2
0

View.cpp 94 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "ResourceCache.h"
  35. #include "PostProcess.h"
  36. #include "Profiler.h"
  37. #include "Scene.h"
  38. #include "ShaderVariation.h"
  39. #include "Skybox.h"
  40. #include "Sort.h"
  41. #include "Technique.h"
  42. #include "Texture2D.h"
  43. #include "TextureCube.h"
  44. #include "VertexBuffer.h"
  45. #include "View.h"
  46. #include "WorkQueue.h"
  47. #include "Zone.h"
  48. #include "DebugNew.h"
  49. static const Vector3 directions[] =
  50. {
  51. Vector3(1.0f, 0.0f, 0.0f),
  52. Vector3(-1.0f, 0.0f, 0.0f),
  53. Vector3(0.0f, 1.0f, 0.0f),
  54. Vector3(0.0f, -1.0f, 0.0f),
  55. Vector3(0.0f, 0.0f, 1.0f),
  56. Vector3(0.0f, 0.0f, -1.0f)
  57. };
  58. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  59. static const float LIGHT_INTENSITY_THRESHOLD = 0.001f;
  60. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  61. {
  62. View* view = reinterpret_cast<View*>(item->aux_);
  63. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  64. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  65. OcclusionBuffer* buffer = view->occlusionBuffer_;
  66. while (start != end)
  67. {
  68. Drawable* drawable = *start;
  69. unsigned char flags = drawable->GetDrawableFlags();
  70. ++start;
  71. if (flags & DRAWABLE_ZONE)
  72. continue;
  73. drawable->UpdateDistance(view->frame_);
  74. // If draw distance non-zero, check it
  75. float maxDistance = drawable->GetDrawDistance();
  76. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  77. continue;
  78. if (buffer && drawable->IsOccludee() && !buffer->IsVisible(drawable->GetWorldBoundingBox()))
  79. continue;
  80. drawable->MarkInView(view->frame_);
  81. // For geometries, clear lights and find new zone if necessary
  82. if (flags & DRAWABLE_GEOMETRY)
  83. {
  84. drawable->ClearLights();
  85. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  86. view->FindZone(drawable, threadIndex);
  87. }
  88. }
  89. }
  90. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  91. {
  92. View* view = reinterpret_cast<View*>(item->aux_);
  93. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  94. view->ProcessLight(*query, threadIndex);
  95. }
  96. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  97. {
  98. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  99. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  100. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  101. while (start != end)
  102. {
  103. Drawable* drawable = *start;
  104. drawable->UpdateGeometry(frame);
  105. ++start;
  106. }
  107. }
  108. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  109. {
  110. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  111. queue->SortFrontToBack();
  112. }
  113. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  114. {
  115. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  116. queue->SortBackToFront();
  117. }
  118. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  119. {
  120. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  121. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  122. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  123. start->litBatches_.SortFrontToBack();
  124. }
  125. OBJECTTYPESTATIC(View);
  126. View::View(Context* context) :
  127. Object(context),
  128. graphics_(GetSubsystem<Graphics>()),
  129. renderer_(GetSubsystem<Renderer>()),
  130. octree_(0),
  131. camera_(0),
  132. cameraZone_(0),
  133. farClipZone_(0),
  134. renderTarget_(0)
  135. {
  136. frame_.camera_ = 0;
  137. // Create octree query vectors for each thread
  138. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  139. tempZones_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  140. }
  141. View::~View()
  142. {
  143. }
  144. bool View::Define(RenderSurface* renderTarget, Viewport* viewport)
  145. {
  146. Scene* scene = viewport->GetScene();
  147. Camera* camera = viewport->GetCamera();
  148. if (!scene || !camera)
  149. return false;
  150. // If scene is loading asynchronously, it is incomplete and should not be rendered
  151. if (scene->IsAsyncLoading())
  152. return false;
  153. Octree* octree = scene->GetComponent<Octree>();
  154. if (!octree)
  155. return false;
  156. renderMode_ = renderer_->GetRenderMode();
  157. octree_ = octree;
  158. camera_ = camera;
  159. renderTarget_ = renderTarget;
  160. // Get active post-processing effects on the viewport
  161. const Vector<SharedPtr<PostProcess> >& postProcesses = viewport->GetPostProcesses();
  162. postProcesses_.Clear();
  163. for (Vector<SharedPtr<PostProcess> >::ConstIterator i = postProcesses.Begin(); i != postProcesses.End(); ++i)
  164. {
  165. PostProcess* effect = i->Get();
  166. if (effect && effect->IsActive())
  167. postProcesses_.Push(*i);
  168. }
  169. // Validate the rect and calculate size. If zero rect, use whole rendertarget size
  170. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  171. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  172. const IntRect& rect = viewport->GetRect();
  173. if (rect != IntRect::ZERO)
  174. {
  175. viewRect_.left_ = Clamp(rect.left_, 0, rtWidth - 1);
  176. viewRect_.top_ = Clamp(rect.top_, 0, rtHeight - 1);
  177. viewRect_.right_ = Clamp(rect.right_, viewRect_.left_ + 1, rtWidth);
  178. viewRect_.bottom_ = Clamp(rect.bottom_, viewRect_.top_ + 1, rtHeight);
  179. }
  180. else
  181. viewRect_ = IntRect(0, 0, rtWidth, rtHeight);
  182. viewSize_ = IntVector2(viewRect_.right_ - viewRect_.left_, viewRect_.bottom_ - viewRect_.top_);
  183. rtSize_ = IntVector2(rtWidth, rtHeight);
  184. // On OpenGL flip the viewport if rendering to a texture for consistent UV addressing with Direct3D9
  185. #ifdef USE_OPENGL
  186. if (renderTarget_)
  187. {
  188. viewRect_.bottom_ = rtSize_.y_ - viewRect_.top_;
  189. viewRect_.top_ = viewRect_.bottom_ - viewSize_.y_;
  190. }
  191. #endif
  192. drawShadows_ = renderer_->GetDrawShadows();
  193. materialQuality_ = renderer_->GetMaterialQuality();
  194. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  195. // Set possible quality overrides from the camera
  196. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  197. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  198. materialQuality_ = QUALITY_LOW;
  199. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  200. drawShadows_ = false;
  201. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  202. maxOccluderTriangles_ = 0;
  203. return true;
  204. }
  205. void View::Update(const FrameInfo& frame)
  206. {
  207. if (!camera_ || !octree_)
  208. return;
  209. frame_.camera_ = camera_;
  210. frame_.timeStep_ = frame.timeStep_;
  211. frame_.frameNumber_ = frame.frameNumber_;
  212. frame_.viewSize_ = viewSize_;
  213. // Clear screen buffers, geometry, light, occluder & batch lists
  214. screenBuffers_.Clear();
  215. geometries_.Clear();
  216. allGeometries_.Clear();
  217. geometryDepthBounds_.Clear();
  218. lights_.Clear();
  219. zones_.Clear();
  220. occluders_.Clear();
  221. baseQueue_.Clear();
  222. preAlphaQueue_.Clear();
  223. gbufferQueue_.Clear();
  224. alphaQueue_.Clear();
  225. postAlphaQueue_.Clear();
  226. lightQueues_.Clear();
  227. vertexLightQueues_.Clear();
  228. // Do not update if camera projection is illegal
  229. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  230. if (!camera_->IsProjectionValid())
  231. return;
  232. // Set automatic aspect ratio if required
  233. if (camera_->GetAutoAspectRatio())
  234. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  235. // Cache the camera frustum to avoid recalculating it constantly
  236. frustum_ = camera_->GetFrustum();
  237. GetDrawables();
  238. GetBatches();
  239. UpdateGeometries();
  240. }
  241. void View::Render()
  242. {
  243. if (!octree_ || !camera_)
  244. return;
  245. // Allocate screen buffers for post-processing and blitting as necessary
  246. AllocateScreenBuffers();
  247. // Forget parameter sources from the previous view
  248. graphics_->ClearParameterSources();
  249. // If stream offset is supported, write all instance transforms to a single large buffer
  250. // Else we must lock the instance buffer for each batch group
  251. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  252. PrepareInstancingBuffer();
  253. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  254. // again to ensure correct projection will be used
  255. if (camera_->GetAutoAspectRatio())
  256. camera_->SetAspectRatio((float)(viewSize_.x_) / (float)(viewSize_.y_));
  257. graphics_->SetColorWrite(true);
  258. graphics_->SetFillMode(FILL_SOLID);
  259. // Bind the face selection and indirection cube maps for point light shadows
  260. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  261. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  262. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  263. // ie. when using deferred rendering and/or doing post-processing
  264. if (renderTarget_)
  265. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  266. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  267. // as a render texture produced on Direct3D9
  268. #ifdef USE_OPENGL
  269. if (renderTarget_)
  270. camera_->SetFlipVertical(true);
  271. #endif
  272. // Render
  273. if (renderMode_ == RENDER_FORWARD)
  274. RenderBatchesForward();
  275. else
  276. RenderBatchesDeferred();
  277. #ifdef USE_OPENGL
  278. camera_->SetFlipVertical(false);
  279. #endif
  280. graphics_->SetViewTexture(0);
  281. graphics_->SetScissorTest(false);
  282. graphics_->SetStencilTest(false);
  283. graphics_->ResetStreamFrequencies();
  284. // Run post-processes or framebuffer blitting now
  285. if (screenBuffers_.Size())
  286. {
  287. if (postProcesses_.Size())
  288. RunPostProcesses();
  289. else
  290. BlitFramebuffer();
  291. }
  292. // If this is a main view, draw the associated debug geometry now
  293. if (!renderTarget_)
  294. {
  295. DebugRenderer* debug = octree_->GetComponent<DebugRenderer>();
  296. if (debug)
  297. {
  298. debug->SetView(camera_);
  299. debug->Render();
  300. }
  301. }
  302. // "Forget" the camera, octree and zone after rendering
  303. camera_ = 0;
  304. octree_ = 0;
  305. cameraZone_ = 0;
  306. farClipZone_ = 0;
  307. occlusionBuffer_ = 0;
  308. frame_.camera_ = 0;
  309. }
  310. void View::GetDrawables()
  311. {
  312. PROFILE(GetDrawables);
  313. WorkQueue* queue = GetSubsystem<WorkQueue>();
  314. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  315. // Perform one octree query to get everything, then examine the results
  316. FrustumOctreeQuery query(tempDrawables, frustum_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT | DRAWABLE_ZONE);
  317. octree_->GetDrawables(query);
  318. // Get zones and occluders first
  319. highestZonePriority_ = M_MIN_INT;
  320. int bestPriority = M_MIN_INT;
  321. Vector3 cameraPos = camera_->GetWorldPosition();
  322. // Get default zone first in case we do not have zones defined
  323. Zone* defaultZone = renderer_->GetDefaultZone();
  324. cameraZone_ = farClipZone_ = defaultZone;
  325. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  326. {
  327. Drawable* drawable = *i;
  328. unsigned char flags = drawable->GetDrawableFlags();
  329. if (flags & DRAWABLE_ZONE)
  330. {
  331. Zone* zone = static_cast<Zone*>(drawable);
  332. zones_.Push(zone);
  333. int priority = zone->GetPriority();
  334. if (priority > highestZonePriority_)
  335. highestZonePriority_ = priority;
  336. if (zone->IsInside(cameraPos) && priority > bestPriority)
  337. {
  338. cameraZone_ = zone;
  339. bestPriority = priority;
  340. }
  341. }
  342. else if (flags & DRAWABLE_GEOMETRY && drawable->IsOccluder())
  343. occluders_.Push(drawable);
  344. }
  345. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  346. cameraZoneOverride_ = cameraZone_->GetOverride();
  347. if (!cameraZoneOverride_)
  348. {
  349. Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0, 0, camera_->GetFarClip());
  350. bestPriority = M_MIN_INT;
  351. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  352. {
  353. int priority = (*i)->GetPriority();
  354. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  355. {
  356. farClipZone_ = *i;
  357. bestPriority = priority;
  358. }
  359. }
  360. }
  361. if (farClipZone_ == defaultZone)
  362. farClipZone_ = cameraZone_;
  363. // If occlusion in use, get & render the occluders
  364. occlusionBuffer_ = 0;
  365. if (maxOccluderTriangles_ > 0)
  366. {
  367. UpdateOccluders(occluders_, camera_);
  368. if (occluders_.Size())
  369. {
  370. PROFILE(DrawOcclusion);
  371. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  372. DrawOccluders(occlusionBuffer_, occluders_);
  373. }
  374. }
  375. // Check visibility and find zones for moved drawables in worker threads
  376. {
  377. WorkItem item;
  378. item.workFunction_ = CheckVisibilityWork;
  379. item.aux_ = this;
  380. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  381. while (start != tempDrawables.End())
  382. {
  383. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  384. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  385. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  386. item.start_ = &(*start);
  387. item.end_ = &(*end);
  388. queue->AddWorkItem(item);
  389. start = end;
  390. }
  391. queue->Complete();
  392. }
  393. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  394. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  395. sceneBox_.defined_ = false;
  396. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  397. sceneViewBox_.defined_ = false;
  398. Matrix3x4 view(camera_->GetInverseWorldTransform());
  399. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  400. {
  401. Drawable* drawable = tempDrawables[i];
  402. unsigned char flags = drawable->GetDrawableFlags();
  403. if (flags & DRAWABLE_ZONE || !drawable->IsInView(frame_))
  404. continue;
  405. if (flags & DRAWABLE_GEOMETRY)
  406. {
  407. // Expand the scene bounding boxes. However, do not take skyboxes into account, as they have undefinedly large size
  408. // and the bounding boxes are also used for shadow focusing
  409. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  410. BoundingBox geomViewBox = geomBox.Transformed(view);
  411. if (drawable->GetType() != Skybox::GetTypeStatic())
  412. {
  413. sceneBox_.Merge(geomBox);
  414. sceneViewBox_.Merge(geomViewBox);
  415. }
  416. // Store depth info for split directional light queries
  417. GeometryDepthBounds bounds;
  418. bounds.min_ = geomViewBox.min_.z_;
  419. bounds.max_ = geomViewBox.max_.z_;
  420. geometryDepthBounds_.Push(bounds);
  421. geometries_.Push(drawable);
  422. allGeometries_.Push(drawable);
  423. }
  424. else if (flags & DRAWABLE_LIGHT)
  425. {
  426. Light* light = static_cast<Light*>(drawable);
  427. // Skip lights which are so dim that they can not contribute to a rendertarget
  428. if (light->GetColor().Intensity() > LIGHT_INTENSITY_THRESHOLD)
  429. lights_.Push(light);
  430. }
  431. }
  432. sceneFrustum_ = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_);
  433. // Sort the lights to brightest/closest first
  434. for (unsigned i = 0; i < lights_.Size(); ++i)
  435. {
  436. Light* light = lights_[i];
  437. light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
  438. }
  439. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  440. }
  441. void View::GetBatches()
  442. {
  443. WorkQueue* queue = GetSubsystem<WorkQueue>();
  444. PODVector<Light*> vertexLights;
  445. // Process lit geometries and shadow casters for each light
  446. {
  447. PROFILE_MULTIPLE(ProcessLights, lights_.Size());
  448. lightQueryResults_.Resize(lights_.Size());
  449. WorkItem item;
  450. item.workFunction_ = ProcessLightWork;
  451. item.aux_ = this;
  452. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  453. {
  454. LightQueryResult& query = lightQueryResults_[i];
  455. query.light_ = lights_[i];
  456. item.start_ = &query;
  457. queue->AddWorkItem(item);
  458. }
  459. // Ensure all lights have been processed before proceeding
  460. queue->Complete();
  461. }
  462. // Build light queues and lit batches
  463. {
  464. maxLightsDrawables_.Clear();
  465. lightQueueMapping_.Clear();
  466. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  467. {
  468. const LightQueryResult& query = *i;
  469. // If light has no affected geometries, no need to process further
  470. if (query.litGeometries_.Empty())
  471. continue;
  472. PROFILE(GetLightBatches);
  473. Light* light = query.light_;
  474. // Per-pixel light
  475. if (!light->GetPerVertex())
  476. {
  477. unsigned shadowSplits = query.numSplits_;
  478. // Initialize light queue. Store light-to-queue mapping so that the queue can be found later
  479. lightQueues_.Resize(lightQueues_.Size() + 1);
  480. LightBatchQueue& lightQueue = lightQueues_.Back();
  481. lightQueueMapping_[light] = &lightQueue;
  482. lightQueue.light_ = light;
  483. lightQueue.litBatches_.Clear();
  484. lightQueue.volumeBatches_.Clear();
  485. // Allocate shadow map now
  486. lightQueue.shadowMap_ = 0;
  487. if (shadowSplits > 0)
  488. {
  489. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, viewSize_.x_, viewSize_.y_);
  490. // If did not manage to get a shadow map, convert the light to unshadowed
  491. if (!lightQueue.shadowMap_)
  492. shadowSplits = 0;
  493. }
  494. // Setup shadow batch queues
  495. lightQueue.shadowSplits_.Resize(shadowSplits);
  496. for (unsigned j = 0; j < shadowSplits; ++j)
  497. {
  498. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  499. Camera* shadowCamera = query.shadowCameras_[j];
  500. shadowQueue.shadowCamera_ = shadowCamera;
  501. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  502. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  503. // Setup the shadow split viewport and finalize shadow camera parameters
  504. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  505. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  506. // Loop through shadow casters
  507. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  508. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  509. {
  510. Drawable* drawable = *k;
  511. if (!drawable->IsInView(frame_, false))
  512. {
  513. drawable->MarkInView(frame_, false);
  514. allGeometries_.Push(drawable);
  515. }
  516. unsigned numBatches = drawable->GetNumBatches();
  517. for (unsigned l = 0; l < numBatches; ++l)
  518. {
  519. Batch shadowBatch;
  520. drawable->GetBatch(shadowBatch, frame_, l);
  521. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  522. if (!shadowBatch.geometry_ || !tech)
  523. continue;
  524. Pass* pass = tech->GetPass(PASS_SHADOW);
  525. // Skip if material has no shadow pass
  526. if (!pass)
  527. continue;
  528. // Fill the rest of the batch
  529. shadowBatch.camera_ = shadowCamera;
  530. shadowBatch.zone_ = GetZone(drawable);
  531. shadowBatch.lightQueue_ = &lightQueue;
  532. FinalizeBatch(shadowBatch, tech, pass);
  533. shadowQueue.shadowBatches_.AddBatch(shadowBatch);
  534. }
  535. }
  536. }
  537. // Process lit geometries
  538. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  539. {
  540. Drawable* drawable = *j;
  541. drawable->AddLight(light);
  542. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  543. if (!drawable->GetMaxLights())
  544. GetLitBatches(drawable, lightQueue);
  545. else
  546. maxLightsDrawables_.Insert(drawable);
  547. }
  548. // In deferred modes, store the light volume batch now
  549. if (renderMode_ != RENDER_FORWARD)
  550. {
  551. Batch volumeBatch;
  552. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  553. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  554. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  555. volumeBatch.camera_ = camera_;
  556. volumeBatch.lightQueue_ = &lightQueue;
  557. volumeBatch.distance_ = light->GetDistance();
  558. volumeBatch.material_ = 0;
  559. volumeBatch.pass_ = 0;
  560. volumeBatch.zone_ = 0;
  561. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  562. lightQueue.volumeBatches_.Push(volumeBatch);
  563. }
  564. }
  565. // Per-vertex light
  566. else
  567. {
  568. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  569. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  570. {
  571. Drawable* drawable = *j;
  572. drawable->AddVertexLight(light);
  573. }
  574. }
  575. }
  576. }
  577. // Process drawables with limited per-pixel light count
  578. if (maxLightsDrawables_.Size())
  579. {
  580. PROFILE(GetMaxLightsBatches);
  581. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  582. {
  583. Drawable* drawable = *i;
  584. drawable->LimitLights();
  585. const PODVector<Light*>& lights = drawable->GetLights();
  586. for (unsigned i = 0; i < lights.Size(); ++i)
  587. {
  588. Light* light = lights[i];
  589. // Find the correct light queue again
  590. Map<Light*, LightBatchQueue*>::Iterator j = lightQueueMapping_.Find(light);
  591. if (j != lightQueueMapping_.End())
  592. GetLitBatches(drawable, *(j->second_));
  593. }
  594. }
  595. }
  596. // Build base pass batches
  597. {
  598. PROFILE(GetBaseBatches);
  599. hasZeroLightMask_ = false;
  600. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  601. {
  602. Drawable* drawable = *i;
  603. unsigned numBatches = drawable->GetNumBatches();
  604. const PODVector<Light*>& drawableVertexLights = drawable->GetVertexLights();
  605. if (!drawableVertexLights.Empty())
  606. drawable->LimitVertexLights();
  607. for (unsigned j = 0; j < numBatches; ++j)
  608. {
  609. Batch baseBatch;
  610. drawable->GetBatch(baseBatch, frame_, j);
  611. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  612. if (!baseBatch.geometry_ || !tech)
  613. continue;
  614. // Check here if the material technique refers to a rendertarget texture with camera(s) attached
  615. // Only check this for the main view (null rendertarget)
  616. if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
  617. CheckMaterialForAuxView(baseBatch.material_);
  618. // Fill the rest of the batch
  619. baseBatch.camera_ = camera_;
  620. baseBatch.zone_ = GetZone(drawable);
  621. baseBatch.isBase_ = true;
  622. Pass* pass = 0;
  623. // In deferred modes check for G-buffer and material passes first
  624. if (renderMode_ == RENDER_PREPASS)
  625. {
  626. pass = tech->GetPass(PASS_PREPASS);
  627. if (pass)
  628. {
  629. // If the opaque object has a zero lightmask, have to skip light buffer optimization
  630. if (!hasZeroLightMask_ && (!(GetLightMask(drawable) & 0xff)))
  631. hasZeroLightMask_ = true;
  632. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  633. baseBatch.lightMask_ = GetLightMask(drawable);
  634. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  635. gbufferQueue_.AddBatch(baseBatch);
  636. pass = tech->GetPass(PASS_MATERIAL);
  637. }
  638. }
  639. if (renderMode_ == RENDER_DEFERRED)
  640. pass = tech->GetPass(PASS_DEFERRED);
  641. // Next check for forward base pass
  642. if (!pass)
  643. {
  644. // Skip if a lit base pass already exists
  645. if (j < 32 && drawable->HasBasePass(j))
  646. continue;
  647. pass = tech->GetPass(PASS_BASE);
  648. }
  649. if (pass)
  650. {
  651. // Check for vertex lights (both forward unlit, light pre-pass material pass, and deferred G-buffer)
  652. if (!drawableVertexLights.Empty())
  653. {
  654. // For a deferred opaque batch, check if the vertex lights include converted per-pixel lights, and remove
  655. // them to prevent double-lighting
  656. if (renderMode_ != RENDER_FORWARD && pass->GetBlendMode() == BLEND_REPLACE)
  657. {
  658. vertexLights.Clear();
  659. for (unsigned i = 0; i < drawableVertexLights.Size(); ++i)
  660. {
  661. if (drawableVertexLights[i]->GetPerVertex())
  662. vertexLights.Push(drawableVertexLights[i]);
  663. }
  664. }
  665. else
  666. vertexLights = drawableVertexLights;
  667. if (!vertexLights.Empty())
  668. {
  669. // Find a vertex light queue. If not found, create new
  670. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  671. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  672. if (i == vertexLightQueues_.End())
  673. {
  674. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  675. i->second_.light_ = 0;
  676. i->second_.shadowMap_ = 0;
  677. i->second_.vertexLights_ = vertexLights;
  678. }
  679. baseBatch.lightQueue_ = &(i->second_);
  680. }
  681. }
  682. if (pass->GetBlendMode() == BLEND_REPLACE)
  683. {
  684. if (pass->GetType() != PASS_DEFERRED)
  685. {
  686. FinalizeBatch(baseBatch, tech, pass);
  687. baseQueue_.AddBatch(baseBatch);
  688. }
  689. else
  690. {
  691. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  692. baseBatch.lightMask_ = GetLightMask(drawable);
  693. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  694. gbufferQueue_.AddBatch(baseBatch);
  695. }
  696. }
  697. else
  698. {
  699. // Transparent batches can not be instanced
  700. FinalizeBatch(baseBatch, tech, pass, false);
  701. alphaQueue_.AddBatch(baseBatch);
  702. }
  703. continue;
  704. }
  705. // If no base pass, finally check for pre-alpha / post-alpha custom passes
  706. pass = tech->GetPass(PASS_PREALPHA);
  707. if (pass)
  708. {
  709. FinalizeBatch(baseBatch, tech, pass);
  710. preAlphaQueue_.AddBatch(baseBatch);
  711. continue;
  712. }
  713. pass = tech->GetPass(PASS_POSTALPHA);
  714. if (pass)
  715. {
  716. // Post-alpha pass is treated similarly as alpha, and is not instanced
  717. FinalizeBatch(baseBatch, tech, pass, false);
  718. postAlphaQueue_.AddBatch(baseBatch);
  719. continue;
  720. }
  721. }
  722. }
  723. }
  724. }
  725. void View::UpdateGeometries()
  726. {
  727. PROFILE(UpdateGeometries);
  728. WorkQueue* queue = GetSubsystem<WorkQueue>();
  729. // Sort batches
  730. {
  731. WorkItem item;
  732. item.workFunction_ = SortBatchQueueFrontToBackWork;
  733. item.start_ = &baseQueue_;
  734. queue->AddWorkItem(item);
  735. item.start_ = &preAlphaQueue_;
  736. queue->AddWorkItem(item);
  737. if (renderMode_ != RENDER_FORWARD)
  738. {
  739. item.start_ = &gbufferQueue_;
  740. queue->AddWorkItem(item);
  741. }
  742. item.workFunction_ = SortBatchQueueBackToFrontWork;
  743. item.start_ = &alphaQueue_;
  744. queue->AddWorkItem(item);
  745. item.start_ = &postAlphaQueue_;
  746. queue->AddWorkItem(item);
  747. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  748. {
  749. item.workFunction_ = SortLightQueueWork;
  750. item.start_ = &(*i);
  751. queue->AddWorkItem(item);
  752. }
  753. }
  754. // Update geometries. Split into threaded and non-threaded updates.
  755. {
  756. nonThreadedGeometries_.Clear();
  757. threadedGeometries_.Clear();
  758. for (PODVector<Drawable*>::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i)
  759. {
  760. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  761. if (type == UPDATE_MAIN_THREAD)
  762. nonThreadedGeometries_.Push(*i);
  763. else if (type == UPDATE_WORKER_THREAD)
  764. threadedGeometries_.Push(*i);
  765. }
  766. if (threadedGeometries_.Size())
  767. {
  768. WorkItem item;
  769. item.workFunction_ = UpdateDrawableGeometriesWork;
  770. item.aux_ = const_cast<FrameInfo*>(&frame_);
  771. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  772. while (start != threadedGeometries_.End())
  773. {
  774. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  775. if (end - start > DRAWABLES_PER_WORK_ITEM)
  776. end = start + DRAWABLES_PER_WORK_ITEM;
  777. item.start_ = &(*start);
  778. item.end_ = &(*end);
  779. queue->AddWorkItem(item);
  780. start = end;
  781. }
  782. }
  783. // While the work queue is processed, update non-threaded geometries
  784. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  785. (*i)->UpdateGeometry(frame_);
  786. }
  787. // Finally ensure all threaded work has completed
  788. queue->Complete();
  789. }
  790. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  791. {
  792. Light* light = lightQueue.light_;
  793. Light* firstLight = drawable->GetFirstLight();
  794. Zone* zone = GetZone(drawable);
  795. // Shadows on transparencies can only be rendered if shadow maps are not reused
  796. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  797. bool hasVertexLights = drawable->GetVertexLights().Size() > 0;
  798. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  799. unsigned numBatches = drawable->GetNumBatches();
  800. for (unsigned i = 0; i < numBatches; ++i)
  801. {
  802. Batch litBatch;
  803. drawable->GetBatch(litBatch, frame_, i);
  804. Technique* tech = GetTechnique(drawable, litBatch.material_);
  805. if (!litBatch.geometry_ || !tech)
  806. continue;
  807. // Do not create pixel lit forward passes for materials that render into the G-buffer
  808. if ((renderMode_ == RENDER_PREPASS && tech->HasPass(PASS_PREPASS)) || (renderMode_ == RENDER_DEFERRED &&
  809. tech->HasPass(PASS_DEFERRED)))
  810. continue;
  811. Pass* pass = 0;
  812. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  813. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  814. if (i < 32 && light == firstLight && !hasVertexLights && !hasAmbientGradient && !drawable->HasBasePass(i))
  815. {
  816. pass = tech->GetPass(PASS_LITBASE);
  817. if (pass)
  818. {
  819. litBatch.isBase_ = true;
  820. drawable->SetBasePass(i);
  821. }
  822. }
  823. // If no lit base pass, get ordinary light pass
  824. if (!pass)
  825. pass = tech->GetPass(PASS_LIGHT);
  826. // Skip if material does not receive light at all
  827. if (!pass)
  828. continue;
  829. // Fill the rest of the batch
  830. litBatch.camera_ = camera_;
  831. litBatch.lightQueue_ = &lightQueue;
  832. litBatch.zone_ = GetZone(drawable);
  833. // Check from the ambient pass whether the object is opaque or transparent
  834. Pass* ambientPass = tech->GetPass(PASS_BASE);
  835. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  836. {
  837. FinalizeBatch(litBatch, tech, pass);
  838. lightQueue.litBatches_.AddBatch(litBatch);
  839. }
  840. else
  841. {
  842. // Transparent batches can not be instanced
  843. FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows);
  844. alphaQueue_.AddBatch(litBatch);
  845. }
  846. }
  847. }
  848. void View::RenderBatchesForward()
  849. {
  850. // If using hardware multisampling with post-processing, render to the backbuffer first and then resolve
  851. bool resolve = screenBuffers_.Size() && !renderTarget_ && graphics_->GetMultiSample() > 1;
  852. RenderSurface* renderTarget = (screenBuffers_.Size() && !resolve) ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  853. RenderSurface* depthStencil = GetDepthStencil(renderTarget);
  854. // If not reusing shadowmaps, render all of them first
  855. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  856. {
  857. PROFILE(RenderShadowMaps);
  858. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  859. {
  860. if (i->shadowMap_)
  861. RenderShadowMap(*i);
  862. }
  863. }
  864. graphics_->SetRenderTarget(0, renderTarget);
  865. graphics_->SetDepthStencil(depthStencil);
  866. graphics_->SetViewport(viewRect_);
  867. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  868. // Render opaque object unlit base pass
  869. if (!baseQueue_.IsEmpty())
  870. {
  871. PROFILE(RenderBase);
  872. baseQueue_.Draw(graphics_, renderer_);
  873. }
  874. // Render shadow maps + opaque objects' additive lighting
  875. if (!lightQueues_.Empty())
  876. {
  877. PROFILE(RenderLights);
  878. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  879. {
  880. // If reusing shadowmaps, render each of them before the lit batches
  881. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  882. {
  883. RenderShadowMap(*i);
  884. graphics_->SetRenderTarget(0, renderTarget);
  885. graphics_->SetDepthStencil(depthStencil);
  886. graphics_->SetViewport(viewRect_);
  887. }
  888. i->litBatches_.Draw(i->light_, graphics_, renderer_);
  889. }
  890. }
  891. graphics_->SetScissorTest(false);
  892. graphics_->SetStencilTest(false);
  893. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  894. graphics_->SetAlphaTest(false);
  895. graphics_->SetBlendMode(BLEND_REPLACE);
  896. graphics_->SetColorWrite(true);
  897. graphics_->SetDepthTest(CMP_LESSEQUAL);
  898. graphics_->SetDepthWrite(false);
  899. graphics_->SetScissorTest(false);
  900. graphics_->SetStencilTest(false);
  901. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  902. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  903. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  904. DrawFullscreenQuad(camera_, false);
  905. // Render pre-alpha custom pass
  906. if (!preAlphaQueue_.IsEmpty())
  907. {
  908. PROFILE(RenderPreAlpha);
  909. preAlphaQueue_.Draw(graphics_, renderer_);
  910. }
  911. // Render transparent objects (both base passes & additive lighting)
  912. if (!alphaQueue_.IsEmpty())
  913. {
  914. PROFILE(RenderAlpha);
  915. alphaQueue_.Draw(graphics_, renderer_, true);
  916. }
  917. // Render post-alpha custom pass
  918. if (!postAlphaQueue_.IsEmpty())
  919. {
  920. PROFILE(RenderPostAlpha);
  921. postAlphaQueue_.Draw(graphics_, renderer_);
  922. }
  923. // Resolve multisampled backbuffer now if necessary
  924. if (resolve)
  925. graphics_->ResolveToTexture(screenBuffers_[0], viewRect_);
  926. }
  927. void View::RenderBatchesDeferred()
  928. {
  929. // If not reusing shadowmaps, render all of them first
  930. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  931. {
  932. PROFILE(RenderShadowMaps);
  933. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  934. {
  935. if (i->shadowMap_)
  936. RenderShadowMap(*i);
  937. }
  938. }
  939. bool hwDepth = graphics_->GetHardwareDepthSupport();
  940. // In light prepass mode the albedo buffer is used for light accumulation instead
  941. Texture2D* albedoBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  942. Texture2D* normalBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, Graphics::GetRGBAFormat());
  943. Texture2D* depthBuffer = renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, hwDepth ? Graphics::GetDepthStencilFormat() :
  944. Graphics::GetLinearDepthFormat());
  945. RenderSurface* renderTarget = screenBuffers_.Size() ? screenBuffers_[0]->GetRenderSurface() : renderTarget_;
  946. RenderSurface* depthStencil = hwDepth ? depthBuffer->GetRenderSurface() : renderer_->GetDepthStencil(rtSize_.x_, rtSize_.y_);
  947. if (renderMode_ == RENDER_PREPASS)
  948. {
  949. graphics_->SetRenderTarget(0, normalBuffer);
  950. if (!hwDepth)
  951. graphics_->SetRenderTarget(1, depthBuffer);
  952. }
  953. else
  954. {
  955. graphics_->SetRenderTarget(0, renderTarget);
  956. graphics_->SetRenderTarget(1, albedoBuffer);
  957. graphics_->SetRenderTarget(2, normalBuffer);
  958. if (!hwDepth)
  959. graphics_->SetRenderTarget(3, depthBuffer);
  960. }
  961. graphics_->SetDepthStencil(depthStencil);
  962. graphics_->SetViewport(viewRect_);
  963. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  964. // Render G-buffer batches
  965. if (!gbufferQueue_.IsEmpty())
  966. {
  967. PROFILE(RenderGBuffer);
  968. gbufferQueue_.Draw(graphics_, renderer_, false, true);
  969. }
  970. // Clear the light accumulation buffer (light pre-pass only.) However, skip the clear if the first light is a directional
  971. // light with full mask
  972. RenderSurface* lightRenderTarget = renderMode_ == RENDER_PREPASS ? albedoBuffer->GetRenderSurface() : renderTarget;
  973. if (renderMode_ == RENDER_PREPASS)
  974. {
  975. bool optimizeLightBuffer = !hasZeroLightMask_ && !lightQueues_.Empty() && lightQueues_.Front().light_->GetLightType() ==
  976. LIGHT_DIRECTIONAL && (lightQueues_.Front().light_->GetLightMask() & 0xff) == 0xff;
  977. graphics_->SetRenderTarget(0, lightRenderTarget);
  978. graphics_->ResetRenderTarget(1);
  979. graphics_->SetDepthStencil(depthStencil);
  980. graphics_->SetViewport(viewRect_);
  981. if (!optimizeLightBuffer)
  982. graphics_->Clear(CLEAR_COLOR);
  983. }
  984. else
  985. {
  986. graphics_->ResetRenderTarget(1);
  987. graphics_->ResetRenderTarget(2);
  988. graphics_->ResetRenderTarget(3);
  989. }
  990. // Render shadow maps + light volumes
  991. if (!lightQueues_.Empty())
  992. {
  993. PROFILE(RenderLights);
  994. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  995. {
  996. // If reusing shadowmaps, render each of them before the lit batches
  997. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  998. {
  999. RenderShadowMap(*i);
  1000. graphics_->SetRenderTarget(0, lightRenderTarget);
  1001. graphics_->SetDepthStencil(depthStencil);
  1002. graphics_->SetViewport(viewRect_);
  1003. }
  1004. if (renderMode_ == RENDER_DEFERRED)
  1005. graphics_->SetTexture(TU_ALBEDOBUFFER, albedoBuffer);
  1006. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  1007. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  1008. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  1009. {
  1010. SetupLightVolumeBatch(i->volumeBatches_[j]);
  1011. i->volumeBatches_[j].Draw(graphics_, renderer_);
  1012. }
  1013. }
  1014. }
  1015. graphics_->SetTexture(TU_ALBEDOBUFFER, 0);
  1016. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  1017. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  1018. if (renderMode_ == RENDER_PREPASS)
  1019. {
  1020. graphics_->SetRenderTarget(0, renderTarget);
  1021. graphics_->SetDepthStencil(depthStencil);
  1022. graphics_->SetViewport(viewRect_);
  1023. }
  1024. // At this point clear the parts of viewport not occupied by opaque geometry with fog color
  1025. graphics_->SetAlphaTest(false);
  1026. graphics_->SetBlendMode(BLEND_REPLACE);
  1027. graphics_->SetColorWrite(true);
  1028. graphics_->SetDepthTest(CMP_ALWAYS);
  1029. graphics_->SetDepthWrite(false);
  1030. graphics_->SetScissorTest(false);
  1031. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0);
  1032. graphics_->SetShaders(renderer_->GetVertexShader("Basic"), renderer_->GetPixelShader("Basic"));
  1033. graphics_->SetShaderParameter(PSP_MATDIFFCOLOR, farClipZone_->GetFogColor());
  1034. graphics_->ClearParameterSource(PSP_MATDIFFCOLOR);
  1035. DrawFullscreenQuad(camera_, false);
  1036. // Render opaque objects with deferred lighting result (light pre-pass only)
  1037. if (!baseQueue_.IsEmpty())
  1038. {
  1039. PROFILE(RenderBase);
  1040. graphics_->SetTexture(TU_LIGHTBUFFER, renderMode_ == RENDER_PREPASS ? albedoBuffer : 0);
  1041. baseQueue_.Draw(graphics_, renderer_);
  1042. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  1043. }
  1044. // Render pre-alpha custom pass
  1045. if (!preAlphaQueue_.IsEmpty())
  1046. {
  1047. PROFILE(RenderPreAlpha);
  1048. preAlphaQueue_.Draw(graphics_, renderer_);
  1049. }
  1050. // Render transparent objects (both base passes & additive lighting)
  1051. if (!alphaQueue_.IsEmpty())
  1052. {
  1053. PROFILE(RenderAlpha);
  1054. alphaQueue_.Draw(graphics_, renderer_, true);
  1055. }
  1056. // Render post-alpha custom pass
  1057. if (!postAlphaQueue_.IsEmpty())
  1058. {
  1059. PROFILE(RenderPostAlpha);
  1060. postAlphaQueue_.Draw(graphics_, renderer_);
  1061. }
  1062. }
  1063. void View::AllocateScreenBuffers()
  1064. {
  1065. unsigned neededBuffers = 0;
  1066. #ifdef USE_OPENGL
  1067. // Due to FBO limitations, in OpenGL deferred modes need to render to texture first and then blit to the backbuffer
  1068. // Also, if rendering to a texture with deferred rendering, it must be RGBA to comply with the rest of the buffers.
  1069. if (renderMode_ != RENDER_FORWARD && (!renderTarget_ || (renderMode_ == RENDER_DEFERRED &&
  1070. renderTarget_->GetParentTexture()->GetFormat() != Graphics::GetRGBAFormat())))
  1071. neededBuffers = 1;
  1072. #endif
  1073. unsigned postProcessPasses = 0;
  1074. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1075. postProcessPasses += postProcesses_[i]->GetNumPasses();
  1076. // If more than one post-process pass, need 2 buffers for ping-pong rendering
  1077. if (postProcessPasses)
  1078. neededBuffers = Min((int)postProcessPasses, 2);
  1079. unsigned format = Graphics::GetRGBFormat();
  1080. #ifdef USE_OPENGL
  1081. if (renderMode_ == RENDER_DEFERRED)
  1082. format = Graphics::GetRGBAFormat();
  1083. #endif
  1084. // Allocate screen buffers with filtering active in case the post-processing effects need that
  1085. for (unsigned i = 0; i < neededBuffers; ++i)
  1086. screenBuffers_.Push(renderer_->GetScreenBuffer(rtSize_.x_, rtSize_.y_, format, true));
  1087. }
  1088. void View::BlitFramebuffer()
  1089. {
  1090. // Blit the final image to destination rendertarget
  1091. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1092. graphics_->SetAlphaTest(false);
  1093. graphics_->SetBlendMode(BLEND_REPLACE);
  1094. graphics_->SetDepthTest(CMP_ALWAYS);
  1095. graphics_->SetDepthWrite(true);
  1096. graphics_->SetScissorTest(false);
  1097. graphics_->SetStencilTest(false);
  1098. graphics_->SetRenderTarget(0, renderTarget_);
  1099. graphics_->SetDepthStencil(GetDepthStencil(renderTarget_));
  1100. graphics_->SetViewport(viewRect_);
  1101. String shaderName = "CopyFramebuffer";
  1102. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1103. float rtWidth = (float)rtSize_.x_;
  1104. float rtHeight = (float)rtSize_.y_;
  1105. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1106. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1107. #ifdef USE_OPENGL
  1108. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1109. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1110. #else
  1111. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1112. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1113. #endif
  1114. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1115. graphics_->SetTexture(TU_DIFFUSE, screenBuffers_[0]);
  1116. DrawFullscreenQuad(camera_, false);
  1117. }
  1118. void View::RunPostProcesses()
  1119. {
  1120. ResourceCache* cache = GetSubsystem<ResourceCache>();
  1121. // Ping-pong buffer indices for read and write
  1122. unsigned readRtIndex = 0;
  1123. unsigned writeRtIndex = screenBuffers_.Size() - 1;
  1124. graphics_->SetAlphaTest(false);
  1125. graphics_->SetBlendMode(BLEND_REPLACE);
  1126. graphics_->SetDepthTest(CMP_ALWAYS);
  1127. graphics_->SetScissorTest(false);
  1128. graphics_->SetStencilTest(false);
  1129. for (unsigned i = 0; i < postProcesses_.Size(); ++i)
  1130. {
  1131. PostProcess* effect = postProcesses_[i];
  1132. // For each effect, rendertargets can be re-used. Allocate them now
  1133. renderer_->SaveScreenBufferAllocations();
  1134. const HashMap<StringHash, PostProcessRenderTarget>& renderTargetInfos = effect->GetRenderTargets();
  1135. HashMap<StringHash, Texture2D*> renderTargets;
  1136. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator j = renderTargetInfos.Begin(); j !=
  1137. renderTargetInfos.End(); ++j)
  1138. {
  1139. unsigned width = j->second_.size_.x_;
  1140. unsigned height = j->second_.size_.y_;
  1141. if (j->second_.sizeDivisor_)
  1142. {
  1143. width = viewSize_.x_ / width;
  1144. height = viewSize_.y_ / height;
  1145. }
  1146. renderTargets[j->first_] = renderer_->GetScreenBuffer(width, height, j->second_.format_, j->second_.filtered_);
  1147. }
  1148. // Run each effect pass
  1149. for (unsigned j = 0; j < effect->GetNumPasses(); ++j)
  1150. {
  1151. PostProcessPass* pass = effect->GetPass(j);
  1152. bool lastPass = (i == postProcesses_.Size() - 1) && (j == effect->GetNumPasses() - 1);
  1153. bool swapBuffers = false;
  1154. // Write depth on the last pass only
  1155. graphics_->SetDepthWrite(lastPass);
  1156. // Set output rendertarget
  1157. RenderSurface* rt = 0;
  1158. String output = pass->GetOutput().ToLower();
  1159. if (output == "viewport")
  1160. {
  1161. if (!lastPass)
  1162. {
  1163. rt = screenBuffers_[writeRtIndex]->GetRenderSurface();
  1164. swapBuffers = true;
  1165. }
  1166. else
  1167. rt = renderTarget_;
  1168. graphics_->SetRenderTarget(0, rt);
  1169. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1170. graphics_->SetViewport(viewRect_);
  1171. }
  1172. else
  1173. {
  1174. HashMap<StringHash, Texture2D*>::ConstIterator k = renderTargets.Find(StringHash(output));
  1175. if (k != renderTargets.End())
  1176. rt = k->second_->GetRenderSurface();
  1177. else
  1178. continue; // Skip pass if rendertarget can not be found
  1179. graphics_->SetRenderTarget(0, rt);
  1180. graphics_->SetDepthStencil(GetDepthStencil(rt));
  1181. graphics_->SetViewport(IntRect(0, 0, rt->GetWidth(), rt->GetHeight()));
  1182. }
  1183. // Set shaders, shader parameters and textures
  1184. graphics_->SetShaders(renderer_->GetVertexShader(pass->GetVertexShader()),
  1185. renderer_->GetPixelShader(pass->GetPixelShader()));
  1186. const HashMap<StringHash, Vector4>& globalParameters = effect->GetShaderParameters();
  1187. for (HashMap<StringHash, Vector4>::ConstIterator k = globalParameters.Begin(); k != globalParameters.End(); ++k)
  1188. graphics_->SetShaderParameter(k->first_, k->second_);
  1189. const HashMap<StringHash, Vector4>& parameters = pass->GetShaderParameters();
  1190. for (HashMap<StringHash, Vector4>::ConstIterator k = parameters.Begin(); k != parameters.End(); ++k)
  1191. graphics_->SetShaderParameter(k->first_, k->second_);
  1192. float rtWidth = (float)rtSize_.x_;
  1193. float rtHeight = (float)rtSize_.y_;
  1194. float widthRange = 0.5f * viewSize_.x_ / rtWidth;
  1195. float heightRange = 0.5f * viewSize_.y_ / rtHeight;
  1196. #ifdef USE_OPENGL
  1197. Vector4 bufferUVOffset(((float)viewRect_.left_) / rtWidth + widthRange,
  1198. 1.0f - (((float)viewRect_.top_) / rtHeight + heightRange), widthRange, heightRange);
  1199. #else
  1200. Vector4 bufferUVOffset((0.5f + (float)viewRect_.left_) / rtWidth + widthRange,
  1201. (0.5f + (float)viewRect_.top_) / rtHeight + heightRange, widthRange, heightRange);
  1202. #endif
  1203. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1204. graphics_->SetShaderParameter(PSP_GBUFFERINVSIZE, Vector4(1.0f / rtWidth, 1.0f / rtHeight, 0.0f, 0.0f));
  1205. // Set per-rendertarget inverse size / offset shader parameters as necessary
  1206. for (HashMap<StringHash, PostProcessRenderTarget>::ConstIterator k = renderTargetInfos.Begin(); k !=
  1207. renderTargetInfos.End(); ++k)
  1208. {
  1209. String invSizeName = k->second_.name_ + "InvSize";
  1210. String offsetsName = k->second_.name_ + "Offsets";
  1211. float width = (float)renderTargets[k->first_]->GetWidth();
  1212. float height = (float)renderTargets[k->first_]->GetHeight();
  1213. graphics_->SetShaderParameter(StringHash(invSizeName), Vector4(1.0f / width, 1.0f / height, 0.0f, 0.0f));
  1214. #ifdef USE_OPENGL
  1215. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4::ZERO);
  1216. #else
  1217. graphics_->SetShaderParameter(StringHash(offsetsName), Vector4(0.5f / width, 0.5f / height, 0.0f, 0.0f));
  1218. #endif
  1219. }
  1220. const String* textureNames = pass->GetTextures();
  1221. for (unsigned k = 0; k < MAX_MATERIAL_TEXTURE_UNITS; ++k)
  1222. {
  1223. if (!textureNames[k].Empty())
  1224. {
  1225. // Texture may either refer to a rendertarget or to a texture resource
  1226. if (!textureNames[k].Compare("viewport", false))
  1227. graphics_->SetTexture(k, screenBuffers_[readRtIndex]);
  1228. else
  1229. {
  1230. HashMap<StringHash, Texture2D*>::ConstIterator l = renderTargets.Find(StringHash(textureNames[k]));
  1231. if (l != renderTargets.End())
  1232. graphics_->SetTexture(k, l->second_);
  1233. else
  1234. {
  1235. // If requesting a texture fails, clear the texture name to prevent redundant attempts
  1236. Texture2D* texture = cache->GetResource<Texture2D>(textureNames[k]);
  1237. if (texture)
  1238. graphics_->SetTexture(k, texture);
  1239. else
  1240. pass->SetTexture((TextureUnit)k, String());
  1241. }
  1242. }
  1243. }
  1244. }
  1245. DrawFullscreenQuad(camera_, false);
  1246. // Swap the ping-pong buffer sides now if necessary
  1247. if (swapBuffers)
  1248. Swap(readRtIndex, writeRtIndex);
  1249. }
  1250. // Forget the rendertargets allocated during this effect
  1251. renderer_->RestoreScreenBufferAllocations();
  1252. }
  1253. }
  1254. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1255. {
  1256. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1257. float halfViewSize = camera->GetHalfViewSize();
  1258. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1259. Vector3 cameraPos = camera->GetWorldPosition();
  1260. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1261. {
  1262. Drawable* occluder = *i;
  1263. bool erase = false;
  1264. if (!occluder->IsInView(frame_, false))
  1265. occluder->UpdateDistance(frame_);
  1266. // Check occluder's draw distance (in main camera view)
  1267. float maxDistance = occluder->GetDrawDistance();
  1268. if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
  1269. erase = true;
  1270. else
  1271. {
  1272. // Check that occluder is big enough on the screen
  1273. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1274. float diagonal = box.Size().Length();
  1275. float compare;
  1276. if (!camera->IsOrthographic())
  1277. compare = diagonal * halfViewSize / occluder->GetDistance();
  1278. else
  1279. compare = diagonal * invOrthoSize;
  1280. if (compare < occluderSizeThreshold_)
  1281. erase = true;
  1282. else
  1283. {
  1284. // Store amount of triangles divided by screen size as a sorting key
  1285. // (best occluders are big and have few triangles)
  1286. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1287. }
  1288. }
  1289. if (erase)
  1290. i = occluders.Erase(i);
  1291. else
  1292. ++i;
  1293. }
  1294. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1295. if (occluders.Size())
  1296. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1297. }
  1298. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1299. {
  1300. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1301. buffer->Clear();
  1302. for (unsigned i = 0; i < occluders.Size(); ++i)
  1303. {
  1304. Drawable* occluder = occluders[i];
  1305. if (i > 0)
  1306. {
  1307. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1308. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1309. continue;
  1310. }
  1311. // Check for running out of triangles
  1312. if (!occluder->DrawOcclusion(buffer))
  1313. break;
  1314. }
  1315. buffer->BuildDepthHierarchy();
  1316. }
  1317. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1318. {
  1319. Light* light = query.light_;
  1320. LightType type = light->GetLightType();
  1321. // Check if light should be shadowed
  1322. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1323. // If shadow distance non-zero, check it
  1324. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1325. isShadowed = false;
  1326. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1327. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1328. query.litGeometries_.Clear();
  1329. switch (type)
  1330. {
  1331. case LIGHT_DIRECTIONAL:
  1332. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1333. {
  1334. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1335. query.litGeometries_.Push(geometries_[i]);
  1336. }
  1337. break;
  1338. case LIGHT_SPOT:
  1339. {
  1340. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1341. octree_->GetDrawables(octreeQuery);
  1342. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1343. {
  1344. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1345. query.litGeometries_.Push(tempDrawables[i]);
  1346. }
  1347. }
  1348. break;
  1349. case LIGHT_POINT:
  1350. {
  1351. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()),
  1352. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1353. octree_->GetDrawables(octreeQuery);
  1354. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1355. {
  1356. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1357. query.litGeometries_.Push(tempDrawables[i]);
  1358. }
  1359. }
  1360. break;
  1361. }
  1362. // If no lit geometries or not shadowed, no need to process shadow cameras
  1363. if (query.litGeometries_.Empty() || !isShadowed)
  1364. {
  1365. query.numSplits_ = 0;
  1366. return;
  1367. }
  1368. // Determine number of shadow cameras and setup their initial positions
  1369. SetupShadowCameras(query);
  1370. // Process each split for shadow casters
  1371. query.shadowCasters_.Clear();
  1372. for (unsigned i = 0; i < query.numSplits_; ++i)
  1373. {
  1374. Camera* shadowCamera = query.shadowCameras_[i];
  1375. query.shadowFrustums_[i] = shadowCamera->GetFrustum();
  1376. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1377. // For point light check that the face is visible: if not, can skip the split
  1378. if (type == LIGHT_POINT)
  1379. {
  1380. BoundingBox shadowCameraBox(query.shadowFrustums_[i]);
  1381. if (frustum_.IsInsideFast(shadowCameraBox) == OUTSIDE)
  1382. continue;
  1383. }
  1384. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1385. if (type == LIGHT_DIRECTIONAL)
  1386. {
  1387. if (sceneViewBox_.min_.z_ > query.shadowFarSplits_[i])
  1388. continue;
  1389. if (sceneViewBox_.max_.z_ < query.shadowNearSplits_[i])
  1390. continue;
  1391. }
  1392. // Reuse lit geometry query for all except directional lights
  1393. if (type == LIGHT_DIRECTIONAL)
  1394. {
  1395. FrustumOctreeQuery octreeQuery(tempDrawables, query.shadowFrustums_[i], DRAWABLE_GEOMETRY,
  1396. camera_->GetViewMask(), true);
  1397. octree_->GetDrawables(octreeQuery);
  1398. }
  1399. // Check which shadow casters actually contribute to the shadowing
  1400. ProcessShadowCasters(query, tempDrawables, i);
  1401. }
  1402. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1403. // only cost has been the shadow camera setup & queries
  1404. if (query.shadowCasters_.Empty())
  1405. query.numSplits_ = 0;
  1406. }
  1407. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1408. {
  1409. Light* light = query.light_;
  1410. Matrix3x4 lightView;
  1411. Matrix4 lightProj;
  1412. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1413. lightView = shadowCamera->GetInverseWorldTransform();
  1414. lightProj = shadowCamera->GetProjection();
  1415. LightType type = light->GetLightType();
  1416. query.shadowCasterBox_[splitIndex].defined_ = false;
  1417. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1418. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1419. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1420. Frustum lightViewFrustum;
  1421. if (type != LIGHT_DIRECTIONAL)
  1422. lightViewFrustum = sceneFrustum_.Transformed(lightView);
  1423. else
  1424. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, query.shadowNearSplits_[splitIndex]),
  1425. Min(sceneViewBox_.max_.z_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1426. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1427. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1428. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1429. return;
  1430. BoundingBox lightViewBox;
  1431. BoundingBox lightProjBox;
  1432. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1433. {
  1434. Drawable* drawable = *i;
  1435. // In case this is a point or spot light query result reused for optimization, we may have non-shadowcasters included.
  1436. // Check for that first
  1437. if (!drawable->GetCastShadows())
  1438. continue;
  1439. // For point light, check first that this drawable is inside the split shadow camera frustum
  1440. if (type == LIGHT_POINT && !query.shadowFrustums_[splitIndex].IsInsideFast(drawable->GetWorldBoundingBox()))
  1441. continue;
  1442. // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
  1443. // times. However, this should not cause problems as no scene modification happens at this point.
  1444. if (!drawable->IsInView(frame_, false))
  1445. drawable->UpdateDistance(frame_);
  1446. // Check shadow distance
  1447. float maxShadowDistance = drawable->GetShadowDistance();
  1448. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1449. continue;
  1450. // Check shadow mask
  1451. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1452. continue;
  1453. // Project shadow caster bounding box to light view space for visibility check
  1454. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1455. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1456. {
  1457. // Merge to shadow caster bounding box and add to the list
  1458. if (type == LIGHT_DIRECTIONAL)
  1459. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1460. else
  1461. {
  1462. lightProjBox = lightViewBox.Projected(lightProj);
  1463. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1464. }
  1465. query.shadowCasters_.Push(drawable);
  1466. }
  1467. }
  1468. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1469. }
  1470. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1471. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1472. {
  1473. if (shadowCamera->IsOrthographic())
  1474. {
  1475. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1476. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1477. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1478. }
  1479. else
  1480. {
  1481. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1482. if (drawable->IsInView(frame_))
  1483. return true;
  1484. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1485. Vector3 center = lightViewBox.Center();
  1486. Ray extrusionRay(center, center.Normalized());
  1487. float extrusionDistance = shadowCamera->GetFarClip();
  1488. float originalDistance = Clamp(center.Length(), M_EPSILON, extrusionDistance);
  1489. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1490. float sizeFactor = extrusionDistance / originalDistance;
  1491. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1492. // than necessary, so the test will be conservative
  1493. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1494. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1495. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1496. lightViewBox.Merge(extrudedBox);
  1497. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1498. }
  1499. }
  1500. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1501. {
  1502. unsigned width = shadowMap->GetWidth();
  1503. unsigned height = shadowMap->GetHeight();
  1504. int maxCascades = renderer_->GetMaxShadowCascades();
  1505. // Due to instruction count limits, deferred modes in SM2.0 can only support up to 3 cascades
  1506. #ifndef USE_OPENGL
  1507. if (renderMode_ != RENDER_FORWARD && !graphics_->GetSM3Support())
  1508. maxCascades = Max(maxCascades, 3);
  1509. #endif
  1510. switch (light->GetLightType())
  1511. {
  1512. case LIGHT_DIRECTIONAL:
  1513. if (maxCascades == 1)
  1514. return IntRect(0, 0, width, height);
  1515. else if (maxCascades == 2)
  1516. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1517. else
  1518. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1519. (splitIndex / 2 + 1) * height / 2);
  1520. case LIGHT_SPOT:
  1521. return IntRect(0, 0, width, height);
  1522. case LIGHT_POINT:
  1523. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1524. (splitIndex / 2 + 1) * height / 3);
  1525. }
  1526. return IntRect();
  1527. }
  1528. void View::SetupShadowCameras(LightQueryResult& query)
  1529. {
  1530. Light* light = query.light_;
  1531. LightType type = light->GetLightType();
  1532. int splits = 0;
  1533. if (type == LIGHT_DIRECTIONAL)
  1534. {
  1535. const CascadeParameters& cascade = light->GetShadowCascade();
  1536. float nearSplit = camera_->GetNearClip();
  1537. float farSplit;
  1538. while (splits < renderer_->GetMaxShadowCascades())
  1539. {
  1540. // If split is completely beyond camera far clip, we are done
  1541. if (nearSplit > camera_->GetFarClip())
  1542. break;
  1543. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1544. if (farSplit <= nearSplit)
  1545. break;
  1546. // Setup the shadow camera for the split
  1547. Camera* shadowCamera = renderer_->GetShadowCamera();
  1548. query.shadowCameras_[splits] = shadowCamera;
  1549. query.shadowNearSplits_[splits] = nearSplit;
  1550. query.shadowFarSplits_[splits] = farSplit;
  1551. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1552. nearSplit = farSplit;
  1553. ++splits;
  1554. }
  1555. }
  1556. if (type == LIGHT_SPOT)
  1557. {
  1558. Camera* shadowCamera = renderer_->GetShadowCamera();
  1559. query.shadowCameras_[0] = shadowCamera;
  1560. Node* cameraNode = shadowCamera->GetNode();
  1561. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1562. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1563. shadowCamera->SetFarClip(light->GetRange());
  1564. shadowCamera->SetFov(light->GetFov());
  1565. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1566. splits = 1;
  1567. }
  1568. if (type == LIGHT_POINT)
  1569. {
  1570. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1571. {
  1572. Camera* shadowCamera = renderer_->GetShadowCamera();
  1573. query.shadowCameras_[i] = shadowCamera;
  1574. Node* cameraNode = shadowCamera->GetNode();
  1575. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1576. cameraNode->SetPosition(light->GetWorldPosition());
  1577. cameraNode->SetDirection(directions[i]);
  1578. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1579. shadowCamera->SetFarClip(light->GetRange());
  1580. shadowCamera->SetFov(90.0f);
  1581. shadowCamera->SetAspectRatio(1.0f);
  1582. }
  1583. splits = MAX_CUBEMAP_FACES;
  1584. }
  1585. query.numSplits_ = splits;
  1586. }
  1587. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1588. {
  1589. Node* cameraNode = shadowCamera->GetNode();
  1590. float extrusionDistance = camera_->GetFarClip();
  1591. const FocusParameters& parameters = light->GetShadowFocus();
  1592. // Calculate initial position & rotation
  1593. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1594. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1595. cameraNode->SetTransform(pos, light->GetWorldRotation());
  1596. // Calculate main camera shadowed frustum in light's view space
  1597. farSplit = Min(farSplit, camera_->GetFarClip());
  1598. // Use the scene Z bounds to limit frustum size if applicable
  1599. if (parameters.focus_)
  1600. {
  1601. nearSplit = Max(sceneViewBox_.min_.z_, nearSplit);
  1602. farSplit = Min(sceneViewBox_.max_.z_, farSplit);
  1603. }
  1604. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1605. Polyhedron frustumVolume;
  1606. frustumVolume.Define(splitFrustum);
  1607. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1608. if (parameters.focus_)
  1609. {
  1610. BoundingBox litGeometriesBox;
  1611. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1612. {
  1613. // Skip skyboxes as they have undefinedly large bounding box size
  1614. if (geometries_[i]->GetType() == Skybox::GetTypeStatic())
  1615. continue;
  1616. if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit &&
  1617. (GetLightMask(geometries_[i]) & light->GetLightMask()))
  1618. litGeometriesBox.Merge(geometries_[i]->GetWorldBoundingBox());
  1619. }
  1620. if (litGeometriesBox.defined_)
  1621. {
  1622. frustumVolume.Clip(litGeometriesBox);
  1623. // If volume became empty, restore it to avoid zero size
  1624. if (frustumVolume.Empty())
  1625. frustumVolume.Define(splitFrustum);
  1626. }
  1627. }
  1628. // Transform frustum volume to light space
  1629. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1630. frustumVolume.Transform(lightView);
  1631. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1632. BoundingBox shadowBox;
  1633. if (!parameters.nonUniform_)
  1634. shadowBox.Define(Sphere(frustumVolume));
  1635. else
  1636. shadowBox.Define(frustumVolume);
  1637. shadowCamera->SetOrthographic(true);
  1638. shadowCamera->SetAspectRatio(1.0f);
  1639. shadowCamera->SetNearClip(0.0f);
  1640. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1641. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1642. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1643. }
  1644. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1645. const BoundingBox& shadowCasterBox)
  1646. {
  1647. const FocusParameters& parameters = light->GetShadowFocus();
  1648. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1649. LightType type = light->GetLightType();
  1650. if (type == LIGHT_DIRECTIONAL)
  1651. {
  1652. BoundingBox shadowBox;
  1653. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1654. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1655. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1656. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1657. // Requantize and snap to shadow map texels
  1658. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1659. }
  1660. if (type == LIGHT_SPOT)
  1661. {
  1662. if (parameters.focus_)
  1663. {
  1664. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1665. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1666. float viewSize = Max(viewSizeX, viewSizeY);
  1667. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1668. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1669. float quantize = parameters.quantize_ * invOrthoSize;
  1670. float minView = parameters.minView_ * invOrthoSize;
  1671. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1672. if (viewSize < 1.0f)
  1673. shadowCamera->SetZoom(1.0f / viewSize);
  1674. }
  1675. }
  1676. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1677. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1678. if (shadowCamera->GetZoom() >= 1.0f)
  1679. {
  1680. if (light->GetLightType() != LIGHT_POINT)
  1681. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1682. else
  1683. {
  1684. #ifdef USE_OPENGL
  1685. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1686. #else
  1687. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1688. #endif
  1689. }
  1690. }
  1691. }
  1692. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1693. const BoundingBox& viewBox)
  1694. {
  1695. Node* cameraNode = shadowCamera->GetNode();
  1696. const FocusParameters& parameters = light->GetShadowFocus();
  1697. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1698. float minX = viewBox.min_.x_;
  1699. float minY = viewBox.min_.y_;
  1700. float maxX = viewBox.max_.x_;
  1701. float maxY = viewBox.max_.y_;
  1702. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1703. Vector2 viewSize(maxX - minX, maxY - minY);
  1704. // Quantize size to reduce swimming
  1705. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1706. if (parameters.nonUniform_)
  1707. {
  1708. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1709. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1710. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1711. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1712. }
  1713. else if (parameters.focus_)
  1714. {
  1715. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1716. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1717. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1718. viewSize.y_ = viewSize.x_;
  1719. }
  1720. shadowCamera->SetOrthoSize(viewSize);
  1721. // Center shadow camera to the view space bounding box
  1722. Vector3 pos(shadowCamera->GetWorldPosition());
  1723. Quaternion rot(shadowCamera->GetWorldRotation());
  1724. Vector3 adjust(center.x_, center.y_, 0.0f);
  1725. cameraNode->Translate(rot * adjust);
  1726. // If the shadow map viewport is known, snap to whole texels
  1727. if (shadowMapWidth > 0.0f)
  1728. {
  1729. Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
  1730. // Take into account that shadow map border will not be used
  1731. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1732. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1733. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1734. cameraNode->Translate(rot * snap);
  1735. }
  1736. }
  1737. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1738. {
  1739. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1740. int bestPriority = M_MIN_INT;
  1741. Zone* newZone = 0;
  1742. // If bounding box center is in view, can use the visible zones. Else must query via the octree
  1743. if (frustum_.IsInside(center))
  1744. {
  1745. // First check if the last zone remains a conclusive result
  1746. Zone* lastZone = drawable->GetLastZone();
  1747. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1748. lastZone->GetPriority() >= highestZonePriority_)
  1749. newZone = lastZone;
  1750. else
  1751. {
  1752. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1753. {
  1754. int priority = (*i)->GetPriority();
  1755. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1756. {
  1757. newZone = *i;
  1758. bestPriority = priority;
  1759. }
  1760. }
  1761. }
  1762. }
  1763. else
  1764. {
  1765. PODVector<Zone*>& tempZones = tempZones_[threadIndex];
  1766. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>&>(tempZones), center, DRAWABLE_ZONE);
  1767. octree_->GetDrawables(query);
  1768. bestPriority = M_MIN_INT;
  1769. for (PODVector<Zone*>::Iterator i = tempZones.Begin(); i != tempZones.End(); ++i)
  1770. {
  1771. int priority = (*i)->GetPriority();
  1772. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1773. {
  1774. newZone = *i;
  1775. bestPriority = priority;
  1776. }
  1777. }
  1778. }
  1779. drawable->SetZone(newZone);
  1780. }
  1781. Zone* View::GetZone(Drawable* drawable)
  1782. {
  1783. if (cameraZoneOverride_)
  1784. return cameraZone_;
  1785. Zone* drawableZone = drawable->GetZone();
  1786. return drawableZone ? drawableZone : cameraZone_;
  1787. }
  1788. unsigned View::GetLightMask(Drawable* drawable)
  1789. {
  1790. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1791. }
  1792. unsigned View::GetShadowMask(Drawable* drawable)
  1793. {
  1794. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1795. }
  1796. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1797. {
  1798. unsigned long long hash = 0;
  1799. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1800. hash += (unsigned long long)(*i);
  1801. return hash;
  1802. }
  1803. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1804. {
  1805. if (!material)
  1806. material = renderer_->GetDefaultMaterial();
  1807. if (!material)
  1808. return 0;
  1809. float lodDistance = drawable->GetLodDistance();
  1810. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1811. if (techniques.Empty())
  1812. return 0;
  1813. // Check for suitable technique. Techniques should be ordered like this:
  1814. // Most distant & highest quality
  1815. // Most distant & lowest quality
  1816. // Second most distant & highest quality
  1817. // ...
  1818. for (unsigned i = 0; i < techniques.Size(); ++i)
  1819. {
  1820. const TechniqueEntry& entry = techniques[i];
  1821. Technique* technique = entry.technique_;
  1822. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1823. continue;
  1824. if (lodDistance >= entry.lodDistance_)
  1825. return technique;
  1826. }
  1827. // If no suitable technique found, fallback to the last
  1828. return techniques.Back().technique_;
  1829. }
  1830. void View::CheckMaterialForAuxView(Material* material)
  1831. {
  1832. const SharedPtr<Texture>* textures = material->GetTextures();
  1833. for (unsigned i = 0; i < MAX_MATERIAL_TEXTURE_UNITS; ++i)
  1834. {
  1835. // Have to check cube & 2D textures separately
  1836. Texture* texture = textures[i];
  1837. if (texture)
  1838. {
  1839. if (texture->GetType() == Texture2D::GetTypeStatic())
  1840. {
  1841. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1842. RenderSurface* target = tex2D->GetRenderSurface();
  1843. if (target)
  1844. {
  1845. Viewport* viewport = target->GetViewport();
  1846. if (viewport->GetScene() && viewport->GetCamera())
  1847. renderer_->AddView(target, viewport);
  1848. }
  1849. }
  1850. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1851. {
  1852. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1853. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1854. {
  1855. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1856. if (target)
  1857. {
  1858. Viewport* viewport = target->GetViewport();
  1859. if (viewport->GetScene() && viewport->GetCamera())
  1860. renderer_->AddView(target, viewport);
  1861. }
  1862. }
  1863. }
  1864. }
  1865. }
  1866. // Set frame number so that we can early-out next time we come across this material on the same frame
  1867. material->MarkForAuxView(frame_.frameNumber_);
  1868. }
  1869. void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows)
  1870. {
  1871. // Convert to instanced if possible
  1872. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  1873. batch.geometryType_ = GEOM_INSTANCED;
  1874. batch.pass_ = pass;
  1875. renderer_->SetBatchShaders(batch, tech, pass, allowShadows);
  1876. batch.CalculateSortKey();
  1877. }
  1878. void View::PrepareInstancingBuffer()
  1879. {
  1880. PROFILE(PrepareInstancingBuffer);
  1881. unsigned totalInstances = 0;
  1882. totalInstances += baseQueue_.GetNumInstances(renderer_);
  1883. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  1884. if (renderMode_ != RENDER_FORWARD)
  1885. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  1886. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1887. {
  1888. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1889. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  1890. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  1891. }
  1892. // If fail to set buffer size, fall back to per-group locking
  1893. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  1894. {
  1895. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  1896. unsigned freeIndex = 0;
  1897. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  1898. if (lockedData)
  1899. {
  1900. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1901. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1902. if (renderMode_ != RENDER_FORWARD)
  1903. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1904. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1905. {
  1906. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1907. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1908. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1909. }
  1910. instancingBuffer->Unlock();
  1911. }
  1912. }
  1913. }
  1914. void View::SetupLightVolumeBatch(Batch& batch)
  1915. {
  1916. Light* light = batch.lightQueue_->light_;
  1917. LightType type = light->GetLightType();
  1918. float lightDist;
  1919. // Use replace blend mode for the first pre-pass light volume, and additive for the rest
  1920. graphics_->SetAlphaTest(false);
  1921. graphics_->SetBlendMode(renderMode_ == RENDER_PREPASS && light == lightQueues_.Front().light_ ? BLEND_REPLACE : BLEND_ADD);
  1922. graphics_->SetDepthWrite(false);
  1923. if (type != LIGHT_DIRECTIONAL)
  1924. {
  1925. if (type == LIGHT_POINT)
  1926. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).Distance(camera_->GetWorldPosition());
  1927. else
  1928. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  1929. // Draw front faces if not inside light volume
  1930. if (lightDist < camera_->GetNearClip() * 2.0f)
  1931. {
  1932. renderer_->SetCullMode(CULL_CW, camera_);
  1933. graphics_->SetDepthTest(CMP_GREATER);
  1934. }
  1935. else
  1936. {
  1937. renderer_->SetCullMode(CULL_CCW, camera_);
  1938. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1939. }
  1940. }
  1941. else
  1942. {
  1943. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  1944. // refresh the directional light's model transform before rendering
  1945. light->GetVolumeTransform(camera_);
  1946. graphics_->SetCullMode(CULL_NONE);
  1947. graphics_->SetDepthTest(CMP_ALWAYS);
  1948. }
  1949. graphics_->SetScissorTest(false);
  1950. graphics_->SetStencilTest(true, CMP_NOTEQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  1951. }
  1952. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  1953. {
  1954. Light quadDirLight(context_);
  1955. quadDirLight.SetLightType(LIGHT_DIRECTIONAL);
  1956. Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
  1957. graphics_->SetCullMode(CULL_NONE);
  1958. graphics_->SetShaderParameter(VSP_MODEL, model);
  1959. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  1960. graphics_->ClearTransformSources();
  1961. renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
  1962. }
  1963. void View::RenderShadowMap(const LightBatchQueue& queue)
  1964. {
  1965. PROFILE(RenderShadowMap);
  1966. Texture2D* shadowMap = queue.shadowMap_;
  1967. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1968. graphics_->SetColorWrite(false);
  1969. graphics_->SetStencilTest(false);
  1970. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1971. graphics_->SetDepthStencil(shadowMap);
  1972. graphics_->SetViewport(IntRect(0, 0, shadowMap->GetWidth(), shadowMap->GetHeight()));
  1973. graphics_->Clear(CLEAR_DEPTH);
  1974. // Set shadow depth bias
  1975. BiasParameters parameters = queue.light_->GetShadowBias();
  1976. // Adjust the light's constant depth bias according to global shadow map resolution
  1977. /// \todo Should remove this adjustment and find a more flexible solution
  1978. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  1979. if (shadowMapSize <= 512)
  1980. parameters.constantBias_ *= 2.0f;
  1981. else if (shadowMapSize >= 2048)
  1982. parameters.constantBias_ *= 0.5f;
  1983. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1984. // Render each of the splits
  1985. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  1986. {
  1987. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  1988. if (!shadowQueue.shadowBatches_.IsEmpty())
  1989. {
  1990. graphics_->SetViewport(shadowQueue.shadowViewport_);
  1991. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1992. // However, do not do this for point lights, which need to render continuously across cube faces
  1993. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  1994. if (queue.light_->GetLightType() != LIGHT_POINT)
  1995. {
  1996. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  1997. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1998. graphics_->SetScissorTest(true, zoomRect, false);
  1999. }
  2000. else
  2001. graphics_->SetScissorTest(false);
  2002. // Draw instanced and non-instanced shadow casters
  2003. shadowQueue.shadowBatches_.Draw(graphics_, renderer_);
  2004. }
  2005. }
  2006. graphics_->SetColorWrite(true);
  2007. graphics_->SetDepthBias(0.0f, 0.0f);
  2008. }
  2009. RenderSurface* View::GetDepthStencil(RenderSurface* renderTarget)
  2010. {
  2011. // If using the backbuffer, return the backbuffer depth-stencil
  2012. if (!renderTarget)
  2013. return 0;
  2014. // Then check for linked depth-stencil
  2015. RenderSurface* depthStencil = renderTarget->GetLinkedDepthStencil();
  2016. // Finally get one from Renderer
  2017. if (!depthStencil)
  2018. depthStencil = renderer_->GetDepthStencil(renderTarget->GetWidth(), renderTarget->GetHeight());
  2019. return depthStencil;
  2020. }