View.cpp 89 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "Renderer.h"
  34. #include "Profiler.h"
  35. #include "Scene.h"
  36. #include "ShaderVariation.h"
  37. #include "Sort.h"
  38. #include "Technique.h"
  39. #include "Texture2D.h"
  40. #include "TextureCube.h"
  41. #include "VertexBuffer.h"
  42. #include "View.h"
  43. #include "WorkQueue.h"
  44. #include "Zone.h"
  45. #include "DebugNew.h"
  46. static const Vector3 directions[] =
  47. {
  48. Vector3(1.0f, 0.0f, 0.0f),
  49. Vector3(-1.0f, 0.0f, 0.0f),
  50. Vector3(0.0f, 1.0f, 0.0f),
  51. Vector3(0.0f, -1.0f, 0.0f),
  52. Vector3(0.0f, 0.0f, 1.0f),
  53. Vector3(0.0f, 0.0f, -1.0f)
  54. };
  55. static const int CHECK_DRAWABLES_PER_WORK_ITEM = 64;
  56. void CheckVisibilityWork(const WorkItem* item, unsigned threadIndex)
  57. {
  58. View* view = reinterpret_cast<View*>(item->aux_);
  59. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  60. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  61. Drawable** unculledStart = &view->tempDrawables_[0][0] + view->unculledDrawableStart_;
  62. OcclusionBuffer* buffer = view->occlusionBuffer_;
  63. while (start != end)
  64. {
  65. Drawable* drawable = *start;
  66. bool useOcclusion = start < unculledStart;
  67. unsigned char flags = drawable->GetDrawableFlags();
  68. ++start;
  69. if (flags & DRAWABLE_ZONE)
  70. continue;
  71. drawable->UpdateDistance(view->frame_);
  72. // If draw distance non-zero, check it
  73. float maxDistance = drawable->GetDrawDistance();
  74. if (maxDistance > 0.0f && drawable->GetDistance() > maxDistance)
  75. continue;
  76. if (buffer && useOcclusion && !buffer->IsVisible(drawable->GetWorldBoundingBox()))
  77. continue;
  78. drawable->MarkInView(view->frame_);
  79. // For geometries, clear lights and find new zone if necessary
  80. if (flags & DRAWABLE_GEOMETRY)
  81. {
  82. drawable->ClearLights();
  83. if (!drawable->GetZone() && !view->cameraZoneOverride_)
  84. view->FindZone(drawable, threadIndex);
  85. }
  86. }
  87. }
  88. void ProcessLightWork(const WorkItem* item, unsigned threadIndex)
  89. {
  90. View* view = reinterpret_cast<View*>(item->aux_);
  91. LightQueryResult* query = reinterpret_cast<LightQueryResult*>(item->start_);
  92. view->ProcessLight(*query, threadIndex);
  93. }
  94. void UpdateDrawableGeometriesWork(const WorkItem* item, unsigned threadIndex)
  95. {
  96. const FrameInfo& frame = *(reinterpret_cast<FrameInfo*>(item->aux_));
  97. Drawable** start = reinterpret_cast<Drawable**>(item->start_);
  98. Drawable** end = reinterpret_cast<Drawable**>(item->end_);
  99. while (start != end)
  100. {
  101. Drawable* drawable = *start;
  102. drawable->UpdateGeometry(frame);
  103. ++start;
  104. }
  105. }
  106. void SortBatchQueueFrontToBackWork(const WorkItem* item, unsigned threadIndex)
  107. {
  108. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  109. queue->SortFrontToBack();
  110. }
  111. void SortBatchQueueBackToFrontWork(const WorkItem* item, unsigned threadIndex)
  112. {
  113. BatchQueue* queue = reinterpret_cast<BatchQueue*>(item->start_);
  114. queue->SortBackToFront();
  115. }
  116. void SortLightQueueWork(const WorkItem* item, unsigned threadIndex)
  117. {
  118. LightBatchQueue* start = reinterpret_cast<LightBatchQueue*>(item->start_);
  119. for (unsigned i = 0; i < start->shadowSplits_.Size(); ++i)
  120. start->shadowSplits_[i].shadowBatches_.SortFrontToBack();
  121. start->litBatches_.SortFrontToBack();
  122. }
  123. OBJECTTYPESTATIC(View);
  124. View::View(Context* context) :
  125. Object(context),
  126. graphics_(GetSubsystem<Graphics>()),
  127. renderer_(GetSubsystem<Renderer>()),
  128. octree_(0),
  129. camera_(0),
  130. cameraZone_(0),
  131. farClipZone_(0),
  132. renderTarget_(0),
  133. depthStencil_(0)
  134. {
  135. frame_.camera_ = 0;
  136. // Create octree query vectors for each thread
  137. tempDrawables_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  138. tempZones_.Resize(GetSubsystem<WorkQueue>()->GetNumThreads() + 1);
  139. }
  140. View::~View()
  141. {
  142. }
  143. bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
  144. {
  145. if (!viewport.scene_ || !viewport.camera_)
  146. return false;
  147. // If scene is loading asynchronously, it is incomplete and should not be rendered
  148. if (viewport.scene_->IsAsyncLoading())
  149. return false;
  150. Octree* octree = viewport.scene_->GetComponent<Octree>();
  151. if (!octree)
  152. return false;
  153. // Check for the render texture being larger than the G-buffer in light pre-pass mode
  154. lightPrepass_ = renderer_->GetLightPrepass();
  155. if (lightPrepass_ && renderTarget)
  156. {
  157. if (renderTarget->GetWidth() > graphics_->GetWidth() || renderTarget->GetHeight() > graphics_->GetHeight())
  158. {
  159. // Display message only once per render target, do not spam each frame
  160. if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
  161. {
  162. gBufferErrorDisplayed_.Insert(renderTarget);
  163. LOGERROR("Render texture is larger than the G-buffer, can not render");
  164. }
  165. return false;
  166. }
  167. }
  168. octree_ = octree;
  169. camera_ = viewport.camera_;
  170. renderTarget_ = renderTarget;
  171. if (!renderTarget)
  172. depthStencil_ = 0;
  173. else
  174. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  175. // Validate the rect and calculate size. If zero rect, use whole render target size
  176. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  177. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  178. if (viewport.rect_ != IntRect::ZERO)
  179. {
  180. screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
  181. screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
  182. screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
  183. screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
  184. }
  185. else
  186. screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
  187. width_ = screenRect_.right_ - screenRect_.left_;
  188. height_ = screenRect_.bottom_ - screenRect_.top_;
  189. drawShadows_ = renderer_->GetDrawShadows();
  190. materialQuality_ = renderer_->GetMaterialQuality();
  191. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  192. // Use edge filter only when final target is the backbuffer
  193. edgeFilter_ = !renderTarget_ && renderer_->GetEdgeFilter();
  194. // Set possible quality overrides from the camera
  195. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  196. if (viewOverrideFlags & VO_LOW_MATERIAL_QUALITY)
  197. materialQuality_ = QUALITY_LOW;
  198. if (viewOverrideFlags & VO_DISABLE_SHADOWS)
  199. drawShadows_ = false;
  200. if (viewOverrideFlags & VO_DISABLE_OCCLUSION)
  201. maxOccluderTriangles_ = 0;
  202. return true;
  203. }
  204. void View::Update(const FrameInfo& frame)
  205. {
  206. if (!camera_ || !octree_)
  207. return;
  208. frame_.camera_ = camera_;
  209. frame_.timeStep_ = frame.timeStep_;
  210. frame_.frameNumber_ = frame.frameNumber_;
  211. frame_.viewSize_ = IntVector2(width_, height_);
  212. // Clear old light scissor cache, geometry, light, occluder & batch lists
  213. lightScissorCache_.Clear();
  214. geometries_.Clear();
  215. allGeometries_.Clear();
  216. geometryDepthBounds_.Clear();
  217. lights_.Clear();
  218. zones_.Clear();
  219. occluders_.Clear();
  220. baseQueue_.Clear();
  221. preAlphaQueue_.Clear();
  222. gbufferQueue_.Clear();
  223. alphaQueue_.Clear();
  224. postAlphaQueue_.Clear();
  225. lightQueues_.Clear();
  226. vertexLightQueues_.Clear();
  227. // Do not update if camera projection is illegal
  228. // (there is a possibility of crash if occlusion is used and it can not clip properly)
  229. if (!camera_->IsProjectionValid())
  230. return;
  231. // Set automatic aspect ratio if required
  232. if (camera_->GetAutoAspectRatio())
  233. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  234. // Cache the camera frustum to avoid recalculating it constantly
  235. frustum_ = camera_->GetFrustum();
  236. // Reset shadow map allocations; they can be reused between views as each is rendered completely at a time
  237. renderer_->ResetShadowMapAllocations();
  238. GetDrawables();
  239. GetBatches();
  240. UpdateGeometries();
  241. }
  242. void View::Render()
  243. {
  244. if (!octree_ || !camera_)
  245. return;
  246. // Forget parameter sources from the previous view
  247. graphics_->ClearParameterSources();
  248. // If stream offset is supported, write all instance transforms to a single large buffer
  249. // Else we must lock the instance buffer for each batch group
  250. if (renderer_->GetDynamicInstancing() && graphics_->GetStreamOffsetSupport())
  251. PrepareInstancingBuffer();
  252. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  253. // again to ensure correct projection will be used
  254. if (camera_->GetAutoAspectRatio())
  255. camera_->SetAspectRatio((float)(width_) / (float)(height_));
  256. graphics_->SetColorWrite(true);
  257. graphics_->SetFillMode(FILL_SOLID);
  258. // Bind the face selection and indirection cube maps for point light shadows
  259. graphics_->SetTexture(TU_FACESELECT, renderer_->GetFaceSelectCubeMap());
  260. graphics_->SetTexture(TU_INDIRECTION, renderer_->GetIndirectionCubeMap());
  261. // Set "view texture" to prevent destination texture sampling in case we do not render to the destination directly
  262. // ie. when using light pre-pass and/or doing edge filtering
  263. if (renderTarget_)
  264. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  265. // On OpenGL, flip the projection if rendering to a texture so that the texture can be addressed in the same way
  266. // as a render texture produced on Direct3D9
  267. #ifdef USE_OPENGL
  268. if (renderTarget_)
  269. camera_->SetFlipVertical(true);
  270. #endif
  271. // Render
  272. if (lightPrepass_)
  273. RenderBatchesLightPrepass();
  274. else
  275. RenderBatchesForward();
  276. #ifdef USE_OPENGL
  277. camera_->SetFlipVertical(false);
  278. #endif
  279. graphics_->SetViewTexture(0);
  280. graphics_->SetScissorTest(false);
  281. graphics_->SetStencilTest(false);
  282. graphics_->ResetStreamFrequencies();
  283. // If this is a main view, draw the associated debug geometry now
  284. if (!renderTarget_)
  285. {
  286. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  287. if (scene)
  288. {
  289. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  290. if (debug)
  291. {
  292. debug->SetView(camera_);
  293. debug->Render();
  294. }
  295. }
  296. }
  297. // Blit if necessary (OpenGL light pre-pass, or edge filter)
  298. #ifdef USE_OPENGL
  299. if (lightPrepass_ || edgeFilter_)
  300. #else
  301. if (edgeFilter_)
  302. #endif
  303. BlitFramebuffer();
  304. // "Forget" the camera, octree and zone after rendering
  305. camera_ = 0;
  306. octree_ = 0;
  307. cameraZone_ = 0;
  308. farClipZone_ = 0;
  309. occlusionBuffer_ = 0;
  310. frame_.camera_ = 0;
  311. }
  312. void View::GetDrawables()
  313. {
  314. PROFILE(GetDrawables);
  315. WorkQueue* queue = GetSubsystem<WorkQueue>();
  316. PODVector<Drawable*>& tempDrawables = tempDrawables_[0];
  317. // Perform one octree query to get everything, then examine the results
  318. FrustumOctreeQuery query(tempDrawables, frustum_, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT | DRAWABLE_ZONE);
  319. octree_->GetDrawables(query);
  320. // Add unculled geometries & lights
  321. unculledDrawableStart_ = tempDrawables.Size();
  322. octree_->GetUnculledDrawables(tempDrawables, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  323. // Get zones and occluders first
  324. highestZonePriority_ = M_MIN_INT;
  325. int bestPriority = M_MIN_INT;
  326. Vector3 cameraPos = camera_->GetWorldPosition();
  327. // Get default zone first in case we do not have zones defined
  328. Zone* defaultZone = renderer_->GetDefaultZone();
  329. cameraZone_ = farClipZone_ = defaultZone;
  330. for (PODVector<Drawable*>::ConstIterator i = tempDrawables.Begin(); i != tempDrawables.End(); ++i)
  331. {
  332. Drawable* drawable = *i;
  333. unsigned char flags = drawable->GetDrawableFlags();
  334. if (flags & DRAWABLE_ZONE)
  335. {
  336. Zone* zone = static_cast<Zone*>(drawable);
  337. zones_.Push(zone);
  338. int priority = zone->GetPriority();
  339. if (priority > highestZonePriority_)
  340. highestZonePriority_ = priority;
  341. if (zone->IsInside(cameraPos) && priority > bestPriority)
  342. {
  343. cameraZone_ = zone;
  344. bestPriority = priority;
  345. }
  346. }
  347. else if (flags & DRAWABLE_GEOMETRY && drawable->IsOccluder())
  348. occluders_.Push(drawable);
  349. }
  350. // Determine the zone at far clip distance. If not found, or camera zone has override mode, use camera zone
  351. cameraZoneOverride_ = cameraZone_->GetOverride();
  352. if (!cameraZoneOverride_)
  353. {
  354. Vector3 farClipPos = cameraPos + camera_->GetNode()->GetWorldDirection() * Vector3(0, 0, camera_->GetFarClip());
  355. bestPriority = M_MIN_INT;
  356. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  357. {
  358. int priority = (*i)->GetPriority();
  359. if ((*i)->IsInside(farClipPos) && priority > bestPriority)
  360. {
  361. farClipZone_ = *i;
  362. bestPriority = priority;
  363. }
  364. }
  365. }
  366. if (farClipZone_ == defaultZone)
  367. farClipZone_ = cameraZone_;
  368. // If occlusion in use, get & render the occluders
  369. occlusionBuffer_ = 0;
  370. if (maxOccluderTriangles_ > 0)
  371. {
  372. UpdateOccluders(occluders_, camera_);
  373. if (occluders_.Size())
  374. {
  375. PROFILE(DrawOcclusion);
  376. occlusionBuffer_ = renderer_->GetOcclusionBuffer(camera_);
  377. DrawOccluders(occlusionBuffer_, occluders_);
  378. }
  379. }
  380. // Check visibility and find zones for moved drawables in worker threads
  381. {
  382. WorkItem item;
  383. item.workFunction_ = CheckVisibilityWork;
  384. item.aux_ = this;
  385. PODVector<Drawable*>::Iterator start = tempDrawables.Begin();
  386. while (start != tempDrawables.End())
  387. {
  388. PODVector<Drawable*>::Iterator end = tempDrawables.End();
  389. if (end - start > CHECK_DRAWABLES_PER_WORK_ITEM)
  390. end = start + CHECK_DRAWABLES_PER_WORK_ITEM;
  391. item.start_ = &(*start);
  392. item.end_ = &(*end);
  393. queue->AddWorkItem(item);
  394. start = end;
  395. }
  396. queue->Complete();
  397. }
  398. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  399. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  400. sceneBox_.defined_ = false;
  401. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  402. sceneViewBox_.defined_ = false;
  403. Matrix3x4 view(camera_->GetInverseWorldTransform());
  404. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  405. {
  406. Drawable* drawable = tempDrawables[i];
  407. unsigned char flags = drawable->GetDrawableFlags();
  408. if (flags & DRAWABLE_ZONE || !drawable->IsInView(frame_))
  409. continue;
  410. if (flags & DRAWABLE_GEOMETRY)
  411. {
  412. // Expand the scene bounding boxes. However, do not take "infinite" objects such as the skybox into account,
  413. // as the bounding boxes are also used for shadow focusing
  414. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  415. BoundingBox geomViewBox = geomBox.Transformed(view);
  416. if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
  417. {
  418. sceneBox_.Merge(geomBox);
  419. sceneViewBox_.Merge(geomViewBox);
  420. }
  421. // Store depth info for split directional light queries
  422. GeometryDepthBounds bounds;
  423. bounds.min_ = geomViewBox.min_.z_;
  424. bounds.max_ = geomViewBox.max_.z_;
  425. geometryDepthBounds_.Push(bounds);
  426. geometries_.Push(drawable);
  427. allGeometries_.Push(drawable);
  428. }
  429. else if (flags & DRAWABLE_LIGHT)
  430. {
  431. Light* light = static_cast<Light*>(drawable);
  432. lights_.Push(light);
  433. }
  434. }
  435. // Sort the lights to brightest/closest first
  436. for (unsigned i = 0; i < lights_.Size(); ++i)
  437. {
  438. Light* light = lights_[i];
  439. light->SetIntensitySortValue(camera_->GetDistance(light->GetWorldPosition()));
  440. }
  441. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  442. }
  443. void View::GetBatches()
  444. {
  445. WorkQueue* queue = GetSubsystem<WorkQueue>();
  446. // Process lit geometries and shadow casters for each light
  447. {
  448. PROFILE_MULTIPLE(ProcessLights, lights_.Size());
  449. lightQueryResults_.Resize(lights_.Size());
  450. WorkItem item;
  451. item.workFunction_ = ProcessLightWork;
  452. item.aux_ = this;
  453. for (unsigned i = 0; i < lightQueryResults_.Size(); ++i)
  454. {
  455. LightQueryResult& query = lightQueryResults_[i];
  456. query.light_ = lights_[i];
  457. item.start_ = &query;
  458. queue->AddWorkItem(item);
  459. }
  460. // Ensure all lights have been processed before proceeding
  461. queue->Complete();
  462. }
  463. // Build light queues and lit batches
  464. {
  465. bool fallback = graphics_->GetFallback();
  466. maxLightsDrawables_.Clear();
  467. lightQueueMapping_.Clear();
  468. for (Vector<LightQueryResult>::ConstIterator i = lightQueryResults_.Begin(); i != lightQueryResults_.End(); ++i)
  469. {
  470. const LightQueryResult& query = *i;
  471. // If light has no affected geometries, no need to process further
  472. if (query.litGeometries_.Empty())
  473. continue;
  474. PROFILE(GetLightBatches);
  475. Light* light = query.light_;
  476. // Per-pixel light
  477. if (!light->GetPerVertex())
  478. {
  479. unsigned shadowSplits = query.numSplits_;
  480. // Initialize light queue. Store light-to-queue mapping so that the queue can be found later
  481. lightQueues_.Resize(lightQueues_.Size() + 1);
  482. LightBatchQueue& lightQueue = lightQueues_.Back();
  483. lightQueueMapping_[light] = &lightQueue;
  484. lightQueue.light_ = light;
  485. lightQueue.litBatches_.Clear();
  486. lightQueue.volumeBatches_.Clear();
  487. // Allocate shadow map now
  488. lightQueue.shadowMap_ = 0;
  489. if (shadowSplits > 0)
  490. {
  491. lightQueue.shadowMap_ = renderer_->GetShadowMap(light, camera_, width_, height_);
  492. // If did not manage to get a shadow map, convert the light to unshadowed
  493. if (!lightQueue.shadowMap_)
  494. shadowSplits = 0;
  495. }
  496. // Setup shadow batch queues
  497. lightQueue.shadowSplits_.Resize(shadowSplits);
  498. for (unsigned j = 0; j < shadowSplits; ++j)
  499. {
  500. ShadowBatchQueue& shadowQueue = lightQueue.shadowSplits_[j];
  501. Camera* shadowCamera = query.shadowCameras_[j];
  502. shadowQueue.shadowCamera_ = shadowCamera;
  503. shadowQueue.nearSplit_ = query.shadowNearSplits_[j];
  504. shadowQueue.farSplit_ = query.shadowFarSplits_[j];
  505. // Setup the shadow split viewport and finalize shadow camera parameters
  506. shadowQueue.shadowViewport_ = GetShadowMapViewport(light, j, lightQueue.shadowMap_);
  507. FinalizeShadowCamera(shadowCamera, light, shadowQueue.shadowViewport_, query.shadowCasterBox_[j]);
  508. // Loop through shadow casters
  509. for (PODVector<Drawable*>::ConstIterator k = query.shadowCasters_.Begin() + query.shadowCasterBegin_[j];
  510. k < query.shadowCasters_.Begin() + query.shadowCasterEnd_[j]; ++k)
  511. {
  512. Drawable* drawable = *k;
  513. if (!drawable->IsInView(frame_, false))
  514. {
  515. drawable->MarkInView(frame_, false);
  516. allGeometries_.Push(drawable);
  517. }
  518. unsigned numBatches = drawable->GetNumBatches();
  519. for (unsigned l = 0; l < numBatches; ++l)
  520. {
  521. Batch shadowBatch;
  522. drawable->GetBatch(shadowBatch, frame_, l);
  523. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  524. if (!shadowBatch.geometry_ || !tech)
  525. continue;
  526. Pass* pass = tech->GetPass(PASS_SHADOW);
  527. // Skip if material has no shadow pass
  528. if (!pass)
  529. continue;
  530. // Fill the rest of the batch
  531. shadowBatch.camera_ = shadowCamera;
  532. shadowBatch.zone_ = GetZone(drawable);
  533. shadowBatch.lightQueue_ = &lightQueue;
  534. FinalizeBatch(shadowBatch, tech, pass);
  535. shadowQueue.shadowBatches_.AddBatch(shadowBatch);
  536. }
  537. }
  538. }
  539. // Process lit geometries
  540. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  541. {
  542. Drawable* drawable = *j;
  543. drawable->AddLight(light);
  544. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  545. if (!drawable->GetMaxLights())
  546. GetLitBatches(drawable, lightQueue);
  547. else
  548. maxLightsDrawables_.Insert(drawable);
  549. }
  550. // In light pre-pass mode, store the light volume batch now
  551. if (lightPrepass_)
  552. {
  553. Batch volumeBatch;
  554. volumeBatch.geometry_ = renderer_->GetLightGeometry(light);
  555. volumeBatch.worldTransform_ = &light->GetVolumeTransform(camera_);
  556. volumeBatch.overrideView_ = light->GetLightType() == LIGHT_DIRECTIONAL;
  557. volumeBatch.camera_ = camera_;
  558. volumeBatch.lightQueue_ = &lightQueue;
  559. volumeBatch.distance_ = light->GetDistance();
  560. volumeBatch.material_ = 0;
  561. volumeBatch.pass_ = 0;
  562. volumeBatch.zone_ = 0;
  563. renderer_->SetLightVolumeBatchShaders(volumeBatch);
  564. lightQueue.volumeBatches_.Push(volumeBatch);
  565. }
  566. }
  567. // Per-vertex light
  568. else
  569. {
  570. // Add the vertex light to lit drawables. It will be processed later during base pass batch generation
  571. for (PODVector<Drawable*>::ConstIterator j = query.litGeometries_.Begin(); j != query.litGeometries_.End(); ++j)
  572. {
  573. Drawable* drawable = *j;
  574. drawable->AddVertexLight(light);
  575. }
  576. }
  577. }
  578. }
  579. // Process drawables with limited per-pixel light count
  580. if (maxLightsDrawables_.Size())
  581. {
  582. PROFILE(GetMaxLightsBatches);
  583. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables_.Begin(); i != maxLightsDrawables_.End(); ++i)
  584. {
  585. Drawable* drawable = *i;
  586. drawable->LimitLights();
  587. const PODVector<Light*>& lights = drawable->GetLights();
  588. for (unsigned i = 0; i < lights.Size(); ++i)
  589. {
  590. Light* light = lights[i];
  591. // Find the correct light queue again
  592. Map<Light*, LightBatchQueue*>::Iterator j = lightQueueMapping_.Find(light);
  593. if (j != lightQueueMapping_.End())
  594. GetLitBatches(drawable, *(j->second_));
  595. }
  596. }
  597. }
  598. // Build base pass batches
  599. {
  600. PROFILE(GetBaseBatches);
  601. for (PODVector<Drawable*>::ConstIterator i = geometries_.Begin(); i != geometries_.End(); ++i)
  602. {
  603. Drawable* drawable = *i;
  604. unsigned numBatches = drawable->GetNumBatches();
  605. bool vertexLightsProcessed = false;
  606. for (unsigned j = 0; j < numBatches; ++j)
  607. {
  608. Batch baseBatch;
  609. drawable->GetBatch(baseBatch, frame_, j);
  610. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  611. if (!baseBatch.geometry_ || !tech)
  612. continue;
  613. // Check here if the material technique refers to a render target texture with camera(s) attached
  614. // Only check this for the main view (null render target)
  615. if (!renderTarget_ && baseBatch.material_ && baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_)
  616. CheckMaterialForAuxView(baseBatch.material_);
  617. // Fill the rest of the batch
  618. baseBatch.camera_ = camera_;
  619. baseBatch.zone_ = GetZone(drawable);
  620. baseBatch.isBase_ = true;
  621. Pass* pass = 0;
  622. // In light prepass mode check for G-buffer and material passes first
  623. if (lightPrepass_)
  624. {
  625. pass = tech->GetPass(PASS_GBUFFER);
  626. if (pass)
  627. {
  628. // Allow G-buffer pass instancing only if lightmask matches zone lightmask
  629. baseBatch.lightMask_ = GetLightMask(drawable);
  630. FinalizeBatch(baseBatch, tech, pass, baseBatch.lightMask_ == (baseBatch.zone_->GetLightMask() & 0xff));
  631. gbufferQueue_.AddBatch(baseBatch);
  632. pass = tech->GetPass(PASS_MATERIAL);
  633. }
  634. }
  635. // Next check for forward base pass
  636. if (!pass)
  637. {
  638. // Skip if a lit base pass already exists
  639. if (j < 32 && drawable->HasBasePass(j))
  640. continue;
  641. pass = tech->GetPass(PASS_BASE);
  642. }
  643. if (pass)
  644. {
  645. // Check for vertex lights (both forward unlit and light pre-pass material pass)
  646. const PODVector<Light*>& vertexLights = drawable->GetVertexLights();
  647. if (!vertexLights.Empty())
  648. {
  649. // In light pre-pass mode, check if this is an opaque object that has converted its lights to per-vertex
  650. // due to overflowing the pixel light count. These need to be skipped as the per-pixel accumulation
  651. // already renders the light
  652. /// \todo Sub-geometries might need different interpretation if opaque & alpha are mixed
  653. if (!vertexLightsProcessed)
  654. {
  655. drawable->LimitVertexLights(lightPrepass_ && pass->GetBlendMode() == BLEND_REPLACE);
  656. vertexLightsProcessed = true;
  657. }
  658. // The vertex light vector possibly became empty, so re-check
  659. if (!vertexLights.Empty())
  660. {
  661. // Find a vertex light queue. If not found, create new
  662. unsigned long long hash = GetVertexLightQueueHash(vertexLights);
  663. HashMap<unsigned long long, LightBatchQueue>::Iterator i = vertexLightQueues_.Find(hash);
  664. if (i == vertexLightQueues_.End())
  665. {
  666. i = vertexLightQueues_.Insert(MakePair(hash, LightBatchQueue()));
  667. i->second_.light_ = 0;
  668. i->second_.shadowMap_ = 0;
  669. i->second_.vertexLights_ = vertexLights;
  670. }
  671. baseBatch.lightQueue_ = &(i->second_);
  672. }
  673. }
  674. if (pass->GetBlendMode() == BLEND_REPLACE)
  675. {
  676. FinalizeBatch(baseBatch, tech, pass);
  677. baseQueue_.AddBatch(baseBatch);
  678. }
  679. else
  680. {
  681. // Transparent batches can not be instanced
  682. FinalizeBatch(baseBatch, tech, pass, false);
  683. alphaQueue_.AddBatch(baseBatch);
  684. }
  685. continue;
  686. }
  687. // If no base pass, finally check for pre-alpha / post-alpha custom passes
  688. pass = tech->GetPass(PASS_PREALPHA);
  689. if (pass)
  690. {
  691. FinalizeBatch(baseBatch, tech, pass);
  692. preAlphaQueue_.AddBatch(baseBatch);
  693. continue;
  694. }
  695. pass = tech->GetPass(PASS_POSTALPHA);
  696. if (pass)
  697. {
  698. // Post-alpha pass is treated similarly as alpha, and is not instanced
  699. FinalizeBatch(baseBatch, tech, pass, false);
  700. postAlphaQueue_.AddBatch(baseBatch);
  701. continue;
  702. }
  703. }
  704. }
  705. }
  706. }
  707. void View::UpdateGeometries()
  708. {
  709. PROFILE(UpdateGeometries);
  710. WorkQueue* queue = GetSubsystem<WorkQueue>();
  711. // Sort batches
  712. {
  713. WorkItem item;
  714. item.workFunction_ = SortBatchQueueFrontToBackWork;
  715. item.start_ = &baseQueue_;
  716. queue->AddWorkItem(item);
  717. item.start_ = &preAlphaQueue_;
  718. queue->AddWorkItem(item);
  719. if (lightPrepass_)
  720. {
  721. item.start_ = &gbufferQueue_;
  722. queue->AddWorkItem(item);
  723. }
  724. item.workFunction_ = SortBatchQueueBackToFrontWork;
  725. item.start_ = &alphaQueue_;
  726. queue->AddWorkItem(item);
  727. item.start_ = &postAlphaQueue_;
  728. queue->AddWorkItem(item);
  729. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  730. {
  731. item.workFunction_ = SortLightQueueWork;
  732. item.start_ = &(*i);
  733. queue->AddWorkItem(item);
  734. }
  735. }
  736. // Update geometries. Split into threaded and non-threaded updates.
  737. {
  738. nonThreadedGeometries_.Clear();
  739. threadedGeometries_.Clear();
  740. for (PODVector<Drawable*>::Iterator i = allGeometries_.Begin(); i != allGeometries_.End(); ++i)
  741. {
  742. UpdateGeometryType type = (*i)->GetUpdateGeometryType();
  743. if (type == UPDATE_MAIN_THREAD)
  744. nonThreadedGeometries_.Push(*i);
  745. else if (type == UPDATE_WORKER_THREAD)
  746. threadedGeometries_.Push(*i);
  747. }
  748. if (threadedGeometries_.Size())
  749. {
  750. WorkItem item;
  751. item.workFunction_ = UpdateDrawableGeometriesWork;
  752. item.aux_ = const_cast<FrameInfo*>(&frame_);
  753. PODVector<Drawable*>::Iterator start = threadedGeometries_.Begin();
  754. while (start != threadedGeometries_.End())
  755. {
  756. PODVector<Drawable*>::Iterator end = threadedGeometries_.End();
  757. if (end - start > DRAWABLES_PER_WORK_ITEM)
  758. end = start + DRAWABLES_PER_WORK_ITEM;
  759. item.start_ = &(*start);
  760. item.end_ = &(*end);
  761. queue->AddWorkItem(item);
  762. start = end;
  763. }
  764. }
  765. // While the work queue is processed, update non-threaded geometries
  766. for (PODVector<Drawable*>::ConstIterator i = nonThreadedGeometries_.Begin(); i != nonThreadedGeometries_.End(); ++i)
  767. (*i)->UpdateGeometry(frame_);
  768. }
  769. // Finally ensure all threaded work has completed
  770. queue->Complete();
  771. }
  772. void View::GetLitBatches(Drawable* drawable, LightBatchQueue& lightQueue)
  773. {
  774. Light* light = lightQueue.light_;
  775. Light* firstLight = drawable->GetFirstLight();
  776. Zone* zone = GetZone(drawable);
  777. // Shadows on transparencies can only be rendered if shadow maps are not reused
  778. bool allowTransparentShadows = !renderer_->GetReuseShadowMaps();
  779. bool hasVertexLights = drawable->GetVertexLights().Size() > 0;
  780. bool hasAmbientGradient = zone->GetAmbientGradient() && zone->GetAmbientStartColor() != zone->GetAmbientEndColor();
  781. unsigned numBatches = drawable->GetNumBatches();
  782. for (unsigned i = 0; i < numBatches; ++i)
  783. {
  784. Batch litBatch;
  785. drawable->GetBatch(litBatch, frame_, i);
  786. Technique* tech = GetTechnique(drawable, litBatch.material_);
  787. if (!litBatch.geometry_ || !tech)
  788. continue;
  789. // Do not create pixel lit forward passes for materials that render into the G-buffer
  790. if (lightPrepass_ && tech->HasPass(PASS_GBUFFER))
  791. continue;
  792. Pass* pass = 0;
  793. // Check for lit base pass. Because it uses the replace blend mode, it must be ensured to be the first light
  794. // Also vertex lighting or ambient gradient require the non-lit base pass, so skip in those cases
  795. if (i < 32 && light == firstLight && !hasVertexLights && !hasAmbientGradient && !drawable->HasBasePass(i))
  796. {
  797. pass = tech->GetPass(PASS_LITBASE);
  798. if (pass)
  799. {
  800. litBatch.isBase_ = true;
  801. drawable->SetBasePass(i);
  802. }
  803. }
  804. // If no lit base pass, get ordinary light pass
  805. if (!pass)
  806. pass = tech->GetPass(PASS_LIGHT);
  807. // Skip if material does not receive light at all
  808. if (!pass)
  809. continue;
  810. // Fill the rest of the batch
  811. litBatch.camera_ = camera_;
  812. litBatch.lightQueue_ = &lightQueue;
  813. litBatch.zone_ = GetZone(drawable);
  814. // Check from the ambient pass whether the object is opaque or transparent
  815. Pass* ambientPass = tech->GetPass(PASS_BASE);
  816. if (!ambientPass || ambientPass->GetBlendMode() == BLEND_REPLACE)
  817. {
  818. FinalizeBatch(litBatch, tech, pass);
  819. lightQueue.litBatches_.AddBatch(litBatch);
  820. }
  821. else
  822. {
  823. // Transparent batches can not be instanced
  824. FinalizeBatch(litBatch, tech, pass, false, allowTransparentShadows);
  825. alphaQueue_.AddBatch(litBatch);
  826. }
  827. }
  828. }
  829. void View::RenderBatchesForward()
  830. {
  831. // Reset the light optimization stencil reference value
  832. lightStencilValue_ = 1;
  833. bool needBlit = edgeFilter_;
  834. RenderSurface* renderTarget = needBlit ? renderer_->GetScreenBuffer()->GetRenderSurface() : renderTarget_;
  835. RenderSurface* depthStencil = needBlit ? 0 : depthStencil_;
  836. // If not reusing shadowmaps, render all of them first
  837. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  838. {
  839. PROFILE(RenderShadowMaps);
  840. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  841. {
  842. if (i->shadowMap_)
  843. RenderShadowMap(*i);
  844. }
  845. }
  846. graphics_->SetRenderTarget(0, renderTarget);
  847. graphics_->SetDepthStencil(depthStencil);
  848. graphics_->SetViewport(screenRect_);
  849. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, farClipZone_->GetFogColor());
  850. if (!baseQueue_.IsEmpty())
  851. {
  852. // Render opaque object unlit base pass
  853. PROFILE(RenderBase);
  854. RenderBatchQueue(baseQueue_);
  855. }
  856. if (!lightQueues_.Empty())
  857. {
  858. // Render shadow maps + opaque objects' additive lighting
  859. PROFILE(RenderLights);
  860. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  861. {
  862. // If reusing shadowmaps, render each of them before the lit batches
  863. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  864. {
  865. RenderShadowMap(*i);
  866. graphics_->SetRenderTarget(0, renderTarget);
  867. graphics_->SetDepthStencil(depthStencil);
  868. graphics_->SetViewport(screenRect_);
  869. }
  870. RenderLightBatchQueue(i->litBatches_, i->light_);
  871. }
  872. }
  873. graphics_->SetScissorTest(false);
  874. graphics_->SetStencilTest(false);
  875. graphics_->SetRenderTarget(0, renderTarget);
  876. graphics_->SetDepthStencil(depthStencil);
  877. graphics_->SetViewport(screenRect_);
  878. if (!preAlphaQueue_.IsEmpty())
  879. {
  880. // Render pre-alpha custom pass
  881. PROFILE(RenderPreAlpha);
  882. RenderBatchQueue(preAlphaQueue_);
  883. }
  884. if (!alphaQueue_.IsEmpty())
  885. {
  886. // Render transparent objects (both base passes & additive lighting)
  887. PROFILE(RenderAlpha);
  888. RenderBatchQueue(alphaQueue_, true);
  889. }
  890. if (!postAlphaQueue_.IsEmpty())
  891. {
  892. // Render pre-alpha custom pass
  893. PROFILE(RenderPostAlpha);
  894. RenderBatchQueue(postAlphaQueue_);
  895. }
  896. }
  897. void View::RenderBatchesLightPrepass()
  898. {
  899. // If not reusing shadowmaps, render all of them first
  900. if (!renderer_->GetReuseShadowMaps() && renderer_->GetDrawShadows() && !lightQueues_.Empty())
  901. {
  902. PROFILE(RenderShadowMaps);
  903. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  904. {
  905. if (i->shadowMap_)
  906. RenderShadowMap(*i);
  907. }
  908. }
  909. Texture2D* normalBuffer = renderer_->GetNormalBuffer();
  910. Texture2D* depthBuffer = renderer_->GetDepthBuffer();
  911. #ifdef USE_OPENGL
  912. bool needBlit = true;
  913. #else
  914. bool needBlit = edgeFilter_;
  915. #endif
  916. RenderSurface* renderTarget = needBlit ? renderer_->GetScreenBuffer()->GetRenderSurface() : renderTarget_;
  917. RenderSurface* depthStencil = 0;
  918. // Hardware depth support: render to RGBA normal buffer and read hardware depth
  919. if (graphics_->GetHardwareDepthSupport())
  920. {
  921. depthStencil = depthBuffer->GetRenderSurface();
  922. graphics_->SetRenderTarget(0, normalBuffer);
  923. }
  924. // No hardware depth support: render to RGBA normal buffer and R32F depth
  925. else
  926. {
  927. graphics_->SetRenderTarget(0, normalBuffer);
  928. graphics_->SetRenderTarget(1, depthBuffer);
  929. }
  930. graphics_->SetDepthStencil(depthStencil);
  931. graphics_->SetViewport(screenRect_);
  932. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  933. if (!gbufferQueue_.IsEmpty())
  934. {
  935. // Render G-buffer batches
  936. PROFILE(RenderGBuffer);
  937. RenderBatchQueue(gbufferQueue_);
  938. }
  939. // Clear the light accumulation buffer
  940. Texture2D* lightBuffer = renderer_->GetLightBuffer();
  941. graphics_->ResetRenderTarget(1);
  942. graphics_->SetRenderTarget(0, lightBuffer);
  943. graphics_->SetDepthStencil(depthStencil);
  944. graphics_->SetViewport(screenRect_);
  945. graphics_->Clear(CLEAR_COLOR);
  946. if (!lightQueues_.Empty())
  947. {
  948. // Render shadow maps + light volumes
  949. PROFILE(RenderLights);
  950. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  951. {
  952. // If reusing shadowmaps, render each of them before the lit batches
  953. if (renderer_->GetReuseShadowMaps() && i->shadowMap_)
  954. {
  955. RenderShadowMap(*i);
  956. graphics_->SetRenderTarget(0, lightBuffer);
  957. graphics_->SetDepthStencil(depthStencil);
  958. graphics_->SetViewport(screenRect_);
  959. }
  960. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  961. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  962. for (unsigned j = 0; j < i->volumeBatches_.Size(); ++j)
  963. {
  964. SetupLightVolumeBatch(i->volumeBatches_[j]);
  965. i->volumeBatches_[j].Draw(graphics_, renderer_);
  966. }
  967. }
  968. }
  969. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  970. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  971. // Clear destination render target with fog color
  972. graphics_->SetScissorTest(false);
  973. graphics_->SetStencilTest(false);
  974. graphics_->SetRenderTarget(0, renderTarget);
  975. graphics_->SetDepthStencil(depthStencil);
  976. graphics_->SetViewport(screenRect_);
  977. graphics_->Clear(CLEAR_COLOR, farClipZone_->GetFogColor());
  978. if (!baseQueue_.IsEmpty())
  979. {
  980. // Render opaque objects with deferred lighting result
  981. PROFILE(RenderBase);
  982. graphics_->SetTexture(TU_LIGHTBUFFER, lightBuffer);
  983. RenderBatchQueue(baseQueue_);
  984. graphics_->SetTexture(TU_LIGHTBUFFER, 0);
  985. }
  986. if (!preAlphaQueue_.IsEmpty())
  987. {
  988. // Render pre-alpha custom pass
  989. PROFILE(RenderPreAlpha);
  990. RenderBatchQueue(preAlphaQueue_);
  991. }
  992. if (!alphaQueue_.IsEmpty())
  993. {
  994. // Render transparent objects (both base passes & additive lighting)
  995. PROFILE(RenderAlpha);
  996. RenderBatchQueue(alphaQueue_, true);
  997. }
  998. if (!postAlphaQueue_.IsEmpty())
  999. {
  1000. // Render pre-alpha custom pass
  1001. PROFILE(RenderPostAlpha);
  1002. RenderBatchQueue(postAlphaQueue_);
  1003. }
  1004. }
  1005. void View::BlitFramebuffer()
  1006. {
  1007. // Blit the final image to destination render target
  1008. /// \todo Depth is reset to far plane, so geometry drawn after the view can not be depth tested
  1009. graphics_->SetAlphaTest(false);
  1010. graphics_->SetBlendMode(BLEND_REPLACE);
  1011. graphics_->SetDepthTest(CMP_ALWAYS);
  1012. graphics_->SetDepthWrite(true);
  1013. graphics_->SetScissorTest(false);
  1014. graphics_->SetStencilTest(false);
  1015. graphics_->SetRenderTarget(0, renderTarget_);
  1016. graphics_->SetDepthStencil(depthStencil_);
  1017. graphics_->SetViewport(screenRect_);
  1018. String shaderName = edgeFilter_ ? "EdgeFilter" : "CopyFramebuffer";
  1019. graphics_->SetShaders(renderer_->GetVertexShader(shaderName), renderer_->GetPixelShader(shaderName));
  1020. float gBufferWidth = (float)graphics_->GetWidth();
  1021. float gBufferHeight = (float)graphics_->GetHeight();
  1022. {
  1023. float widthRange = 0.5f * width_ / gBufferWidth;
  1024. float heightRange = 0.5f * height_ / gBufferHeight;
  1025. #ifdef USE_OPENGL
  1026. Vector4 bufferUVOffset(((float)screenRect_.left_) / gBufferWidth + widthRange,
  1027. 1.0f - (((float)screenRect_.top_) / gBufferHeight + heightRange), widthRange, heightRange);
  1028. #else
  1029. Vector4 bufferUVOffset((0.5f + (float)screenRect_.left_) / gBufferWidth + widthRange,
  1030. (0.5f + (float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  1031. #endif
  1032. graphics_->SetShaderParameter(VSP_GBUFFEROFFSETS, bufferUVOffset);
  1033. }
  1034. if (edgeFilter_)
  1035. {
  1036. const EdgeFilterParameters& parameters = renderer_->GetEdgeFilterParameters();
  1037. graphics_->SetShaderParameter(PSP_EDGEFILTERPARAMS, Vector4(parameters.radius_, parameters.threshold_,
  1038. parameters.strength_, 0.0f));
  1039. float addX = 1.0f / (float)gBufferWidth;
  1040. float addY = 1.0f / (float)gBufferHeight;
  1041. graphics_->SetShaderParameter(PSP_SAMPLEOFFSETS, Vector4(addX, addY, 0.0f, 0.0f));
  1042. }
  1043. graphics_->SetTexture(TU_DIFFUSE, renderer_->GetScreenBuffer());
  1044. DrawFullscreenQuad(camera_, false);
  1045. graphics_->SetTexture(TU_DIFFUSE, 0);
  1046. }
  1047. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  1048. {
  1049. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  1050. float halfViewSize = camera->GetHalfViewSize();
  1051. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  1052. Vector3 cameraPos = camera->GetWorldPosition();
  1053. for (PODVector<Drawable*>::Iterator i = occluders.Begin(); i != occluders.End();)
  1054. {
  1055. Drawable* occluder = *i;
  1056. bool erase = false;
  1057. if (!occluder->IsInView(frame_, false))
  1058. occluder->UpdateDistance(frame_);
  1059. // Check occluder's draw distance (in main camera view)
  1060. float maxDistance = occluder->GetDrawDistance();
  1061. if (maxDistance > 0.0f && occluder->GetDistance() > maxDistance)
  1062. erase = true;
  1063. else
  1064. {
  1065. // Check that occluder is big enough on the screen
  1066. const BoundingBox& box = occluder->GetWorldBoundingBox();
  1067. float diagonal = (box.max_ - box.min_).LengthFast();
  1068. float compare;
  1069. if (!camera->IsOrthographic())
  1070. compare = diagonal * halfViewSize / occluder->GetDistance();
  1071. else
  1072. compare = diagonal * invOrthoSize;
  1073. if (compare < occluderSizeThreshold_)
  1074. erase = true;
  1075. else
  1076. {
  1077. // Store amount of triangles divided by screen size as a sorting key
  1078. // (best occluders are big and have few triangles)
  1079. occluder->SetSortValue((float)occluder->GetNumOccluderTriangles() / compare);
  1080. }
  1081. }
  1082. if (erase)
  1083. i = occluders.Erase(i);
  1084. else
  1085. ++i;
  1086. }
  1087. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  1088. if (occluders.Size())
  1089. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  1090. }
  1091. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  1092. {
  1093. buffer->SetMaxTriangles(maxOccluderTriangles_);
  1094. buffer->Clear();
  1095. for (unsigned i = 0; i < occluders.Size(); ++i)
  1096. {
  1097. Drawable* occluder = occluders[i];
  1098. if (i > 0)
  1099. {
  1100. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  1101. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  1102. continue;
  1103. }
  1104. // Check for running out of triangles
  1105. if (!occluder->DrawOcclusion(buffer))
  1106. break;
  1107. }
  1108. buffer->BuildDepthHierarchy();
  1109. }
  1110. void View::ProcessLight(LightQueryResult& query, unsigned threadIndex)
  1111. {
  1112. Light* light = query.light_;
  1113. LightType type = light->GetLightType();
  1114. // Check if light should be shadowed
  1115. bool isShadowed = drawShadows_ && light->GetCastShadows() && !light->GetPerVertex() && light->GetShadowIntensity() < 1.0f;
  1116. // If shadow distance non-zero, check it
  1117. if (isShadowed && light->GetShadowDistance() > 0.0f && light->GetDistance() > light->GetShadowDistance())
  1118. isShadowed = false;
  1119. // Get lit geometries. They must match the light mask and be inside the main camera frustum to be considered
  1120. PODVector<Drawable*>& tempDrawables = tempDrawables_[threadIndex];
  1121. query.litGeometries_.Clear();
  1122. switch (type)
  1123. {
  1124. case LIGHT_DIRECTIONAL:
  1125. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1126. {
  1127. if (GetLightMask(geometries_[i]) & light->GetLightMask())
  1128. query.litGeometries_.Push(geometries_[i]);
  1129. }
  1130. break;
  1131. case LIGHT_SPOT:
  1132. {
  1133. FrustumOctreeQuery octreeQuery(tempDrawables, light->GetFrustum(), DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1134. octree_->GetDrawables(octreeQuery);
  1135. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1136. {
  1137. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1138. query.litGeometries_.Push(tempDrawables[i]);
  1139. }
  1140. }
  1141. break;
  1142. case LIGHT_POINT:
  1143. {
  1144. SphereOctreeQuery octreeQuery(tempDrawables, Sphere(light->GetWorldPosition(), light->GetRange()),
  1145. DRAWABLE_GEOMETRY, camera_->GetViewMask());
  1146. octree_->GetDrawables(octreeQuery);
  1147. for (unsigned i = 0; i < tempDrawables.Size(); ++i)
  1148. {
  1149. if (tempDrawables[i]->IsInView(frame_) && (GetLightMask(tempDrawables[i]) & light->GetLightMask()))
  1150. query.litGeometries_.Push(tempDrawables[i]);
  1151. }
  1152. }
  1153. break;
  1154. }
  1155. // If no lit geometries or not shadowed, no need to process shadow cameras
  1156. if (query.litGeometries_.Empty() || !isShadowed)
  1157. {
  1158. query.numSplits_ = 0;
  1159. return;
  1160. }
  1161. // Determine number of shadow cameras and setup their initial positions
  1162. SetupShadowCameras(query);
  1163. // Process each split for shadow casters
  1164. query.shadowCasters_.Clear();
  1165. for (unsigned i = 0; i < query.numSplits_; ++i)
  1166. {
  1167. Camera* shadowCamera = query.shadowCameras_[i];
  1168. Frustum shadowCameraFrustum = shadowCamera->GetFrustum();
  1169. query.shadowCasterBegin_[i] = query.shadowCasterEnd_[i] = query.shadowCasters_.Size();
  1170. // For point light check that the face is visible: if not, can skip the split
  1171. if (type == LIGHT_POINT)
  1172. {
  1173. BoundingBox shadowCameraBox(shadowCameraFrustum);
  1174. if (frustum_.IsInsideFast(shadowCameraBox) == OUTSIDE)
  1175. continue;
  1176. }
  1177. // For directional light check that the split is inside the visible scene: if not, can skip the split
  1178. if (type == LIGHT_DIRECTIONAL)
  1179. {
  1180. if (sceneViewBox_.min_.z_ > query.shadowFarSplits_[i])
  1181. continue;
  1182. if (sceneViewBox_.max_.z_ < query.shadowNearSplits_[i])
  1183. continue;
  1184. }
  1185. // For spot light (which has only one shadow split) we can optimize by reusing the query for
  1186. // lit geometries, whose result still exists in tempDrawables
  1187. if (type != LIGHT_SPOT)
  1188. {
  1189. FrustumOctreeQuery octreeQuery(tempDrawables, shadowCameraFrustum, DRAWABLE_GEOMETRY,
  1190. camera_->GetViewMask(), true);
  1191. octree_->GetDrawables(octreeQuery);
  1192. }
  1193. // Check which shadow casters actually contribute to the shadowing
  1194. ProcessShadowCasters(query, tempDrawables, i);
  1195. }
  1196. // If no shadow casters, the light can be rendered unshadowed. At this point we have not allocated a shadow map yet, so the
  1197. // only cost has been the shadow camera setup & queries
  1198. if (query.shadowCasters_.Empty())
  1199. query.numSplits_ = 0;
  1200. }
  1201. void View::ProcessShadowCasters(LightQueryResult& query, const PODVector<Drawable*>& drawables, unsigned splitIndex)
  1202. {
  1203. Light* light = query.light_;
  1204. Matrix3x4 lightView;
  1205. Matrix4 lightProj;
  1206. Camera* shadowCamera = query.shadowCameras_[splitIndex];
  1207. lightView = shadowCamera->GetInverseWorldTransform();
  1208. lightProj = shadowCamera->GetProjection();
  1209. bool dirLight = shadowCamera->IsOrthographic();
  1210. query.shadowCasterBox_[splitIndex].defined_ = false;
  1211. // Transform scene frustum into shadow camera's view space for shadow caster visibility check. For point & spot lights,
  1212. // we can use the whole scene frustum. For directional lights, use the intersection of the scene frustum and the split
  1213. // frustum, so that shadow casters do not get rendered into unnecessary splits
  1214. Frustum lightViewFrustum;
  1215. if (!dirLight)
  1216. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1217. else
  1218. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, query.shadowNearSplits_[splitIndex]),
  1219. Min(sceneViewBox_.max_.z_, query.shadowFarSplits_[splitIndex])).Transformed(lightView);
  1220. BoundingBox lightViewFrustumBox(lightViewFrustum);
  1221. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1222. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1223. return;
  1224. BoundingBox lightViewBox;
  1225. BoundingBox lightProjBox;
  1226. for (PODVector<Drawable*>::ConstIterator i = drawables.Begin(); i != drawables.End(); ++i)
  1227. {
  1228. Drawable* drawable = *i;
  1229. // In case this is a spot light query result reused for optimization, we may have non-shadowcasters included.
  1230. // Check for that first
  1231. if (!drawable->GetCastShadows())
  1232. continue;
  1233. // Note: as lights are processed threaded, it is possible a drawable's UpdateDistance() function is called several
  1234. // times. However, this should not cause problems as no scene modification happens at this point.
  1235. if (!drawable->IsInView(frame_, false))
  1236. drawable->UpdateDistance(frame_);
  1237. // Check shadow distance
  1238. float maxShadowDistance = drawable->GetShadowDistance();
  1239. if (maxShadowDistance > 0.0f && drawable->GetDistance() > maxShadowDistance)
  1240. continue;
  1241. // Check shadow mask
  1242. if (!(GetShadowMask(drawable) & light->GetLightMask()))
  1243. continue;
  1244. // Project shadow caster bounding box to light view space for visibility check
  1245. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1246. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1247. {
  1248. // Merge to shadow caster bounding box and add to the list
  1249. if (dirLight)
  1250. query.shadowCasterBox_[splitIndex].Merge(lightViewBox);
  1251. else
  1252. {
  1253. lightProjBox = lightViewBox.Projected(lightProj);
  1254. query.shadowCasterBox_[splitIndex].Merge(lightProjBox);
  1255. }
  1256. query.shadowCasters_.Push(drawable);
  1257. }
  1258. }
  1259. query.shadowCasterEnd_[splitIndex] = query.shadowCasters_.Size();
  1260. }
  1261. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1262. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1263. {
  1264. if (shadowCamera->IsOrthographic())
  1265. {
  1266. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1267. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1268. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1269. }
  1270. else
  1271. {
  1272. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1273. if (drawable->IsInView(frame_))
  1274. return true;
  1275. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1276. Vector3 center = lightViewBox.Center();
  1277. Ray extrusionRay(center, center.Normalized());
  1278. float extrusionDistance = shadowCamera->GetFarClip();
  1279. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  1280. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1281. float sizeFactor = extrusionDistance / originalDistance;
  1282. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1283. // than necessary, so the test will be conservative
  1284. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1285. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1286. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1287. lightViewBox.Merge(extrudedBox);
  1288. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1289. }
  1290. }
  1291. IntRect View::GetShadowMapViewport(Light* light, unsigned splitIndex, Texture2D* shadowMap)
  1292. {
  1293. unsigned width = shadowMap->GetWidth();
  1294. unsigned height = shadowMap->GetHeight();
  1295. int maxCascades = renderer_->GetMaxShadowCascades();
  1296. // Due to instruction count limits, light prepass in SM2.0 can only support up to 3 cascades
  1297. #ifndef USE_OPENGL
  1298. if (lightPrepass_ && !graphics_->GetSM3Support())
  1299. maxCascades = Max(maxCascades, 3);
  1300. #endif
  1301. switch (light->GetLightType())
  1302. {
  1303. case LIGHT_DIRECTIONAL:
  1304. if (maxCascades == 1)
  1305. return IntRect(0, 0, width, height);
  1306. else if (maxCascades == 2)
  1307. return IntRect(splitIndex * width / 2, 0, (splitIndex + 1) * width / 2, height);
  1308. else
  1309. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 2, ((splitIndex & 1) + 1) * width / 2,
  1310. (splitIndex / 2 + 1) * height / 2);
  1311. case LIGHT_SPOT:
  1312. return IntRect(0, 0, width, height);
  1313. case LIGHT_POINT:
  1314. return IntRect((splitIndex & 1) * width / 2, (splitIndex / 2) * height / 3, ((splitIndex & 1) + 1) * width / 2,
  1315. (splitIndex / 2 + 1) * height / 3);
  1316. }
  1317. return IntRect();
  1318. }
  1319. void View::OptimizeLightByScissor(Light* light)
  1320. {
  1321. if (light && light->GetLightType() != LIGHT_DIRECTIONAL)
  1322. graphics_->SetScissorTest(true, GetLightScissor(light));
  1323. else
  1324. graphics_->SetScissorTest(false);
  1325. }
  1326. void View::OptimizeLightByStencil(Light* light)
  1327. {
  1328. if (light)
  1329. {
  1330. LightType type = light->GetLightType();
  1331. if (type == LIGHT_DIRECTIONAL)
  1332. {
  1333. graphics_->SetStencilTest(false);
  1334. return;
  1335. }
  1336. Geometry* geometry = renderer_->GetLightGeometry(light);
  1337. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1338. Matrix4 projection(camera_->GetProjection());
  1339. float lightDist;
  1340. if (type == LIGHT_POINT)
  1341. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
  1342. else
  1343. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  1344. // If the camera is actually inside the light volume, do not draw to stencil as it would waste fillrate
  1345. if (lightDist < M_EPSILON)
  1346. {
  1347. graphics_->SetStencilTest(false);
  1348. return;
  1349. }
  1350. // If the stencil value has wrapped, clear the whole stencil first
  1351. if (!lightStencilValue_)
  1352. {
  1353. graphics_->Clear(CLEAR_STENCIL);
  1354. lightStencilValue_ = 1;
  1355. }
  1356. // If possible, render the stencil volume front faces. However, close to the near clip plane render back faces instead
  1357. // to avoid clipping.
  1358. if (lightDist < camera_->GetNearClip() * 2.0f)
  1359. {
  1360. renderer_->SetCullMode(CULL_CW, camera_);
  1361. graphics_->SetDepthTest(CMP_GREATER);
  1362. }
  1363. else
  1364. {
  1365. renderer_->SetCullMode(CULL_CCW, camera_);
  1366. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1367. }
  1368. graphics_->SetColorWrite(false);
  1369. graphics_->SetDepthWrite(false);
  1370. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, lightStencilValue_);
  1371. graphics_->SetShaders(renderer_->GetStencilVS(), renderer_->GetStencilPS());
  1372. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1373. graphics_->SetShaderParameter(VSP_MODEL, light->GetVolumeTransform(camera_));
  1374. geometry->Draw(graphics_);
  1375. graphics_->ClearTransformSources();
  1376. graphics_->SetColorWrite(true);
  1377. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, lightStencilValue_);
  1378. // Increase stencil value for next light
  1379. ++lightStencilValue_;
  1380. }
  1381. else
  1382. graphics_->SetStencilTest(false);
  1383. }
  1384. const Rect& View::GetLightScissor(Light* light)
  1385. {
  1386. HashMap<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1387. if (i != lightScissorCache_.End())
  1388. return i->second_;
  1389. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1390. Matrix4 projection(camera_->GetProjection());
  1391. switch (light->GetLightType())
  1392. {
  1393. case LIGHT_POINT:
  1394. {
  1395. BoundingBox viewBox(light->GetWorldBoundingBox().Transformed(view));
  1396. return lightScissorCache_[light] = viewBox.Projected(projection);
  1397. }
  1398. case LIGHT_SPOT:
  1399. {
  1400. Frustum viewFrustum(light->GetFrustum().Transformed(view));
  1401. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1402. }
  1403. default:
  1404. return lightScissorCache_[light] = Rect::FULL;
  1405. }
  1406. }
  1407. void View::SetupShadowCameras(LightQueryResult& query)
  1408. {
  1409. Light* light = query.light_;
  1410. LightType type = light->GetLightType();
  1411. int splits = 0;
  1412. if (type == LIGHT_DIRECTIONAL)
  1413. {
  1414. const CascadeParameters& cascade = light->GetShadowCascade();
  1415. float nearSplit = camera_->GetNearClip();
  1416. float farSplit;
  1417. while (splits < renderer_->GetMaxShadowCascades())
  1418. {
  1419. // If split is completely beyond camera far clip, we are done
  1420. if (nearSplit > camera_->GetFarClip())
  1421. break;
  1422. farSplit = Min(camera_->GetFarClip(), cascade.splits_[splits]);
  1423. if (farSplit <= nearSplit)
  1424. break;
  1425. // Setup the shadow camera for the split
  1426. Camera* shadowCamera = renderer_->GetShadowCamera();
  1427. query.shadowCameras_[splits] = shadowCamera;
  1428. query.shadowNearSplits_[splits] = nearSplit;
  1429. query.shadowFarSplits_[splits] = farSplit;
  1430. SetupDirLightShadowCamera(shadowCamera, light, nearSplit, farSplit);
  1431. nearSplit = farSplit;
  1432. ++splits;
  1433. }
  1434. }
  1435. if (type == LIGHT_SPOT)
  1436. {
  1437. Camera* shadowCamera = renderer_->GetShadowCamera();
  1438. query.shadowCameras_[0] = shadowCamera;
  1439. Node* cameraNode = shadowCamera->GetNode();
  1440. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1441. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1442. shadowCamera->SetFarClip(light->GetRange());
  1443. shadowCamera->SetFov(light->GetFov());
  1444. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1445. splits = 1;
  1446. }
  1447. if (type == LIGHT_POINT)
  1448. {
  1449. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1450. {
  1451. Camera* shadowCamera = renderer_->GetShadowCamera();
  1452. query.shadowCameras_[i] = shadowCamera;
  1453. Node* cameraNode = shadowCamera->GetNode();
  1454. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1455. cameraNode->SetPosition(light->GetWorldPosition());
  1456. cameraNode->SetDirection(directions[i]);
  1457. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1458. shadowCamera->SetFarClip(light->GetRange());
  1459. shadowCamera->SetFov(90.0f);
  1460. shadowCamera->SetAspectRatio(1.0f);
  1461. }
  1462. splits = MAX_CUBEMAP_FACES;
  1463. }
  1464. query.numSplits_ = splits;
  1465. }
  1466. void View::SetupDirLightShadowCamera(Camera* shadowCamera, Light* light, float nearSplit, float farSplit)
  1467. {
  1468. Node* cameraNode = shadowCamera->GetNode();
  1469. float extrusionDistance = camera_->GetFarClip();
  1470. const FocusParameters& parameters = light->GetShadowFocus();
  1471. // Calculate initial position & rotation
  1472. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1473. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1474. cameraNode->SetTransform(pos, light->GetWorldRotation());
  1475. // Calculate main camera shadowed frustum in light's view space
  1476. farSplit = Min(farSplit, camera_->GetFarClip());
  1477. // Use the scene Z bounds to limit frustum size if applicable
  1478. if (parameters.focus_)
  1479. {
  1480. nearSplit = Max(sceneViewBox_.min_.z_, nearSplit);
  1481. farSplit = Min(sceneViewBox_.max_.z_, farSplit);
  1482. }
  1483. Frustum splitFrustum = camera_->GetSplitFrustum(nearSplit, farSplit);
  1484. frustumVolume_.Define(splitFrustum);
  1485. // If focusing enabled, clip the frustum volume by the combined bounding box of the lit geometries within the frustum
  1486. if (parameters.focus_)
  1487. {
  1488. BoundingBox litGeometriesBox;
  1489. for (unsigned i = 0; i < geometries_.Size(); ++i)
  1490. {
  1491. // Skip "infinite" objects like the skybox
  1492. const BoundingBox& geomBox = geometries_[i]->GetWorldBoundingBox();
  1493. if (geomBox.Size().LengthFast() < M_LARGE_VALUE)
  1494. {
  1495. if (geometryDepthBounds_[i].min_ <= farSplit && geometryDepthBounds_[i].max_ >= nearSplit &&
  1496. (GetLightMask(geometries_[i]) & light->GetLightMask()))
  1497. litGeometriesBox.Merge(geomBox);
  1498. }
  1499. }
  1500. if (litGeometriesBox.defined_)
  1501. {
  1502. frustumVolume_.Clip(litGeometriesBox);
  1503. // If volume became empty, restore it to avoid zero size
  1504. if (frustumVolume_.Empty())
  1505. frustumVolume_.Define(splitFrustum);
  1506. }
  1507. }
  1508. // Transform frustum volume to light space
  1509. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1510. frustumVolume_.Transform(lightView);
  1511. // Fit the frustum volume inside a bounding box. If uniform size, use a sphere instead
  1512. BoundingBox shadowBox;
  1513. if (!parameters.nonUniform_)
  1514. shadowBox.Define(Sphere(frustumVolume_));
  1515. else
  1516. shadowBox.Define(frustumVolume_);
  1517. shadowCamera->SetOrthographic(true);
  1518. shadowCamera->SetAspectRatio(1.0f);
  1519. shadowCamera->SetNearClip(0.0f);
  1520. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1521. // Center shadow camera on the bounding box. Can not snap to texels yet as the shadow map viewport is unknown
  1522. QuantizeDirLightShadowCamera(shadowCamera, light, IntRect(0, 0, 0, 0), shadowBox);
  1523. }
  1524. void View::FinalizeShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1525. const BoundingBox& shadowCasterBox)
  1526. {
  1527. const FocusParameters& parameters = light->GetShadowFocus();
  1528. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1529. LightType type = light->GetLightType();
  1530. if (type == LIGHT_DIRECTIONAL)
  1531. {
  1532. BoundingBox shadowBox;
  1533. shadowBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1534. shadowBox.max_.x_ = shadowCamera->GetAspectRatio() * shadowBox.max_.y_;
  1535. shadowBox.min_.y_ = -shadowBox.max_.y_;
  1536. shadowBox.min_.x_ = -shadowBox.max_.x_;
  1537. // Requantize and snap to shadow map texels
  1538. QuantizeDirLightShadowCamera(shadowCamera, light, shadowViewport, shadowBox);
  1539. }
  1540. if (type == LIGHT_SPOT)
  1541. {
  1542. if (parameters.focus_)
  1543. {
  1544. float viewSizeX = Max(fabsf(shadowCasterBox.min_.x_), fabsf(shadowCasterBox.max_.x_));
  1545. float viewSizeY = Max(fabsf(shadowCasterBox.min_.y_), fabsf(shadowCasterBox.max_.y_));
  1546. float viewSize = Max(viewSizeX, viewSizeY);
  1547. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1548. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1549. float quantize = parameters.quantize_ * invOrthoSize;
  1550. float minView = parameters.minView_ * invOrthoSize;
  1551. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1552. if (viewSize < 1.0f)
  1553. shadowCamera->SetZoom(1.0f / viewSize);
  1554. }
  1555. }
  1556. // Perform a finalization step for all lights: ensure zoom out of 2 pixels to eliminate border filtering issues
  1557. // For point lights use 4 pixels, as they must not cross sides of the virtual cube map (maximum 3x3 PCF)
  1558. if (shadowCamera->GetZoom() >= 1.0f)
  1559. {
  1560. if (light->GetLightType() != LIGHT_POINT)
  1561. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 2.0f) / shadowMapWidth));
  1562. else
  1563. {
  1564. #ifdef USE_OPENGL
  1565. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 3.0f) / shadowMapWidth));
  1566. #else
  1567. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((shadowMapWidth - 4.0f) / shadowMapWidth));
  1568. #endif
  1569. }
  1570. }
  1571. }
  1572. void View::QuantizeDirLightShadowCamera(Camera* shadowCamera, Light* light, const IntRect& shadowViewport,
  1573. const BoundingBox& viewBox)
  1574. {
  1575. Node* cameraNode = shadowCamera->GetNode();
  1576. const FocusParameters& parameters = light->GetShadowFocus();
  1577. float shadowMapWidth = (float)(shadowViewport.right_ - shadowViewport.left_);
  1578. float minX = viewBox.min_.x_;
  1579. float minY = viewBox.min_.y_;
  1580. float maxX = viewBox.max_.x_;
  1581. float maxY = viewBox.max_.y_;
  1582. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1583. Vector2 viewSize(maxX - minX, maxY - minY);
  1584. // Quantize size to reduce swimming
  1585. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1586. if (parameters.nonUniform_)
  1587. {
  1588. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1589. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1590. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1591. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1592. }
  1593. else if (parameters.focus_)
  1594. {
  1595. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1596. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1597. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1598. viewSize.y_ = viewSize.x_;
  1599. }
  1600. shadowCamera->SetOrthoSize(viewSize);
  1601. // Center shadow camera to the view space bounding box
  1602. Vector3 pos(shadowCamera->GetWorldPosition());
  1603. Quaternion rot(shadowCamera->GetWorldRotation());
  1604. Vector3 adjust(center.x_, center.y_, 0.0f);
  1605. cameraNode->Translate(rot * adjust);
  1606. // If the shadow map viewport is known, snap to whole texels
  1607. if (shadowMapWidth > 0.0f)
  1608. {
  1609. Vector3 viewPos(rot.Inverse() * cameraNode->GetWorldPosition());
  1610. // Take into account that shadow map border will not be used
  1611. float invActualSize = 1.0f / (shadowMapWidth - 2.0f);
  1612. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1613. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1614. cameraNode->Translate(rot * snap);
  1615. }
  1616. }
  1617. void View::FindZone(Drawable* drawable, unsigned threadIndex)
  1618. {
  1619. Vector3 center = drawable->GetWorldBoundingBox().Center();
  1620. int bestPriority = M_MIN_INT;
  1621. Zone* newZone = 0;
  1622. // If bounding box center is in view, can use the visible zones. Else must query via the octree
  1623. if (frustum_.IsInside(center))
  1624. {
  1625. // First check if the last zone remains a conclusive result
  1626. Zone* lastZone = drawable->GetLastZone();
  1627. if (lastZone && lastZone->IsInside(center) && (drawable->GetZoneMask() & lastZone->GetZoneMask()) &&
  1628. lastZone->GetPriority() >= highestZonePriority_)
  1629. newZone = lastZone;
  1630. else
  1631. {
  1632. for (PODVector<Zone*>::Iterator i = zones_.Begin(); i != zones_.End(); ++i)
  1633. {
  1634. int priority = (*i)->GetPriority();
  1635. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1636. {
  1637. newZone = *i;
  1638. bestPriority = priority;
  1639. }
  1640. }
  1641. }
  1642. }
  1643. else
  1644. {
  1645. PODVector<Zone*>& tempZones = tempZones_[threadIndex];
  1646. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>&>(tempZones), center, DRAWABLE_ZONE);
  1647. octree_->GetDrawables(query);
  1648. bestPriority = M_MIN_INT;
  1649. for (PODVector<Zone*>::Iterator i = tempZones.Begin(); i != tempZones.End(); ++i)
  1650. {
  1651. int priority = (*i)->GetPriority();
  1652. if ((*i)->IsInside(center) && (drawable->GetZoneMask() & (*i)->GetZoneMask()) && priority > bestPriority)
  1653. {
  1654. newZone = *i;
  1655. bestPriority = priority;
  1656. }
  1657. }
  1658. }
  1659. drawable->SetZone(newZone);
  1660. }
  1661. Zone* View::GetZone(Drawable* drawable)
  1662. {
  1663. if (cameraZoneOverride_)
  1664. return cameraZone_;
  1665. Zone* drawableZone = drawable->GetZone();
  1666. return drawableZone ? drawableZone : cameraZone_;
  1667. }
  1668. unsigned View::GetLightMask(Drawable* drawable)
  1669. {
  1670. return drawable->GetLightMask() & GetZone(drawable)->GetLightMask();
  1671. }
  1672. unsigned View::GetShadowMask(Drawable* drawable)
  1673. {
  1674. return drawable->GetShadowMask() & GetZone(drawable)->GetShadowMask();
  1675. }
  1676. unsigned long long View::GetVertexLightQueueHash(const PODVector<Light*>& vertexLights)
  1677. {
  1678. unsigned long long hash = 0;
  1679. for (PODVector<Light*>::ConstIterator i = vertexLights.Begin(); i != vertexLights.End(); ++i)
  1680. hash += (unsigned long long)(*i);
  1681. return hash;
  1682. }
  1683. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1684. {
  1685. if (!material)
  1686. material = renderer_->GetDefaultMaterial();
  1687. if (!material)
  1688. return 0;
  1689. float lodDistance = drawable->GetLodDistance();
  1690. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1691. if (techniques.Empty())
  1692. return 0;
  1693. // Check for suitable technique. Techniques should be ordered like this:
  1694. // Most distant & highest quality
  1695. // Most distant & lowest quality
  1696. // Second most distant & highest quality
  1697. // ...
  1698. for (unsigned i = 0; i < techniques.Size(); ++i)
  1699. {
  1700. const TechniqueEntry& entry = techniques[i];
  1701. Technique* technique = entry.technique_;
  1702. if (!technique || (technique->IsSM3() && !graphics_->GetSM3Support()) || materialQuality_ < entry.qualityLevel_)
  1703. continue;
  1704. if (lodDistance >= entry.lodDistance_)
  1705. return technique;
  1706. }
  1707. // If no suitable technique found, fallback to the last
  1708. return techniques.Back().technique_;
  1709. }
  1710. void View::CheckMaterialForAuxView(Material* material)
  1711. {
  1712. const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
  1713. for (unsigned i = 0; i < textures.Size(); ++i)
  1714. {
  1715. // Have to check cube & 2D textures separately
  1716. Texture* texture = textures[i];
  1717. if (texture)
  1718. {
  1719. if (texture->GetType() == Texture2D::GetTypeStatic())
  1720. {
  1721. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1722. RenderSurface* target = tex2D->GetRenderSurface();
  1723. if (target)
  1724. {
  1725. const Viewport& viewport = target->GetViewport();
  1726. if (viewport.scene_ && viewport.camera_)
  1727. renderer_->AddView(target, viewport);
  1728. }
  1729. }
  1730. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1731. {
  1732. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1733. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1734. {
  1735. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1736. if (target)
  1737. {
  1738. const Viewport& viewport = target->GetViewport();
  1739. if (viewport.scene_ && viewport.camera_)
  1740. renderer_->AddView(target, viewport);
  1741. }
  1742. }
  1743. }
  1744. }
  1745. }
  1746. // Set frame number so that we can early-out next time we come across this material on the same frame
  1747. material->MarkForAuxView(frame_.frameNumber_);
  1748. }
  1749. void View::FinalizeBatch(Batch& batch, Technique* tech, Pass* pass, bool allowInstancing, bool allowShadows)
  1750. {
  1751. // Convert to instanced if possible
  1752. if (allowInstancing && batch.geometryType_ == GEOM_STATIC && !batch.shaderData_ && !batch.overrideView_)
  1753. batch.geometryType_ = GEOM_INSTANCED;
  1754. batch.pass_ = pass;
  1755. renderer_->SetBatchShaders(batch, tech, pass, allowShadows);
  1756. batch.CalculateSortKey();
  1757. }
  1758. void View::PrepareInstancingBuffer()
  1759. {
  1760. PROFILE(PrepareInstancingBuffer);
  1761. unsigned totalInstances = 0;
  1762. totalInstances += baseQueue_.GetNumInstances(renderer_);
  1763. totalInstances += preAlphaQueue_.GetNumInstances(renderer_);
  1764. if (lightPrepass_)
  1765. totalInstances += gbufferQueue_.GetNumInstances(renderer_);
  1766. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1767. {
  1768. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1769. totalInstances += i->shadowSplits_[j].shadowBatches_.GetNumInstances(renderer_);
  1770. totalInstances += i->litBatches_.GetNumInstances(renderer_);
  1771. }
  1772. // If fail to set buffer size, fall back to per-group locking
  1773. if (totalInstances && renderer_->ResizeInstancingBuffer(totalInstances))
  1774. {
  1775. VertexBuffer* instancingBuffer = renderer_->GetInstancingBuffer();
  1776. unsigned freeIndex = 0;
  1777. void* lockedData = instancingBuffer->Lock(0, totalInstances, LOCK_DISCARD);
  1778. if (lockedData)
  1779. {
  1780. baseQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1781. preAlphaQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1782. if (lightPrepass_)
  1783. gbufferQueue_.SetTransforms(renderer_, lockedData, freeIndex);
  1784. for (List<LightBatchQueue>::Iterator i = lightQueues_.Begin(); i != lightQueues_.End(); ++i)
  1785. {
  1786. for (unsigned j = 0; j < i->shadowSplits_.Size(); ++j)
  1787. i->shadowSplits_[j].shadowBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1788. i->litBatches_.SetTransforms(renderer_, lockedData, freeIndex);
  1789. }
  1790. instancingBuffer->Unlock();
  1791. }
  1792. }
  1793. }
  1794. void View::SetupLightVolumeBatch(Batch& batch)
  1795. {
  1796. Light* light = batch.lightQueue_->light_;
  1797. LightType type = light->GetLightType();
  1798. float lightDist;
  1799. graphics_->SetAlphaTest(false);
  1800. graphics_->SetBlendMode(BLEND_ADD);
  1801. graphics_->SetDepthWrite(false);
  1802. if (type != LIGHT_DIRECTIONAL)
  1803. {
  1804. if (type == LIGHT_POINT)
  1805. lightDist = Sphere(light->GetWorldPosition(), light->GetRange() * 1.25f).DistanceFast(camera_->GetWorldPosition());
  1806. else
  1807. lightDist = light->GetFrustum().Distance(camera_->GetWorldPosition());
  1808. // Draw front faces if not inside light volume
  1809. if (lightDist < camera_->GetNearClip() * 2.0f)
  1810. {
  1811. renderer_->SetCullMode(CULL_CW, camera_);
  1812. graphics_->SetDepthTest(CMP_GREATER);
  1813. }
  1814. else
  1815. {
  1816. renderer_->SetCullMode(CULL_CCW, camera_);
  1817. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1818. }
  1819. }
  1820. else
  1821. {
  1822. // In case the same camera is used for multiple views with differing aspect ratios (not recommended)
  1823. // refresh the directional light's model transform before rendering
  1824. light->GetVolumeTransform(camera_);
  1825. graphics_->SetCullMode(CULL_NONE);
  1826. graphics_->SetDepthTest(CMP_ALWAYS);
  1827. }
  1828. graphics_->SetScissorTest(false);
  1829. graphics_->SetStencilTest(true, CMP_LESS, OP_KEEP, OP_KEEP, OP_KEEP, 0, light->GetLightMask());
  1830. }
  1831. void View::DrawFullscreenQuad(Camera* camera, bool nearQuad)
  1832. {
  1833. Light quadDirLight(context_);
  1834. quadDirLight.SetLightType(LIGHT_DIRECTIONAL);
  1835. Matrix3x4 model(quadDirLight.GetDirLightTransform(camera, nearQuad));
  1836. graphics_->SetCullMode(CULL_NONE);
  1837. graphics_->SetShaderParameter(VSP_MODEL, model);
  1838. graphics_->SetShaderParameter(VSP_VIEWPROJ, camera->GetProjection());
  1839. graphics_->ClearTransformSources();
  1840. renderer_->GetLightGeometry(&quadDirLight)->Draw(graphics_);
  1841. }
  1842. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor)
  1843. {
  1844. graphics_->SetScissorTest(false);
  1845. // During G-buffer rendering, mark opaque pixels to stencil buffer
  1846. bool isGBuffer = &queue == &gbufferQueue_;
  1847. if (!isGBuffer)
  1848. graphics_->SetStencilTest(false);
  1849. // Base instanced
  1850. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
  1851. queue.sortedBaseBatchGroups_.End(); ++i)
  1852. {
  1853. BatchGroup* group = *i;
  1854. if (isGBuffer)
  1855. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  1856. group->Draw(graphics_, renderer_);
  1857. }
  1858. // Base non-instanced
  1859. for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
  1860. {
  1861. Batch* batch = *i;
  1862. if (isGBuffer)
  1863. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  1864. batch->Draw(graphics_, renderer_);
  1865. }
  1866. // Non-base instanced
  1867. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  1868. {
  1869. BatchGroup* group = *i;
  1870. if (useScissor && group->lightQueue_)
  1871. OptimizeLightByScissor(group->lightQueue_->light_);
  1872. if (isGBuffer)
  1873. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, group->lightMask_);
  1874. group->Draw(graphics_, renderer_);
  1875. }
  1876. // Non-base non-instanced
  1877. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1878. {
  1879. Batch* batch = *i;
  1880. if (useScissor)
  1881. {
  1882. if (!batch->isBase_ && batch->lightQueue_)
  1883. OptimizeLightByScissor(batch->lightQueue_->light_);
  1884. else
  1885. graphics_->SetScissorTest(false);
  1886. }
  1887. if (isGBuffer)
  1888. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_KEEP, OP_KEEP, batch->lightMask_);
  1889. batch->Draw(graphics_, renderer_);
  1890. }
  1891. }
  1892. void View::RenderLightBatchQueue(const BatchQueue& queue, Light* light)
  1893. {
  1894. graphics_->SetScissorTest(false);
  1895. graphics_->SetStencilTest(false);
  1896. // Base instanced
  1897. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBaseBatchGroups_.Begin(); i !=
  1898. queue.sortedBaseBatchGroups_.End(); ++i)
  1899. {
  1900. BatchGroup* group = *i;
  1901. group->Draw(graphics_, renderer_);
  1902. }
  1903. // Base non-instanced
  1904. for (PODVector<Batch*>::ConstIterator i = queue.sortedBaseBatches_.Begin(); i != queue.sortedBaseBatches_.End(); ++i)
  1905. {
  1906. Batch* batch = *i;
  1907. batch->Draw(graphics_, renderer_);
  1908. }
  1909. // All base passes have been drawn. Optimize at this point by both stencil volume and scissor
  1910. OptimizeLightByStencil(light);
  1911. OptimizeLightByScissor(light);
  1912. // Non-base instanced
  1913. for (PODVector<BatchGroup*>::ConstIterator i = queue.sortedBatchGroups_.Begin(); i != queue.sortedBatchGroups_.End(); ++i)
  1914. {
  1915. BatchGroup* group = *i;
  1916. group->Draw(graphics_, renderer_);
  1917. }
  1918. // Non-base non-instanced
  1919. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1920. {
  1921. Batch* batch = *i;
  1922. batch->Draw(graphics_, renderer_);
  1923. }
  1924. }
  1925. void View::RenderShadowMap(const LightBatchQueue& queue)
  1926. {
  1927. PROFILE(RenderShadowMap);
  1928. Texture2D* shadowMap = queue.shadowMap_;
  1929. graphics_->SetStencilTest(false);
  1930. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1931. if (!graphics_->GetFallback())
  1932. {
  1933. graphics_->SetColorWrite(false);
  1934. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1935. graphics_->SetDepthStencil(shadowMap);
  1936. graphics_->Clear(CLEAR_DEPTH);
  1937. }
  1938. else
  1939. {
  1940. graphics_->SetColorWrite(true);
  1941. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface());
  1942. graphics_->SetDepthStencil(shadowMap->GetRenderSurface()->GetLinkedDepthBuffer());
  1943. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH, Color::WHITE);
  1944. }
  1945. // Set shadow depth bias
  1946. BiasParameters parameters = queue.light_->GetShadowBias();
  1947. // Adjust the light's constant depth bias according to global shadow map resolution
  1948. /// \todo Should remove this adjustment and find a more flexible solution
  1949. unsigned shadowMapSize = renderer_->GetShadowMapSize();
  1950. if (shadowMapSize <= 512)
  1951. parameters.constantBias_ *= 2.0f;
  1952. else if (shadowMapSize >= 2048)
  1953. parameters.constantBias_ *= 0.5f;
  1954. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1955. // Render each of the splits
  1956. for (unsigned i = 0; i < queue.shadowSplits_.Size(); ++i)
  1957. {
  1958. const ShadowBatchQueue& shadowQueue = queue.shadowSplits_[i];
  1959. if (!shadowQueue.shadowBatches_.IsEmpty())
  1960. {
  1961. graphics_->SetViewport(shadowQueue.shadowViewport_);
  1962. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1963. // However, do not do this for point lights, which need to render continuously across cube faces
  1964. float width = (float)(shadowQueue.shadowViewport_.right_ - shadowQueue.shadowViewport_.left_);
  1965. if (queue.light_->GetLightType() != LIGHT_POINT)
  1966. {
  1967. float zoom = Min(shadowQueue.shadowCamera_->GetZoom(), width - 2.0f / width);
  1968. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1969. graphics_->SetScissorTest(true, zoomRect, false);
  1970. }
  1971. else
  1972. graphics_->SetScissorTest(false);
  1973. // Draw instanced and non-instanced shadow casters
  1974. RenderBatchQueue(shadowQueue.shadowBatches_);
  1975. }
  1976. }
  1977. graphics_->SetColorWrite(true);
  1978. graphics_->SetDepthBias(0.0f, 0.0f);
  1979. }