ = 0;
  261. // Create octree query vector for each thread
  262. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  263. }
  264. View::~View()
  265. {
  266. }
  267. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  268. {
  269. Scene* scene = viewport->GetScene();
  270. Camera* camera = viewport->GetCamera();
  271. if (!scene || !camera)
  272. return false;
  273. // If scene is loading asynchronously, it is incomplete and should not be rendered
  274. if (scene->IsAsyncLoading())
  275. return false;
  276. Octree* octree = scene->GetComponent<Octree>();
  277. if (!octree)
  278. return false;
  279. renderMode_ = renderer_->GetRenderMode();
  280. octree_ = octree;
  281. camera_ = camera;
  282. renderTarget_ = renderTarget;
  283. // Get active post-processing effects on the viewport
  284. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  285. postProcesses_.Clear();
  286. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  287. {
  288. PostProcess* effect = i->Get();
  289. if (effect && effect->IsActive())
  290. postProcesses_.Push(*i);
  291. }
  292. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  293. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  294. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  295. const IntRect& rect = viewport->GetRect();
  296. if (rect != IntRect::ZERO)
  297. {
  298. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  299. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  300. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  301. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  302. }
  303. else
  304. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  305. viewSize_ = IntVector2(viewRect_.right_ - viewRect_.left_, viewRect_.bottom_ - viewRect_.top_);
  306. rtSize_ = IntVector2(rtWidth, rtHeight);
  307. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  308. #ifdef USE_OPENGL
  309. if (renderTarget_)
  310. {
  311. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  312. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  313. }
  314. #endif
  315. drawShadows_ = renderer_->GetDrawShadows();
  316. materialQuality_ = renderer_->GetMaterialQuality();
  317. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  318. // Set possible quality overrides from the camera
  319. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  320. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  321. materialQuality_ = QUALITY_LOW;
  322. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  323. drawShadows_ = false;
  324. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  325. maxOccluderTriangles_ = 0;
  326. return true;
  327. }
  328. void View::Update(const FrameInfo& frame)
  329. {
  330. if (!camera_ || !octree_)
  331. return;
  332. frame_.camera_ = camera_;
  333. frame_.timeStep_ = frame.timeStep_;
  334. frame_.frameNumber_ = frame.frameNumber_;
  335. frame_.viewSize_ = viewSize_;
  336. // Clear screen buffers, geometry, light, occluder & batch lists
  337. screenBuffers_.Clear();
  338. geometries_.Clear();
  339. allGeometries_.Clear();
  340. geometryDepthBounds_.Clear();
  341. lights_.Clear();
  342. zones_.Clear();
  343. occluders_.Clear();
  344. baseQueue_.Clear();
  345. preAlphaQueue_.Clear();
  346. gbufferQueue_.Clear();
  347. alphaQueue_.Clear();
  348. postAlphaQueue_.Clear();
  349. lightQueues_.Clear();
  350. vertexLightQueues_.Clear();
  351. // Do not update if camera projection is illegal
  352. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  353. if (!camera_->IsProjectionValid())
  354. return;
  355. // Set automatic aspect ratio if required
  356. if (camera_->GetAutoAspectRatio())
  357. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  358. GetDrawables();
  359. GetBatches();
  360. UpdateGeometries();
  361. }
  362. void View::Render()
  363. {
  364. if (!octree_ || !camera_)
  365. return;
  366. // Allocate screen buffers for post-processing and blitting as necessary
  367. AllocateScreenBuffers();
  368. // Forget parameter sources from the previous view
  369. graphics_->ClearParameterSources();
  370. // If stream offset is supported, write all instance transforms to a single large buffer
  371. // Else we must lock the instance buffer for each batch group
  372. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  373. PrepareInstancingBuffer();
  374. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  375. // again to ensure correct projection will be used
  376. if (camera_->GetAutoAspectRatio())
  377. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  378. graphics_->SetColorWrite(true);
  379. graphics_->SetFillMode(FILL_SOLID);
  380. // Bind the face selection and indirection cube maps for point light shadows
  381. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  382. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  383. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  384. // ie. when using deferred rendering and/or doing post-processing
  385. if (renderTarget_)
  386. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  387. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  388. // as a render texture produced on Direct3D9
  389. #ifdef USE_OPENGL
  390. if (renderTarget_)
  391. camera_->SetFlipVertical(true);
  392. #endif
  393. // Render
  394. if (renderMode_ == RENDER_FORWARD)
  395. RenderBatchesForward();
  396. else
  397. RenderBatchesDeferred();
  398. #ifdef USE_OPENGL
  399. camera_->SetFlipVertical(false);
  400. #endif
  401. graphics_->SetViewTexture(0);
  402. graphics_->SetScissorTest(false);
  403. graphics_->SetStencilTest(false);
  404. graphics_->ResetStreamFrequencies();
  405. // Run post-processes or framebuffer blitting now
  406. if (screenBuffers_.Size())
  407. {
  408. if (postProcesses_.Size())
  409. RunPostProcesses();
  410. else
  411. BlitFramebuffer();
  412. }
  413. // If this is a main view, draw the associated debug geometry now
  414. if (!renderTarget_)
  415. {
  416. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  417. if (debug)
  418. {
  419. debug->SetView(camera_);
  420. debug->Render();
  421. }
  422. }
  423. // "Forget" the camera, octree and zone after rendering
  424. camera_ = 0;
  425. octree_ = 0;
  426. cameraZone_ = 0;
  427. farClipZone_ = 0;
  428. occlusionBuffer_ = 0;
  429. frame_.camera_ = 0;
  430. }
  431. void View::GetDrawables()
  432. {
  433. PROFILE(GetDrawables);
  434. WorkQueue* queue = GetSubsystem<WorkQueue>();
  435. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  436. // Get zones and occluders first
  437. {
  438. ZoneOccluderOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_ZONE);
  439. octree_->GetDrawables(query);
  440. }
  441. highestZonePriority_ = M_MIN_INT;
  442. int bestPriority = M_MIN_INT;
  443. Vector3 cameraPos = camera_->GetWorldPosition();
  444. // Get default zone first in case we do not have zones defined
  445. Zone* defaultZone = renderer_->GetDefaultZone();
  446. cameraZone_ = farClipZone_ = defaultZone;
  447. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  448. {
  449. Drawable* drawable = *i;
  450. unsigned char flags = drawable->GetDrawableFlags();
  451. if (flags & DRAWABLE_ZONE)
  452. {
  453. Zone* zone = static_cast<Zone*>(drawable);
  454. zones_.Push(zone);
  455. int priority = zone->GetPriority();
  456. if (priority > highestZonePriority_)
  457. highestZonePriority_ = priority;
  458. if (zone->IsInside(cameraPos) && priority > bestPriority)
  459. {
  460. cameraZone_ = zone;
  461. bestPriority = priority;
  462. }
  463. }
  464. else
  465. occluders_.Push(drawable);
  466. }
  467. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  468. cameraZoneOverride_ = cameraZone_->GetOverride();
  469. if (!cameraZoneOverride_)
  470. {
  471. Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0.0f, 0.0f, camera_->GetFarClip());
  472. bestPriority = M_MIN_INT;
  473. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  474. {
  475. int priority = (*i)->GetPriority();
  476. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  477. {
  478. farClipZone_ = *i;
  479. bestPriority = priority;
  480. }
  481. }
  482. }
  483. if (farClipZone_ == defaultZone)
  484. farClipZone_ = cameraZone_;
  485. // If occlusion in use, get & render the occluders
  486. occlusionBuffer_ = 0;
  487. if (maxOccluderTriangles_ > 0)
  488. {
  489. UpdateOccluders(occluders_, camera_);
  490. if (occluders_.Size())
  491. {
  492. PROFILE(DrawOcclusion);
  493. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  494. DrawOccluders(occlusionBuffer_, occluders_);
  495. }
  496. }
  497. // Get lights and geometries. Coarse occlusion for octants is used at this point
  498. if (occlusionBuffer_)
  499. {
  500. OccludedFrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), occlusionBuffer_, DRAWABLE_GEOMETRY |
  501. DRAWABLE_LIGHT);
  502. octree_->GetDrawables(query);
  503. }
  504. else
  505. {
  506. FrustumOctreeQuery query(tempDrawables, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  507. octree_->GetDrawables(query);
  508. }
  509. // Check drawable occlusion and find zones for moved drawables in worker threads
  510. {
  511. WorkItem item;
  512. item.workFunction_ = CheckVisibilityWork;
  513. item.aux_ = this;
  514. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  515. while (start != tempDrawables.End())
  516. {
  517. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  518. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  519. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  520. item.start_ = &(*start);
  521. item.end_ = &(*end);
  522. queue->AddWorkItem(item);
  523. start = end;
  524. }
  525. queue->Complete();
  526. }
  527. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  528. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  529. sceneBox_.defined_ = false;
  530. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  531. sceneViewBox_.defined_ = false;
  532. Matrix3x4 view(camera_->GetInverseWorldTransform());
  533. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  534. {
  535. Drawable* drawable = tempDrawables[i];
  536. unsigned char flags = drawable->GetDrawableFlags();
  537. if (!drawable->IsInView(frame_))
  538. continue;
  539. if (flags & DRAWABLE_GEOMETRY)
  540. {
  541. // Expand the scene bounding boxes. However, do not take skyboxes into account, as they have undefinedly large size
  542. // and the bounding boxes are also used for shadow focusing
  543. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  544. BoundingBox geomViewBox = geomBox.Transformed(view);
  545. if (drawable->GetType() != Skybox::GetTypeStatic())
  546. {
  547. sceneBox_.Merge(geomBox);
  548. sceneViewBox_.Merge(geomViewBox);
  549. }
  550. // Store depth info for split directional light queries
  551. GeometryDepthBounds bounds;
  552. bounds.min_ = geomViewBox.min_.z_;
  553. bounds.max_ = geomViewBox.max_.z_;
  554. geometryDepthBounds_.Push(bounds);
  555. geometries_.Push(drawable);
  556. allGeometries_.Push(drawable);
  557. }
  558. else if (flags & DRAWABLE_LIGHT)
  559. {
  560. Light* light = static_cast<Light*>(drawable);
  561. // Skip lights which are so dim that they can not contribute to a rendertarget
  562. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  563. lights_.Push(light);
  564. }
  565. }
  566. sceneFrustum_ = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_);
  567. // Sort the lights to brightest/closest first
  568. for (unsigned i = 0; i < lights_.Size(); ++i)
  569. {
  570. Light* light = lights_[i];
  571. light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
  572. light->SetLightQueue(0);
  573. }
  574. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  575. }
  576. void View::GetBatches()
  577. {
  578. WorkQueue* queue = GetSubsystem<WorkQueue>();
  579. PODVector<Light*> vertexLights;
  580. // Process lit geometries and shadow casters for each light
  581. {
  582. PROFILE(ProcessLights);
  583. lightQueryResults_.Resize(lights_.Size());
  584. WorkItem item;
  585. item.workFunction_ = ProcessLightWork;
  586. item.aux_ = this;
  587. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  588. {
  589. LightQueryResult& query = lightQueryResults_[i];
  590. query.light_ = lights_[i];
  591. item.start_ = &query;
  592. queue->AddWorkItem(item);
  593. }
  594. // Ensure all lights have been processed before proceeding
  595. queue->Complete();
  596. }
  597. // Build light queues and lit batches
  598. {
  599. PROFILE(GetLightBatches);
  600. maxLightsDrawables_.Clear();
  601. // Preallocate light queues: per-pixel lights which have lit geometries
  602. unsigned numLightQueues = 0;
  603. unsigned usedLightQueues = 0;
  604. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  605. {
  606. if (!i->light_->GetPerVertex() && i->litGeometries_.Size())
  607. ++numLightQueues;
  608. }
  609. lightQueues_.Resize(numLightQueues);
  610. for (Vector<LightQueryResult>::Iterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  611. {
  612. LightQueryResult& query = *i;
  613. // If light has no affected geometries, no need to process further
  614. if (query.litGeometries_.Empty())
  615. continue;
  616. Light* light = query.light_;
  617. // Per-pixel light
  618. if (!light->GetPerVertex())
  619. {
  620. unsigned shadowSplits = query.numSplits_;
  621. // Initialize light queue. Store light-to-queue mapping so that the queue can be found later
  622. LightBatchQueue& lightQueue = lightQueues_[usedLightQueues++];
  623. light->SetLightQueue(&lightQueue);
  624. lightQueue.light_ = light;
  625. lightQueue.litBatches_.Clear();
  626. lightQueue.volumeBatches_.Clear();
  627. // Allocate shadow map now
  628. lightQueue.shadowMap_ = 0;
  629. if (shadowSplits > 0)
  630. {
  631. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  632. // If did not manage to get a shadow map, convert the light to unshadowed
  633. if (!lightQueue.shadowMap_)
  634. shadowSplits = 0;
  635. }
  636. // Setup shadow batch queues
  637. lightQueue.shadowSplits_.Resize(shadowSplits);
  638. for (unsigned j = 0; j < shadowSplits; ++j)
  639. {
  640. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  641. Camera* shadowCamera = query.shadowCameras_[j];
  642. shadowQueue.shadowCamera_ = shadowCamera;
  643. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  644. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  645. // Setup the shadow split viewport and finalize shadow camera parameters
  646. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  647. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  648. // Loop through shadow casters
  649. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  650. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  651. {
  652. Drawable* drawable = *k;
  653. if (!drawable->IsInView(frame_, false))
  654. {
  655. drawable->MarkInView(frame_, false);
  656. allGeometries_.Push(drawable);
  657. }
  658. Zone* zone = GetZone(drawable);
  659. unsigned numBatches = drawable->GetNumBatches();
  660. for (unsigned l = 0; l < numBatches; ++l)
  661. {
  662. Batch shadowBatch;
  663. drawable->GetBatch(shadowBatch, frame_, l);
  664. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  665. if (!shadowBatch.geometry_ || !tech)
  666. continue;
  667. Pass* pass = tech->GetPass(PASS_SHADOW);
  668. // Skip if material has no shadow pass
  669. if (!pass)
  670. continue;
  671. // Fill the rest of the batch
  672. shadowBatch.camera_ = shadowCamera;
  673. shadowBatch.zone_ = zone;
  674. shadowBatch.lightQueue_ = &lightQueue;
  675. FinalizeBatch(shadowBatch, tech, pass);
  676. shadowQueue.shadowBatches_.AddBatch(shadowBatch);
  677. }
  678. }
  679. }
  680. // Process lit geometries
  681. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  682. {
  683. Drawable* drawable = *j;
  684. drawable->AddLight(light);
  685. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  686. if (!drawable->GetMaxLights())
  687. GetLitBatches(drawable, lightQueue);
  688. else
  689. maxLightsDrawables_.Insert(drawable);
  690. }
  691. // In deferred modes, store the light volume batch now
  692. if (renderMode_ != RENDER_FORWARD)
  693. {
  694. Batch volumeBatch;
  695. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  696. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  697. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  698. volumeBatch.camera_ = camera_;
  699. volumeBatch.lightQueue_ = &lightQueue;
  700. volumeBatch.distance_ = light->GetDistance();
  701. volumeBatch.material_ = 0;
  702. volumeBatch.pass_ = 0;
  703. volumeBatch.zone_ = 0;
  704. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  705. lightQueue.volumeBatches_.Push(volumeBatch);
  706. }
  707. }
  708. // Per-vertex light
  709. else
  710. {
  711. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  712. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  713. {
  714. Drawable* drawable = *j;
  715. drawable->AddVertexLight(light);
  716. }
  717. }
  718. }
  719. }
  720. // Process drawables with limited per-pixel light count
  721. if (maxLightsDrawables_.Size())
  722. {
  723. PROFILE(GetMaxLightsBatches);
  724. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  725. {
  726. Drawable* drawable = *i;
  727. drawable->LimitLights();
  728. const PODVector<Light*>& lights = drawable->GetLights();
  729. for (unsigned i = 0; i < lights.Size(); ++i)
  730. {
  731. Light* light = lights[i];
  732. // Find the correct light queue again
  733. LightBatchQueue* queue = light->GetLightQueue();
  734. if (queue)
  735. GetLitBatches(drawable, *queue);
  736. }
  737. }
  738. }
  739. // Build base pass batches
  740. {
  741. PROFILE(GetBaseBatches);
  742. hasZeroLightMask_ = false;
  743. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  744. {
  745. Drawable* drawable = *i;
  746. Zone* zone = GetZone(drawable);
  747. unsigned numBatches = drawable->GetNumBatches();
  748. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  749. if (!drawableVertexLights.Empty())
  750. drawable->LimitVertexLights();
  751. for (unsigned j = 0; j < numBatches; ++j)
  752. {
  753. Batch baseBatch;
  754. drawable->GetBatch(baseBatch, frame_, j);
  755. // Check here if the material refers to a rendertarget texture with camera(s) attached
  756. // Only check this for the main view (null rendertarget)
  757. if (baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_ && !renderTarget_)
  758. CheckMaterialForAuxView(baseBatch.material_);
  759. // If already has a lit base pass, skip (forward rendering only)
  760. if (j < 32 && drawable->HasBasePass(j))
  761. continue;
  762. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  763. if (!baseBatch.geometry_ || !tech)
  764. continue;
  765. // Fill the rest of the batch
  766. baseBatch.camera_ = camera_;
  767. baseBatch.zone_ = zone;
  768. baseBatch.isBase_ = true;
  769. Pass* pass = 0;
  770. // In deferred modes check for G-buffer and material passes first
  771. if (renderMode_ == RENDER_PREPASS)
  772. {
  773. pass = tech->GetPass(PASS_PREPASS);
  774. if (pass)
  775. {
  776. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  777. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  778. hasZeroLightMask_ = true;
  779. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  780. baseBatch.lightMask_ = GetLightMask(drawable);
  781. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (zone->GetLightMask() & 0xff));
  782. gbufferQueue_.AddBatch(baseBatch);
  783. pass = tech->GetPass(PASS_MATERIAL);
  784. }
  785. }
  786. if (renderMode_ == RENDER_DEFERRED)
  787. pass = tech->GetPass(PASS_DEFERRED);
  788. // Next check for forward unlit base pass
  789. if (!pass)
  790. pass = tech->GetPass(PASS_BASE);
  791. if (pass)
  792. {
  793. // Check for vertex lights (both forward unlit, light pre-pass material pass, and deferred G-buffer)
  794. if (!drawableVertexLights.Empty())
  795. {
  796. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  797. // them to prevent double-lighting
  798. if (renderMode_ != RENDER_FORWARD && pass->GetBlendMode() == BLEND_REPLACE)
  799. {
  800. vertexLights.Clear();
  801. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  802. {
  803. if (drawableVertexLights[i]->GetPerVertex())
  804. vertexLights.Push(drawableVertexLights[i]);
  805. }
  806. }
  807. else
  808. vertexLights = drawableVertexLights;
  809. if (!vertexLights.Empty())
  810. {
  811. // Find a vertex light queue. If not found, create new
  812. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  813. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  814. if (i == vertexLightQueues_.End())
  815. {
  816. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  817. i->second_.light_ = 0;
  818. i->second_.shadowMap_ = 0;
  819. i->second_.vertexLights_ = vertexLights;
  820. }
  821. baseBatch.lightQueue_ = &(i->second_);
  822. }
  823. }
  824. // Check whether batch is opaque or transparent
  825. if (pass->GetBlendMode() == BLEND_REPLACE)
  826. {
  827. if (pass->GetType() != PASS_DEFERRED)
  828. {
  829. FinalizeBatch(baseBatch, tech, pass);
  830. baseQueue_.AddBatch(baseBatch);
  831. }
  832. else
  833. {
  834. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  835. baseBatch.lightMask_ = GetLightMask(drawable);
  836. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  837. gbufferQueue_.AddBatch(baseBatch);
  838. }
  839. }
  840. else
  841. {
  842. // Transparent batches can not be instanced
  843. FinalizeBatch(baseBatch, tech, pass, false);
  844. alphaQueue_.AddBatch(baseBatch);
  845. }
  846. continue;
  847. }
  848. // If no pass found so far, finally check for pre-alpha / post-alpha custom passes
  849. pass = tech->GetPass(PASS_PREALPHA);
  850. if (pass)
  851. {
  852. FinalizeBatch(baseBatch, tech, pass);
  853. preAlphaQueue_.AddBatch(baseBatch);
  854. continue;
  855. }
  856. pass = tech->GetPass(PASS_POSTALPHA);
  857. if (pass)
  858. {
  859. // Post-alpha pass is treated similarly as alpha, and is not instanced
  860. FinalizeBatch(baseBatch, tech, pass, false);
  861. postAlphaQueue_.AddBatch(baseBatch);
  862. continue;
  863. }
  864. }
  865. }
  866. }
  867. }
  868. void View::UpdateGeometries()
  869. {
  870. PROFILE(SortAndUpdateGeometry);
  871. WorkQueue* queue = GetSubsystem<WorkQueue>();
  872. // Sort batches
  873. {
  874. WorkItem item;
  875. item.workFunction_ = SortBatchQueueFrontToBackWork;
  876. item.start_ = &baseQueue_;
  877. queue->AddWorkItem(item);
  878. item.start_ = &preAlphaQueue_;
  879. queue->AddWorkItem(item);
  880. if (renderMode_ != RENDER_FORWARD)
  881. {
  882. item.start_ = &gbufferQueue_;
  883. queue->AddWorkItem(item);
  884. }
  885. item.workFunction_ = SortBatchQueueBackToFrontWork;
  886. item.start_ = &alphaQueue_;
  887. queue->AddWorkItem(item);
  888. item.start_ = &postAlphaQueue_;
  889. queue->AddWorkItem(item);
  890. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  891. {
  892. item.workFunction_ = SortLightQueueWork;
  893. item.start_ = &(*i);
  894. queue->AddWorkItem(item);
  895. if ((*i).shadowSplits_.Size())
  896. {
  897. item.workFunction_ = SortShadowQueueWork;
  898. queue->AddWorkItem(item);
  899. }
  900. }
  901. }
  902. // Update geometries. Split into threaded and non-threaded updates.
  903. {
  904. nonThreadedGeometries_.Clear();
  905. threadedGeometries_.Clear();
  906. for (PODVector<Drawable*>::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i)
  907. {
  908. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  909. if (type == UPDATE_MAIN_THREAD)
  910. nonThreadedGeometries_.Push(*i);
  911. else if (type == UPDATE_WORKER_THREAD)
  912. threadedGeometries_.Push(*i);
  913. }
  914. if (threadedGeometries_.Size())
  915. {
  916. WorkItem item;
  917. item.workFunction_ = UpdateDrawableGeometriesWork;
  918. item.aux_ = const_cast<FrameInfo*>(&frame_);
  919. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  920. while (start != threadedGeometries_.End())
  921. {
  922. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  923. if (end - start > DRAWABLES_PER_WORK_ITEM)
  924. end = start + DRAWABLES_PER_WORK_ITEM;
  925. item.start_ = &(*start);
  926. item.end_ = &(*end);
  927. queue->AddWorkItem(item);
  928. start = end;
  929. }
  930. }
  931. // While the work queue is processed, update non-threaded geometries
  932. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  933. (*i)->UpdateGeometry(frame_);
  934. }
  935. // Finally ensure all threaded work has completed
  936. queue->Complete();
  937. }
  938. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  939. {
  940. Light* light = lightQueue.light_;
  941. Zone* zone = GetZone(drawable);
  942. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  943. // Shadows on transparencies can only be rendered if shadow maps are not reused
  944. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  945. bool allowLitBase = light == drawable->GetFirstLight() && drawable->GetVertexLights().Empty() && !hasAmbientGradient;
  946. unsigned numBatches = drawable->GetNumBatches();
  947. for (unsigned i = 0; i < numBatches; ++i)
  948. {
  949. Batch litBatch;
  950. drawable->GetBatch(litBatch, frame_, i);
  951. Technique* tech = GetTechnique(drawable, litBatch.material_);
  952. if (!litBatch.geometry_ || !tech)
  953. continue;
  954. // Do not create pixel lit forward passes for materials that render into the G-buffer
  955. if ((renderMode_ == RENDER_PREPASS && tech->HasPass(PASS_PREPASS)) || (renderMode_ == RENDER_DEFERRED &&
  956. tech->HasPass(PASS_DEFERRED)))
  957. continue;
  958. Pass* pass = 0;
  959. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  960. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  961. if (i < 32 && allowLitBase)
  962. {
  963. pass = tech->GetPass(PASS_LITBASE);
  964. if (pass)
  965. {
  966. litBatch.isBase_ = true;
  967. drawable->SetBasePass(i);
  968. }
  969. }
  970. // If no lit base pass, get ordinary light pass
  971. if (!pass)
  972. pass = tech->GetPass(PASS_LIGHT);
  973. // Skip if material does not receive light at all
  974. if (!pass)
  975. continue;
  976. // Fill the rest of the batch
  977. litBatch.camera_ = camera_;
  978. litBatch.lightQueue_ = &lightQueue;
  979. litBatch.zone_ = zone;
  980. // Check from the ambient pass whether the object is opaque or transparent
  981. Pass* ambientPass = tech->GetPass(PASS_BASE);
  982. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  983. {
  984. FinalizeBatch(litBatch, tech, pass);
  985. lightQueue.litBatches_.AddBatch(litBatch);
  986. }
  987. else
  988. {
  989. // Transparent batches can not be instanced
  990. FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows);
  991. alphaQueue_.AddBatch(litBatch);
  992. }
  993. }
  994. }
  995. void View::RenderBatchesForward()
  996. {
  997. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  998. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  999. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  1000. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  1001. // If not reusing shadowmaps, render all of them first
  1002. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1003. {
  1004. PROFILE(RenderShadowMaps);
  1005. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1006. {
  1007. if (i->shadowMap_)
  1008. RenderShadowMap(*i);
  1009. }
  1010. }
  1011. graphics_->SetRenderTarget(0, renderTarget);
  1012. graphics_->SetDepthStencil(depthStencil);
  1013. graphics_->SetViewport(viewRect_);
  1014. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1015. // Render opaque object unlit base pass
  1016. if (!baseQueue_.IsEmpty())
  1017. {
  1018. PROFILE(RenderBase);
  1019. baseQueue_.Draw(graphics_, renderer_);
  1020. }
  1021. // Render shadow maps + opaque objects' additive lighting
  1022. if (!lightQueues_.Empty())
  1023. {
  1024. PROFILE(RenderLights);
  1025. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1026. {
  1027. // If reusing shadowmaps, render each of them before the lit batches
  1028. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1029. {
  1030. RenderShadowMap(*i);
  1031. graphics_->SetRenderTarget(0, renderTarget);
  1032. graphics_->SetDepthStencil(depthStencil);
  1033. graphics_->SetViewport(viewRect_);
  1034. }
  1035. i->litBatches_.Draw(i->light_, graphics_, renderer_);
  1036. }
  1037. }
  1038. graphics_->SetScissorTest(false);
  1039. graphics_->SetStencilTest(false);
  1040. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1041. graphics_->SetAlphaTest(false);
  1042. graphics_->SetBlendMode(BLEND_REPLACE);
  1043. graphics_->SetColorWrite(true);
  1044. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1045. graphics_->SetDepthWrite(false);
  1046. graphics_->SetScissorTest(false);
  1047. graphics_->SetStencilTest(false);
  1048. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1049. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1050. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  1051. DrawFullscreenQuad(camera_, false);
  1052. // Render pre-alpha custom pass
  1053. if (!preAlphaQueue_.IsEmpty())
  1054. {
  1055. PROFILE(RenderPreAlpha);
  1056. preAlphaQueue_.Draw(graphics_, renderer_);
  1057. }
  1058. // Render transparent objects (both base passes & additive lighting)
  1059. if (!alphaQueue_.IsEmpty())
  1060. {
  1061. PROFILE(RenderAlpha);
  1062. alphaQueue_.Draw(graphics_, renderer_, true);
  1063. }
  1064. // Render post-alpha custom pass
  1065. if (!postAlphaQueue_.IsEmpty())
  1066. {
  1067. PROFILE(RenderPostAlpha);
  1068. postAlphaQueue_.Draw(graphics_, renderer_);
  1069. }
  1070. // Resolve multisampled backbuffer now if necessary
  1071. if (resolve)
  1072. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  1073. }
  1074. void View::RenderBatchesDeferred()
  1075. {
  1076. // If not reusing shadowmaps, render all of them first
  1077. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  1078. {
  1079. PROFILE(RenderShadowMaps);
  1080. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1081. {
  1082. if (i->shadowMap_)
  1083. RenderShadowMap(*i);
  1084. }
  1085. }
  1086. bool hwDepth = graphics_->GetHardwareDepthSupport();
  1087. // In light prepass mode the albedo buffer is used for light accumulation instead
  1088. Texture2D* albedoBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1089. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  1090. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  1091. Graphics::GetLinearDepthFormat());
  1092. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  1093. RenderSurface* depthStencil = hwDepth ? depthBuffer->GetRenderSurface() : renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  1094. if (renderMode_ == RENDER_PREPASS)
  1095. {
  1096. graphics_->SetRenderTarget(0, normalBuffer);
  1097. if (!hwDepth)
  1098. graphics_->SetRenderTarget(1, depthBuffer);
  1099. }
  1100. else
  1101. {
  1102. graphics_->SetRenderTarget(0, renderTarget);
  1103. graphics_->SetRenderTarget(1, albedoBuffer);
  1104. graphics_->SetRenderTarget(2, normalBuffer);
  1105. if (!hwDepth)
  1106. graphics_->SetRenderTarget(3, depthBuffer);
  1107. }
  1108. graphics_->SetDepthStencil(depthStencil);
  1109. graphics_->SetViewport(viewRect_);
  1110. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  1111. // Render G-buffer batches
  1112. if (!gbufferQueue_.IsEmpty())
  1113. {
  1114. PROFILE(RenderGBuffer);
  1115. gbufferQueue_.Draw(graphics_, renderer_, false, true);
  1116. }
  1117. // Clear the light accumulation buffer (light pre-pass only.) However, skip the clear if the first light is a directional
  1118. // light with full mask
  1119. RenderSurface* lightRenderTarget = renderMode_ == RENDER_PREPASS ? albedoBuffer->GetRenderSurface() : renderTarget;
  1120. if (renderMode_ == RENDER_PREPASS)
  1121. {
  1122. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  1123. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  1124. graphics_->SetRenderTarget(0, lightRenderTarget);
  1125. graphics_->ResetRenderTarget(1);
  1126. graphics_->SetDepthStencil(depthStencil);
  1127. graphics_->SetViewport(viewRect_);
  1128. if (!optimizeLightBuffer)
  1129. graphics_->Clear(CLEAR_COLOR);
  1130. }
  1131. else
  1132. {
  1133. graphics_->ResetRenderTarget(1);
  1134. graphics_->ResetRenderTarget(2);
  1135. graphics_->ResetRenderTarget(3);
  1136. }
  1137. // Render shadow maps + light volumes
  1138. if (!lightQueues_.Empty())
  1139. {
  1140. PROFILE(RenderLights);
  1141. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1142. {
  1143. // If reusing shadowmaps, render each of them before the lit batches
  1144. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  1145. {
  1146. RenderShadowMap(*i);
  1147. graphics_->SetRenderTarget(0, lightRenderTarget);
  1148. graphics_->SetDepthStencil(depthStencil);
  1149. graphics_->SetViewport(viewRect_);
  1150. }
  1151. if (renderMode_ == RENDER_DEFERRED)
  1152. graphics_->SetTexture(TU_ALBEDOBUFFER, albedoBuffer);
  1153. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  1154. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  1155. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1156. {
  1157. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1158. i->volumeBatches_[j].Draw(graphics_, renderer_);
  1159. }
  1160. }
  1161. }
  1162. graphics_->SetTexture(TU_ALBEDOBUFFER, 0);
  1163. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  1164. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  1165. if (renderMode_ == RENDER_PREPASS)
  1166. {
  1167. graphics_->SetRenderTarget(0, renderTarget);
  1168. graphics_->SetDepthStencil(depthStencil);
  1169. graphics_->SetViewport(viewRect_);
  1170. }
  1171. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1172. graphics_->SetAlphaTest(false);
  1173. graphics_->SetBlendMode(BLEND_REPLACE);
  1174. graphics_->SetColorWrite(true);
  1175. graphics_->SetDepthTest(CMP_ALWAYS);
  1176. graphics_->SetDepthWrite(false);
  1177. graphics_->SetScissorTest(false);
  1178. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  1179. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1180. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1181. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  1182. DrawFullscreenQuad(camera_, false);
  1183. // Render opaque objects with deferred lighting result (light pre-pass only)
  1184. if (!baseQueue_.IsEmpty())
  1185. {
  1186. PROFILE(RenderBase);
  1187. graphics_->SetTexture(TU_LIGHTBUFFER, renderMode_ == RENDER_PREPASS ? albedoBuffer : 0);
  1188. baseQueue_.Draw(graphics_, renderer_);
  1189. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1190. }
  1191. // Render pre-alpha custom pass
  1192. if (!preAlphaQueue_.IsEmpty())
  1193. {
  1194. PROFILE(RenderPreAlpha);
  1195. preAlphaQueue_.Draw(graphics_, renderer_);
  1196. }
  1197. // Render transparent objects (both base passes & additive lighting)
  1198. if (!alphaQueue_.IsEmpty())
  1199. {
  1200. PROFILE(RenderAlpha);
  1201. alphaQueue_.Draw(graphics_, renderer_, true);
  1202. }
  1203. // Render post-alpha custom pass
  1204. if (!postAlphaQueue_.IsEmpty())
  1205. {
  1206. PROFILE(RenderPostAlpha);
  1207. postAlphaQueue_.Draw(graphics_, renderer_);
  1208. }
  1209. }
  1210. void View::AllocateScreenBuffers()
  1211. {
  1212. unsigned neededBuffers = 0;
  1213. #ifdef USE_OPENGL
  1214. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1215. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1216. if (renderMode_ != RENDER_FORWARD && (!renderTarget_ || (renderMode_ == RENDER_DEFERRED &&
  1217. renderTarget_->GetParentTexture()->GetFormat() != Graphics::GetRGBAFormat())))
  1218. neededBuffers = 1;
  1219. #endif
  1220. unsigned postProcessPasses = 0;
  1221. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1222. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1223. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1224. if (postProcessPasses)
  1225. neededBuffers = Min((int)postProcessPasses, 2);
  1226. unsigned format = Graphics::GetRGBFormat();
  1227. #ifdef USE_OPENGL
  1228. if (renderMode_ == RENDER_DEFERRED)
  1229. format = Graphics::GetRGBAFormat();
  1230. #endif
  1231. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1232. for (unsigned i = 0; i < neededBuffers; ++i)
  1233. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true));
  1234. }
  1235. void View::BlitFramebuffer()
  1236. {
  1237. // Blit the final image to destination rendertarget
  1238. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1239. graphics_->SetAlphaTest(false);
  1240. graphics_->SetBlendMode(BLEND_REPLACE);
  1241. graphics_->SetDepthTest(CMP_ALWAYS);
  1242. graphics_->SetDepthWrite(true);
  1243. graphics_->SetScissorTest(false);
  1244. graphics_->SetStencilTest(false);
  1245. graphics_->SetRenderTarget(0, renderTarget_);
  1246. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1247. graphics_->SetViewport(viewRect_);
  1248. String shaderName = "CopyFramebuffer";
  1249. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1250. float rtWidth = (float)rtSize_.x_;
  1251. float rtHeight = (float)rtSize_.y_;
  1252. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1253. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1254. #ifdef USE_OPENGL
  1255. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1256. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1257. #else
  1258. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1259. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1260. #endif
  1261. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1262. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1263. DrawFullscreenQuad(camera_, false);
  1264. }
  1265. void View::RunPostProcesses()
  1266. {
  1267. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1268. // Ping-pong buffer indices for read and write
  1269. unsigned readRtIndex = 0;
  1270. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1271. graphics_->SetAlphaTest(false);
  1272. graphics_->SetBlendMode(BLEND_REPLACE);
  1273. graphics_->SetDepthTest(CMP_ALWAYS);
  1274. graphics_->SetScissorTest(false);
  1275. graphics_->SetStencilTest(false);
  1276. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1277. {
  1278. PostProcess* effect = postProcesses_[i];
  1279. // For each effect, rendertargets can be re-used. Allocate them now
  1280. renderer_->SaveScreenBufferAllocations();
  1281. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1282. HashMap<StringHash, Texture2D*> renderTargets;
  1283. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1284. renderTargetInfos.End(); ++j)
  1285. {
  1286. unsigned width = j->second_.size_.x_;
  1287. unsigned height = j->second_.size_.y_;
  1288. if (j->second_.sizeDivisor_)
  1289. {
  1290. width = viewSize_.x_ / width;
  1291. height = viewSize_.y_ / height;
  1292. }
  1293. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1294. }
  1295. // Run each effect pass
  1296. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1297. {
  1298. PostProcessPass* pass = effect->GetPass(j);
  1299. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1300. bool swapBuffers = false;
  1301. // Write depth on the last pass only
  1302. graphics_->SetDepthWrite(lastPass);
  1303. // Set output rendertarget
  1304. RenderSurface* rt = 0;
  1305. String output = pass->GetOutput().ToLower();
  1306. if (output == "viewport")
  1307. {
  1308. if (!lastPass)
  1309. {
  1310. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1311. swapBuffers = true;
  1312. }
  1313. else
  1314. rt = renderTarget_;
  1315. graphics_->SetRenderTarget(0, rt);
  1316. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1317. graphics_->SetViewport(viewRect_);
  1318. }
  1319. else
  1320. {
  1321. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1322. if (k != renderTargets.End())
  1323. rt = k->second_->GetRenderSurface();
  1324. else
  1325. continue; // Skip pass if rendertarget can not be found
  1326. graphics_->SetRenderTarget(0, rt);
  1327. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1328. graphics_->SetViewport(IntRect(0, 0, rt->GetWidth(), rt->GetHeight()));
  1329. }
  1330. // Set shaders, shader parameters and textures
  1331. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1332. renderer_->GetPixelShader(pass->GetPixelShader()));
  1333. const HashMap<StringHash, Vector4>& globalParameters = effect->GetShaderParameters();
  1334. for (HashMap<StringHash, Vector4>::ConstIterator k = globalParameters.Begin(); k != globalParameters.End(); ++k)
  1335. graphics_->SetShaderParameter(k->first_, k->second_);
  1336. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1337. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1338. graphics_->SetShaderParameter(k->first_, k->second_);
  1339. float rtWidth = (float)rtSize_.x_;
  1340. float rtHeight = (float)rtSize_.y_;
  1341. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1342. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1343. #ifdef USE_OPENGL
  1344. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1345. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1346. #else
  1347. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1348. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1349. #endif
  1350. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1351. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1352. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1353. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator k = renderTargetInfos.Begin(); k !=
  1354. renderTargetInfos.End(); ++k)
  1355. {
  1356. String invSizeName = k->second_.name_ + "InvSize";
  1357. String offsetsName = k->second_.name_ + "Offsets";
  1358. float width = (float)renderTargets[k->first_]->GetWidth();
  1359. float height = (float)renderTargets[k->first_]->GetHeight();
  1360. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1361. #ifdef USE_OPENGL
  1362. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1363. #else
  1364. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1365. #endif
  1366. }
  1367. const String* textureNames = pass->GetTextures();
  1368. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1369. {
  1370. if (!textureNames[k].Empty())
  1371. {
  1372. // Texture may either refer to a rendertarget or to a texture resource
  1373. if (!textureNames[k].Compare("viewport", false))
  1374. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1375. else
  1376. {
  1377. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1378. if (l != renderTargets.End())
  1379. graphics_->SetTexture(k, l->second_);
  1380. else
  1381. {
  1382. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1383. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1384. if (texture)
  1385. graphics_->SetTexture(k, texture);
  1386. else
  1387. pass->SetTexture((TextureUnit)k, String());
  1388. }
  1389. }
  1390. }
  1391. }
  1392. DrawFullscreenQuad(camera_, false);
  1393. // Swap the ping-pong buffer sides now if necessary
  1394. if (swapBuffers)
  1395. Swap(readRtIndex, writeRtIndex);
  1396. }
  1397. // Forget the rendertargets allocated during this effect
  1398. renderer_->RestoreScreenBufferAllocations();
  1399. }
  1400. }
  1401. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1402. {
  1403. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1404. float halfViewSize = camera->GetHalfViewSize();
  1405. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1406. Vector3 cameraPos = camera->GetWorldPosition();
  1407. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1408. {
  1409. Drawable* occluder = *i;
  1410. bool erase = false;
  1411. if (!occluder->IsInView(frame_, false))
  1412. occluder->UpdateDistance(frame_);
  1413. // Check occluder's draw distance (in main camera view)
  1414. float maxDistance = occluder->GetDrawDistance();
  1415. if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
  1416. erase = true;
  1417. else
  1418. {
  1419. // Check that occluder is big enough on the screen
  1420. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1421. float diagonal = box.Size().Length();
  1422. float compare;
  1423. if (!camera->IsOrthographic())
  1424. compare = diagonal * halfViewSize / occluder->GetDistance();
  1425. else
  1426. compare = diagonal * invOrthoSize;
  1427. if (compare < occluderSizeThreshold_)
  1428. erase = true;
  1429. else
  1430. {
  1431. // Store amount of triangles divided by screen size as a sorting key
  1432. // (best occluders are big and have few triangles)
  1433. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1434. }
  1435. }
  1436. if (erase)
  1437. i = occluders.Erase(i);
  1438. else
  1439. ++i;
  1440. }
  1441. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1442. if (occluders.Size())
  1443. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1444. }
  1445. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1446. {
  1447. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1448. buffer->Clear();
  1449. for (unsigned i = 0; i < occluders.Size(); ++i)
  1450. {
  1451. Drawable* occluder = occluders[i];
  1452. if (i > 0)
  1453. {
  1454. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1455. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1456. continue;
  1457. }
  1458. // Check for running out of triangles
  1459. if (!occluder->DrawOcclusion(buffer))
  1460. break;
  1461. }
  1462. buffer->BuildDepthHierarchy();
  1463. }
  1464. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1465. {
  1466. Light* light = query.light_;
  1467. LightType type = light->GetLightType();
  1468. const Frustum& frustum = camera_->GetFrustum();
  1469. // Check if light should be shadowed
  1470. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1471. // If shadow distance non-zero, check it
  1472. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1473. isShadowed = false;
  1474. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1475. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1476. query.litGeometries_.Clear();
  1477. switch (type)
  1478. {
  1479. case LIGHT_DIRECTIONAL:
  1480. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1481. {
  1482. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1483. query.litGeometries_.Push(geometries_[i]);
  1484. }
  1485. break;
  1486. case LIGHT_SPOT:
  1487. {
  1488. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1489. octree_->GetDrawables(octreeQuery);
  1490. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1491. {
  1492. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1493. query.litGeometries_.Push(tempDrawables[i]);
  1494. }
  1495. }
  1496. break;
  1497. case LIGHT_POINT:
  1498. {
  1499. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()),
  1500. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1501. octree_->GetDrawables(octreeQuery);
  1502. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1503. {
  1504. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1505. query.litGeometries_.Push(tempDrawables[i]);
  1506. }
  1507. }
  1508. break;
  1509. }
  1510. // If no lit geometries or not shadowed, no need to process shadow cameras
  1511. if (query.litGeometries_.Empty() || !isShadowed)
  1512. {
  1513. query.numSplits_ = 0;
  1514. return;
  1515. }
  1516. // Determine number of shadow cameras and setup their initial positions
  1517. SetupShadowCameras(query);
  1518. // Process each split for shadow casters
  1519. query.shadowCasters_.Clear();
  1520. for (unsigned i = 0; i < query.numSplits_; ++i)
  1521. {
  1522. Camera* shadowCamera = query.shadowCameras_[i];
  1523. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1524. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1525. // For point light check that the face is visible: if not, can skip the split
  1526. if (type == LIGHT_POINT && frustum.IsInsideFast(BoundingBox(shadowCameraFrustum)) == OUTSIDE)
  1527. continue;
  1528. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1529. if (type == LIGHT_DIRECTIONAL)
  1530. {
  1531. if (sceneViewBox_.min_.z_ > query.shadowFarSplits_[i])
  1532. continue;
  1533. if (sceneViewBox_.max_.z_ < query.shadowNearSplits_[i])
  1534. continue;
  1535. }
  1536. // Reuse lit geometry query for all except directional lights
  1537. if (type == LIGHT_DIRECTIONAL)
  1538. {
  1539. ShadowCasterOctreeQuery query(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1540. camera_->GetViewMask());
  1541. octree_->GetDrawables(query);
  1542. }
  1543. // Check which shadow casters actually contribute to the shadowing
  1544. ProcessShadowCasters(query, tempDrawables, i);
  1545. }
  1546. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1547. // only cost has been the shadow camera setup & queries
  1548. if (query.shadowCasters_.Empty())
  1549. query.numSplits_ = 0;
  1550. }
  1551. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1552. {
  1553. Light* light = query.light_;
  1554. Matrix3x4 lightView;
  1555. Matrix4 lightProj;
  1556. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1557. const Frustum& shadowCameraFrustum = shadowCamera->GetFrustum();
  1558. lightView = shadowCamera->GetInverseWorldTransform();
  1559. lightProj = shadowCamera->GetProjection();
  1560. LightType type = light->GetLightType();
  1561. query.shadowCasterBox_[splitIndex].defined_ = false;
  1562. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1563. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1564. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1565. Frustum lightViewFrustum;
  1566. if (type != LIGHT_DIRECTIONAL)
  1567. lightViewFrustum = sceneFrustum_.Transformed(lightView);
  1568. else
  1569. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, query.shadowNearSplits_[splitIndex]),
  1570. Min(sceneViewBox_.max_.z_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1571. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1572. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1573. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1574. return;
  1575. BoundingBox lightViewBox;
  1576. BoundingBox lightProjBox;
  1577. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1578. {
  1579. Drawable* drawable = *i;
  1580. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1581. // Check for that first
  1582. if (!drawable->GetCastShadows())
  1583. continue;
  1584. // For point light, check that this drawable is inside the split shadow camera frustum
  1585. if (type == LIGHT_POINT && shadowCameraFrustum.IsInsideFast(drawable->GetWorldBoundingBox()) == OUTSIDE)
  1586. continue;
  1587. // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
  1588. // times. However, this should not cause problems as no scene modification happens at this point.
  1589. if (!drawable->IsInView(frame_, false))
  1590. drawable->UpdateDistance(frame_);
  1591. // Check shadow distance
  1592. float maxShadowDistance = drawable->GetShadowDistance();
  1593. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1594. continue;
  1595. // Check shadow mask
  1596. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1597. continue;
  1598. // Project shadow caster bounding box to light view space for visibility check
  1599. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1600. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1601. {
  1602. // Merge to shadow caster bounding box and add to the list
  1603. if (type == LIGHT_DIRECTIONAL)
  1604. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1605. else
  1606. {
  1607. lightProjBox = lightViewBox.Projected(lightProj);
  1608. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1609. }
  1610. query.shadowCasters_.Push(drawable);
  1611. }
  1612. }
  1613. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1614. }
  1615. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1616. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1617. {
  1618. if (shadowCamera->IsOrthographic())
  1619. {
  1620. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1621. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1622. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1623. }
  1624. else
  1625. {
  1626. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1627. if (drawable->IsInView(frame_))
  1628. return true;
  1629. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1630. Vector3 center = lightViewBox.Center();
  1631. Ray extrusionRay(center, center.Normalized());
  1632. float extrusionDistance = shadowCamera->GetFarClip();
  1633. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1634. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1635. float sizeFactor = extrusionDistance / originalDistance;
  1636. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1637. // than necessary, so the test will be conservative
  1638. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1639. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1640. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1641. lightViewBox.Merge(extrudedBox);
  1642. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1643. }
  1644. }
  1645. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1646. {
  1647. unsigned width = shadowMap->GetWidth();
  1648. unsigned height = shadowMap->GetHeight();
  1649. int maxCascades = renderer_->GetMaxShadowCascades();
  1650. // Due to instruction count limits, deferred modes in SM2.0 can only support up to 3 cascades
  1651. #ifndef USE_OPENGL
  1652. if (renderMode_ != RENDER_FORWARD && !graphics_->GetSM3Support())
  1653. maxCascades = Max(maxCascades, 3);
  1654. #endif
  1655. switch (light->GetLightType())
  1656. {
  1657. case LIGHT_DIRECTIONAL:
  1658. if (maxCascades == 1)
  1659. return IntRect(0, 0, width, height);
  1660. else if (maxCascades == 2)
  1661. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1662. else
  1663. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1664. (splitIndex / 2 + 1) * height / 2);
  1665. case LIGHT_SPOT:
  1666. return IntRect(0, 0, width, height);
  1667. case LIGHT_POINT:
  1668. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1669. (splitIndex / 2 + 1) * height / 3);
  1670. }
  1671. return IntRect();
  1672. }
  1673. void View::SetupShadowCameras(LightQueryResult& query)
  1674. {
  1675. Light* light = query.light_;
  1676. LightType type = light->GetLightType();
  1677. int splits = 0;
  1678. if (type == LIGHT_DIRECTIONAL)
  1679. {
  1680. const CascadeParameters& cascade = light->GetShadowCascade();
  1681. float nearSplit = camera_->GetNearClip();
  1682. float farSplit;
  1683. while (splits < renderer_->GetMaxShadowCascades())
  1684. {
  1685. // If split is completely beyond camera far clip, we are done
  1686. if (nearSplit > camera_->GetFarClip())
  1687. break;
  1688. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1689. if (farSplit <= nearSplit)
  1690. break;
  1691. // Setup the shadow camera for the split
  1692. Camera* shadowCamera = renderer_->GetShadowCamera();
  1693. query.shadowCameras_[splits] = shadowCamera;
  1694. query.shadowNearSplits_[splits] = nearSplit;
  1695. query.shadowFarSplits_[splits] = farSplit;
  1696. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1697. nearSplit = farSplit;
  1698. ++splits;
  1699. }
  1700. }
  1701. if (type == LIGHT_SPOT)
  1702. {
  1703. Camera* shadowCamera = renderer_->GetShadowCamera();
  1704. query.shadowCameras_[0] = shadowCamera;
  1705. Node* cameraNode = shadowCamera->GetNode();
  1706. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1707. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1708. shadowCamera->SetFarClip(light->GetRange());
  1709. shadowCamera->SetFov(light->GetFov());
  1710. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1711. splits = 1;
  1712. }
  1713. if (type == LIGHT_POINT)
  1714. {
  1715. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1716. {
  1717. Camera* shadowCamera = renderer_->GetShadowCamera();
  1718. query.shadowCameras_[i] = shadowCamera;
  1719. Node* cameraNode = shadowCamera->GetNode();
  1720. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1721. cameraNode->SetPosition(light->GetWorldPosition());
  1722. cameraNode->SetDirection(directions[i]);
  1723. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1724. shadowCamera->SetFarClip(light->GetRange());
  1725. shadowCamera->SetFov(90.0f);
  1726. shadowCamera->SetAspectRatio(1.0f);
  1727. }
  1728. splits = MAX_CUBEMAP_FACES;
  1729. }
  1730. query.numSplits_ = splits;
  1731. }
  1732. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1733. {
  1734. Node* cameraNode = shadowCamera->GetNode();
  1735. float extrusionDistance = camera_->GetFarClip();
  1736. const FocusParameters& parameters = light->GetShadowFocus();
  1737. // Calculate initial position & rotation
  1738. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1739. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1740. cameraNode->SetTransform(pos, light->GetWorldRotation());
  1741. // Calculate main camera shadowed frustum in light's view space
  1742. farSplit = Min(farSplit, camera_->GetFarClip());
  1743. // Use the scene Z bounds to limit frustum size if applicable
  1744. if (parameters.focus_)
  1745. {
  1746. nearSplit = Max(sceneViewBox_.min_.z_, nearSplit);
  1747. farSplit = Min(sceneViewBox_.max_.z_, farSplit);
  1748. }
  1749. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1750. Polyhedron frustumVolume;
  1751. frustumVolume.Define(splitFrustum);
  1752. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1753. if (parameters.focus_)
  1754. {
  1755. BoundingBox litGeometriesBox;
  1756. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1757. {
  1758. // Skip skyboxes as they have undefinedly large bounding box size
  1759. if (geometries_[i]->GetType() == Skybox::GetTypeStatic())
  1760. continue;
  1761. if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit &&
  1762. (GetLightMask(geometries_[i]) & light->GetLightMask()))
  1763. litGeometriesBox.Merge(geometries_[i]->GetWorldBoundingBox());
  1764. }
  1765. if (litGeometriesBox.defined_)
  1766. {
  1767. frustumVolume.Clip(litGeometriesBox);
  1768. // If volume became empty, restore it to avoid zero size
  1769. if (frustumVolume.Empty())
  1770. frustumVolume.Define(splitFrustum);
  1771. }
  1772. }
  1773. // Transform frustum volume to light space
  1774. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1775. frustumVolume.Transform(lightView);
  1776. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1777. BoundingBox shadowBox;
  1778. if (!parameters.nonUniform_)
  1779. shadowBox.Define(Sphere(frustumVolume));
  1780. else
  1781. shadowBox.Define(frustumVolume);
  1782. shadowCamera->SetOrthographic(true);
  1783. shadowCamera->SetAspectRatio(1.0f);
  1784. shadowCamera->SetNearClip(0.0f);
  1785. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1786. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1787. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1788. }
  1789. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1790. const BoundingBox& shadowCasterBox)
  1791. {
  1792. const FocusParameters& parameters = light->GetShadowFocus();
  1793. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1794. LightType type = light->GetLightType();
  1795. if (type == LIGHT_DIRECTIONAL)
  1796. {
  1797. BoundingBox shadowBox;
  1798. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1799. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1800. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1801. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1802. // Requantize and snap to shadow map texels
  1803. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1804. }
  1805. if (type == LIGHT_SPOT)
  1806. {
  1807. if (parameters.focus_)
  1808. {
  1809. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1810. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1811. float viewSize = Max(viewSizeX, viewSizeY);
  1812. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1813. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1814. float quantize = parameters.quantize_ * invOrthoSize;
  1815. float minView = parameters.minView_ * invOrthoSize;
  1816. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1817. if (viewSize < 1.0f)
  1818. shadowCamera->SetZoom(1.0f / viewSize);
  1819. }
  1820. }
  1821. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1822. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1823. if (shadowCamera->GetZoom() >= 1.0f)
  1824. {
  1825. if (light->GetLightType() != LIGHT_POINT)
  1826. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1827. else
  1828. {
  1829. #ifdef USE_OPENGL
  1830. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1831. #else
  1832. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1833. #endif
  1834. }
  1835. }
  1836. }
  1837. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1838. const BoundingBox& viewBox)
  1839. {
  1840. Node* cameraNode = shadowCamera->GetNode();
  1841. const FocusParameters& parameters = light->GetShadowFocus();
  1842. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1843. float minX = viewBox.min_.x_;
  1844. float minY = viewBox.min_.y_;
  1845. float maxX = viewBox.max_.x_;
  1846. float maxY = viewBox.max_.y_;
  1847. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1848. Vector2 viewSize(maxX - minX, maxY - minY);
  1849. // Quantize size to reduce swimming
  1850. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1851. if (parameters.nonUniform_)
  1852. {
  1853. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1854. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1855. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1856. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1857. }
  1858. else if (parameters.focus_)
  1859. {
  1860. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1861. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1862. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1863. viewSize.y_ = viewSize.x_;
  1864. }
  1865. shadowCamera->SetOrthoSize(viewSize);
  1866. // Center shadow camera to the view space bounding box
  1867. Vector3 pos(shadowCamera->GetWorldPosition());
  1868. Quaternion rot(shadowCamera->GetWorldRotation());
  1869. Vector3 adjust(center.x_, center.y_, 0.0f);
  1870. cameraNode->Translate(rot * adjust);
  1871. // If the shadow map viewport is known, snap to whole texels
  1872. if (shadowMapWidth > 0.0f)
  1873. {
  1874. Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
  1875. // Take into account that shadow map border will not be used
  1876. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1877. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1878. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1879. cameraNode->Translate(rot * snap);
  1880. }
  1881. }
  1882. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1883. {
  1884. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1885. int bestPriority = M_MIN_INT;
  1886. Zone* newZone = 0;
  1887. // If bounding box center is in view, the zone assignment is conclusive also for next frames. Otherwise it is temporary
  1888. // (possibly incorrect) and must be re-evaluated on the next frame
  1889. bool temporary = !camera_->GetFrustum().IsInside(center);
  1890. // First check if the last zone remains a conclusive result
  1891. Zone* lastZone = drawable->GetLastZone();
  1892. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1893. lastZone->GetPriority() >= highestZonePriority_)
  1894. newZone = lastZone;
  1895. else
  1896. {
  1897. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1898. {
  1899. Zone* zone = *i;
  1900. int priority = zone->GetPriority();
  1901. if (zone->IsInside(center) && (drawable->GetZoneMask() & zone->GetZoneMask()) && priority > bestPriority)
  1902. {
  1903. newZone = zone;
  1904. bestPriority = priority;
  1905. }
  1906. }
  1907. }
  1908. drawable->SetZone(newZone, temporary);
  1909. }
  1910. Zone* View::GetZone(Drawable* drawable)
  1911. {
  1912. if (cameraZoneOverride_)
  1913. return cameraZone_;
  1914. Zone* drawableZone = drawable->GetZone();
  1915. return drawableZone ? drawableZone : cameraZone_;
  1916. }
  1917. unsigned View::GetLightMask(Drawable* drawable)
  1918. {
  1919. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1920. }
  1921. unsigned View::GetShadowMask(Drawable* drawable)
  1922. {
  1923. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1924. }
  1925. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1926. {
  1927. unsigned long long hash = 0;
  1928. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1929. hash += (unsigned long long)(*i);
  1930. return hash;
  1931. }
  1932. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1933. {
  1934. if (!material)
  1935. material = renderer_->GetDefaultMaterial();
  1936. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1937. // If only one technique, no choice
  1938. if (techniques.Size() == 1)
  1939. return techniques[0].technique_;
  1940. else
  1941. {
  1942. float lodDistance = drawable->GetLodDistance();
  1943. // Check for suitable technique. Techniques should be ordered like this:
  1944. // Most distant & highest quality
  1945. // Most distant & lowest quality
  1946. // Second most distant & highest quality
  1947. // ...
  1948. for (unsigned i = 0; i < techniques.Size(); ++i)
  1949. {
  1950. const TechniqueEntry& entry = techniques[i];
  1951. Technique* technique = entry.technique_;
  1952. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1953. continue;
  1954. if (lodDistance >= entry.lodDistance_)
  1955. return technique;
  1956. }
  1957. // If no suitable technique found, fallback to the last
  1958. return techniques.Size() ? techniques.Back().technique_ : (Technique*)0;
  1959. }
  1960. }
  1961. void View::CheckMaterialForAuxView(Material* material)
  1962. {
  1963. const SharedPtr<Texture>* textures = material->GetTextures();
  1964. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1965. {
  1966. // Have to check cube & 2D textures separately
  1967. Texture* texture = textures[i];
  1968. if (texture)
  1969. {
  1970. if (texture->GetType() == Texture2D::GetTypeStatic())
  1971. {
  1972. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1973. RenderSurface* target = tex2D->GetRenderSurface();
  1974. if (target)
  1975. {
  1976. Viewport* viewport = target->GetViewport();
  1977. if (viewport->GetScene() && viewport->GetCamera())
  1978. renderer_->AddView(target, viewport);
  1979. }
  1980. }
  1981. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1982. {
  1983. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1984. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1985. {
  1986. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1987. if (target)
  1988. {
  1989. Viewport* viewport = target->GetViewport();
  1990. if (viewport->GetScene() && viewport->GetCamera())
  1991. renderer_->AddView(target, viewport);
  1992. }
  1993. }
  1994. }
  1995. }
  1996. }
  1997. // Set frame number so that we can early-out next time we come across this material on the same frame
  1998. material->MarkForAuxView(frame_.frameNumber_);
  1999. }
  2000. void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows)
  2001. {
  2002. // Convert to instanced if possible
  2003. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  2004. batch.geometryType_ = GEOM_INSTANCED;
  2005. batch.pass_ = pass;
  2006. renderer_->SetBatchShaders(batch, tech, pass, allowShadows);
  2007. batch.CalculateSortKey();
  2008. }
  2009. void View::PrepareInstancingBuffer()
  2010. {
  2011. PROFILE(PrepareInstancingBuffer);
  2012. unsigned totalInstances = 0;
  2013. totalInstances += baseQueue_.GetNumInstances(renderer_);
  2014. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  2015. if (renderMode_ != RENDER_FORWARD)
  2016. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  2017. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2018. {
  2019. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2020. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  2021. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  2022. }
  2023. // If fail to set buffer size, fall back to per-group locking
  2024. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  2025. {
  2026. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  2027. unsigned freeIndex = 0;
  2028. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  2029. if (lockedData)
  2030. {
  2031. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2032. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2033. if (renderMode_ != RENDER_FORWARD)
  2034. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  2035. for (Vector<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  2036. {
  2037. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  2038. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2039. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  2040. }
  2041. instancingBuffer->Unlock();
  2042. }
  2043. }
  2044. }
  2045. void View::SetupLightVolumeBatch(Batch& batch)
  2046. {
  2047. Light* light = batch.lightQueue_->light_;
  2048. LightType type = light->GetLightType();
  2049. float lightDist;
  2050. // Use replace blend mode for the first pre-pass light volume, and additive for the rest
  2051. graphics_->SetAlphaTest(false);
  2052. graphics_->SetBlendMode(renderMode_ == RENDER_PREPASS && light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  2053. graphics_->SetDepthWrite(false);
  2054. if (type != LIGHT_DIRECTIONAL)
  2055. {
  2056. if (type == LIGHT_POINT)
  2057. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).Distance(camera_->GetWorldPosition());
  2058. else
  2059. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  2060. // Draw front faces if not inside light volume
  2061. if (lightDist < camera_->GetNearClip() * 2.0f)
  2062. {
  2063. renderer_->SetCullMode(CULL_CW, camera_);
  2064. graphics_->SetDepthTest(CMP_GREATER);
  2065. }
  2066. else
  2067. {
  2068. renderer_->SetCullMode(CULL_CCW, camera_);
  2069. graphics_->SetDepthTest(CMP_LESSEQUAL);
  2070. }
  2071. }
  2072. else
  2073. {
  2074. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  2075. // refresh the directional light's model transform before rendering
  2076. light->GetVolumeTransform(camera_);
  2077. graphics_->SetCullMode(CULL_NONE);
  2078. graphics_->SetDepthTest(CMP_ALWAYS);
  2079. }
  2080. graphics_->SetScissorTest(false);
  2081. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  2082. }
  2083. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  2084. {
  2085. Light quadDirLight(context_);
  2086. quadDirLight.SetLightType(LIGHT_DIRECTIONAL);
  2087. Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
  2088. graphics_->SetCullMode(CULL_NONE);
  2089. graphics_->SetShaderParameter(VSP_MODEL, model);
  2090. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  2091. graphics_->ClearTransformSources();
  2092. renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
  2093. }
  2094. void View::RenderShadowMap(const LightBatchQueue& queue)
  2095. {
  2096. PROFILE(RenderShadowMap);
  2097. Texture2D* shadowMap = queue.shadowMap_;
  2098. graphics_->SetTexture(TU_SHADOWMAP, 0);
  2099. graphics_->SetColorWrite(false);
  2100. graphics_->SetStencilTest(false);
  2101. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  2102. graphics_->SetDepthStencil(shadowMap);
  2103. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  2104. graphics_->Clear(CLEAR_DEPTH);
  2105. // Set shadow depth bias
  2106. BiasParameters parameters = queue.light_->GetShadowBias();
  2107. // Adjust the light's constant depth bias according to global shadow map resolution
  2108. /// \todo Should remove this adjustment and find a more flexible solution
  2109. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  2110. if (shadowMapSize <= 512)
  2111. parameters.constantBias_ *= 2.0f;
  2112. else if (shadowMapSize >= 2048)
  2113. parameters.constantBias_ *= 0.5f;
  2114. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  2115. // Render each of the splits
  2116. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  2117. {
  2118. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  2119. if (!shadowQueue.shadowBatches_.IsEmpty())
  2120. {
  2121. graphics_->SetViewport(shadowQueue.shadowViewport_);
  2122. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  2123. // However, do not do this for point lights, which need to render continuously across cube faces
  2124. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  2125. if (queue.light_->GetLightType() != LIGHT_POINT)
  2126. {
  2127. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  2128. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  2129. graphics_->SetScissorTest(true, zoomRect, false);
  2130. }
  2131. else
  2132. graphics_->SetScissorTest(false);
  2133. // Draw instanced and non-instanced shadow casters
  2134. shadowQueue.shadowBatches_.Draw(graphics_, renderer_);
  2135. }
  2136. }
  2137. graphics_->SetColorWrite(true);
  2138. graphics_->SetDepthBias(0.0f, 0.0f);
  2139. }
  2140. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2141. {
  2142. // If using the backbuffer, return the backbuffer depth-stencil
  2143. if (!renderTarget)
  2144. return 0;
  2145. // Then check for linked depth-stencil
  2146. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2147. // Finally get one from Renderer
  2148. if (!depthStencil)
  2149. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2150. return depthStencil;
  2151. }