OcclusionBuffer.cpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2012 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "Log.h"
  26. #include "OcclusionBuffer.h"
  27. #include <cstring>
  28. #include "DebugNew.h"
  29. static const unsigned CLIPMASK_X_POS = 0x1;
  30. static const unsigned CLIPMASK_X_NEG = 0x2;
  31. static const unsigned CLIPMASK_Y_POS = 0x4;
  32. static const unsigned CLIPMASK_Y_NEG = 0x8;
  33. static const unsigned CLIPMASK_Z_POS = 0x10;
  34. static const unsigned CLIPMASK_Z_NEG = 0x20;
  35. OBJECTTYPESTATIC(OcclusionBuffer);
  36. OcclusionBuffer::OcclusionBuffer(Context* context) :
  37. Object(context),
  38. buffer_(0),
  39. width_(0),
  40. height_(0),
  41. numTriangles_(0),
  42. maxTriangles_(OCCLUSION_DEFAULT_MAX_TRIANGLES),
  43. cullMode_(CULL_CCW),
  44. depthHierarchyDirty_(true),
  45. nearClip_(0.0f),
  46. farClip_(0.0f)
  47. {
  48. }
  49. OcclusionBuffer::~OcclusionBuffer()
  50. {
  51. }
  52. bool OcclusionBuffer::SetSize(int width, int height)
  53. {
  54. if (width == width_ && height == height_)
  55. return true;
  56. if (width <= 0 || height <= 0)
  57. return false;
  58. if (!IsPowerOfTwo(width))
  59. {
  60. LOGERROR("Width is not a power of two");
  61. return false;
  62. }
  63. // Force the height to an even amount of pixels for better mip generation
  64. if (height & 1)
  65. ++height;
  66. width_ = width;
  67. height_ = height;
  68. // Reserve extra memory in case 3D clipping is not exact
  69. fullBuffer_ = new int[width * (height + 2) + 2];
  70. buffer_ = fullBuffer_.Get() + width + 1;
  71. mipBuffers_.Clear();
  72. // Build buffers for mip levels
  73. for (;;)
  74. {
  75. width = (width + 1) / 2;
  76. height = (height + 1) / 2;
  77. mipBuffers_.Push(SharedArrayPtr<DepthValue>(new DepthValue[width * height]));
  78. if (width <= OCCLUSION_MIN_SIZE && height <= OCCLUSION_MIN_SIZE)
  79. break;
  80. }
  81. LOGDEBUG("Set occlusion buffer size " + String(width_) + "x" + String(height_) + " with " +
  82. String(mipBuffers_.Size()) + " mip levels");
  83. CalculateViewport();
  84. return true;
  85. }
  86. void OcclusionBuffer::SetView(Camera* camera)
  87. {
  88. if (!camera)
  89. return;
  90. view_ = camera->GetInverseWorldTransform();
  91. projection_ = camera->GetProjection(false);
  92. viewProj_ = projection_ * view_;
  93. nearClip_ = camera->GetNearClip();
  94. farClip_ = camera->GetFarClip();
  95. CalculateViewport();
  96. }
  97. void OcclusionBuffer::SetMaxTriangles(unsigned triangles)
  98. {
  99. maxTriangles_ = triangles;
  100. }
  101. void OcclusionBuffer::SetCullMode(CullMode mode)
  102. {
  103. cullMode_ = mode;
  104. }
  105. void OcclusionBuffer::Reset()
  106. {
  107. numTriangles_ = 0;
  108. }
  109. void OcclusionBuffer::Clear()
  110. {
  111. if (!buffer_)
  112. return;
  113. Reset();
  114. int* dest = buffer_;
  115. int count = width_ * height_;
  116. while (count)
  117. {
  118. *dest++ = 0x7fffffff;
  119. --count;
  120. }
  121. depthHierarchyDirty_ = true;
  122. }
  123. bool OcclusionBuffer::Draw(const Matrix3x4& model, const void* vertexData, unsigned vertexSize, const void* indexData,
  124. unsigned indexSize, unsigned indexStart, unsigned indexCount)
  125. {
  126. const unsigned char* vertexDataChar = (const unsigned char*)vertexData;
  127. Matrix4 modelViewProj = viewProj_ * model;
  128. depthHierarchyDirty_ = true;
  129. // Theoretical max. amount of vertices if each of the 6 clipping planes doubles the triangle count
  130. Vector4 vertices[64 * 3];
  131. // 16-bit indices
  132. if (indexSize == sizeof(unsigned short))
  133. {
  134. const unsigned short* indices = ((const unsigned short*)indexData) + indexStart;
  135. const unsigned short* indicesEnd = indices + indexCount;
  136. while (indices < indicesEnd)
  137. {
  138. if (numTriangles_ >= maxTriangles_)
  139. return false;
  140. const Vector3& v0 = *((const Vector3*)(&vertexDataChar[indices[0] * vertexSize]));
  141. const Vector3& v1 = *((const Vector3*)(&vertexDataChar[indices[1] * vertexSize]));
  142. const Vector3& v2 = *((const Vector3*)(&vertexDataChar[indices[2] * vertexSize]));
  143. vertices[0] = ModelTransform(modelViewProj, v0);
  144. vertices[1] = ModelTransform(modelViewProj, v1);
  145. vertices[2] = ModelTransform(modelViewProj, v2);
  146. DrawTriangle(vertices);
  147. indices += 3;
  148. }
  149. }
  150. else
  151. {
  152. const unsigned* indices = ((const unsigned*)indexData) + indexStart;
  153. const unsigned* indicesEnd = indices + indexCount;
  154. while (indices < indicesEnd)
  155. {
  156. if (numTriangles_ >= maxTriangles_)
  157. return false;
  158. const Vector3& v0 = *((const Vector3*)(&vertexDataChar[indices[0] * vertexSize]));
  159. const Vector3& v1 = *((const Vector3*)(&vertexDataChar[indices[1] * vertexSize]));
  160. const Vector3& v2 = *((const Vector3*)(&vertexDataChar[indices[2] * vertexSize]));
  161. vertices[0] = ModelTransform(modelViewProj, v0);
  162. vertices[1] = ModelTransform(modelViewProj, v1);
  163. vertices[2] = ModelTransform(modelViewProj, v2);
  164. DrawTriangle(vertices);
  165. indices += 3;
  166. }
  167. }
  168. return true;
  169. }
  170. void OcclusionBuffer::BuildDepthHierarchy()
  171. {
  172. if (!buffer_)
  173. return;
  174. // Build the first mip level from the pixel-level data
  175. int width = (width_ + 1) / 2;
  176. int height = (height_ + 1) / 2;
  177. if (mipBuffers_.Size())
  178. {
  179. for (int y = 0; y < height; ++y)
  180. {
  181. int* src = buffer_ + (y * 2) * width_;
  182. DepthValue* dest = mipBuffers_[0].Get() + y * width;
  183. DepthValue* end = dest + width;
  184. if (y * 2 + 1 < height_)
  185. {
  186. int* src2 = src + width_;
  187. while (dest < end)
  188. {
  189. int minUpper = Min(src[0], src[1]);
  190. int minLower = Min(src2[0], src2[1]);
  191. dest->min_ = Min(minUpper, minLower);
  192. int maxUpper = Max(src[0], src[1]);
  193. int maxLower = Max(src2[0], src2[1]);
  194. dest->max_ = Max(maxUpper, maxLower);
  195. src += 2;
  196. src2 += 2;
  197. ++dest;
  198. }
  199. }
  200. else
  201. {
  202. while (dest < end)
  203. {
  204. dest->min_ = Min(src[0], src[1]);
  205. dest->max_ = Max(src[0], src[1]);
  206. src += 2;
  207. ++dest;
  208. }
  209. }
  210. }
  211. }
  212. // Build the rest of the mip levels
  213. for (unsigned i = 1; i < mipBuffers_.Size(); ++i)
  214. {
  215. int prevWidth = width;
  216. int prevHeight = height;
  217. width = (width + 1) / 2;
  218. height = (height + 1) / 2;
  219. for (int y = 0; y < height; ++y)
  220. {
  221. DepthValue* src = mipBuffers_[i - 1].Get() + (y * 2) * prevWidth;
  222. DepthValue* dest = mipBuffers_[i].Get() + y * width;
  223. DepthValue* end = dest + width;
  224. if (y * 2 + 1 < prevHeight)
  225. {
  226. DepthValue* src2 = src + prevWidth;
  227. while (dest < end)
  228. {
  229. int minUpper = Min(src[0].min_, src[1].min_);
  230. int minLower = Min(src2[0].min_, src2[1].min_);
  231. dest->min_ = Min(minUpper, minLower);
  232. int maxUpper = Max(src[0].max_, src[1].max_);
  233. int maxLower = Max(src2[0].max_, src2[1].max_);
  234. dest->max_ = Max(maxUpper, maxLower);
  235. src += 2;
  236. src2 += 2;
  237. ++dest;
  238. }
  239. }
  240. else
  241. {
  242. while (dest < end)
  243. {
  244. dest->min_ = Min(src[0].min_, src[1].min_);
  245. dest->max_ = Max(src[0].max_, src[1].max_);
  246. src += 2;
  247. ++dest;
  248. }
  249. }
  250. }
  251. }
  252. depthHierarchyDirty_ = false;
  253. }
  254. void OcclusionBuffer::ResetUseTimer()
  255. {
  256. useTimer_.Reset();
  257. }
  258. bool OcclusionBuffer::IsVisible(const BoundingBox& worldSpaceBox) const
  259. {
  260. if (!buffer_)
  261. return true;
  262. // Transform corners to projection space
  263. Vector4 vertices[8];
  264. vertices[0] = ModelTransform(viewProj_, worldSpaceBox.min_);
  265. vertices[1] = ModelTransform(viewProj_, Vector3(worldSpaceBox.max_.x_, worldSpaceBox.min_.y_, worldSpaceBox.min_.z_));
  266. vertices[2] = ModelTransform(viewProj_, Vector3(worldSpaceBox.min_.x_, worldSpaceBox.max_.y_, worldSpaceBox.min_.z_));
  267. vertices[3] = ModelTransform(viewProj_, Vector3(worldSpaceBox.max_.x_, worldSpaceBox.max_.y_, worldSpaceBox.min_.z_));
  268. vertices[4] = ModelTransform(viewProj_, Vector3(worldSpaceBox.min_.x_, worldSpaceBox.min_.y_, worldSpaceBox.max_.z_));
  269. vertices[5] = ModelTransform(viewProj_, Vector3(worldSpaceBox.max_.x_, worldSpaceBox.min_.y_, worldSpaceBox.max_.z_));
  270. vertices[6] = ModelTransform(viewProj_, Vector3(worldSpaceBox.min_.x_, worldSpaceBox.max_.y_, worldSpaceBox.max_.z_));
  271. vertices[7] = ModelTransform(viewProj_, worldSpaceBox.max_);
  272. // Apply a far clip relative bias
  273. for (unsigned i = 0; i < 8; ++i)
  274. vertices[i].z_ -= OCCLUSION_RELATIVE_BIAS;
  275. // Transform to screen space. If any of the corners cross the near plane, assume visible
  276. float minX, maxX, minY, maxY, minZ;
  277. if (vertices[0].z_ <= 0.0f)
  278. return true;
  279. Vector3 projected = ViewportTransform(vertices[0]);
  280. minX = maxX = projected.x_;
  281. minY = maxY = projected.y_;
  282. minZ = projected.z_;
  283. // Project the rest
  284. for (unsigned i = 1; i < 8; ++i)
  285. {
  286. if (vertices[i].z_ <= 0.0f)
  287. return true;
  288. projected = ViewportTransform(vertices[i]);
  289. if (projected.x_ < minX) minX = projected.x_;
  290. if (projected.x_ > maxX) maxX = projected.x_;
  291. if (projected.y_ < minY) minY = projected.y_;
  292. if (projected.y_ > maxY) maxY = projected.y_;
  293. if (projected.z_ < minZ) minZ = projected.z_;
  294. }
  295. // Expand the bounding box 1 pixel in each direction to be conservative and correct rasterization offset
  296. IntRect rect(
  297. (int)(minX - 1.5f), (int)(minY - 1.5f),
  298. (int)(maxX + 0.5f), (int)(maxY + 0.5f)
  299. );
  300. // If the rect is outside, let frustum culling handle
  301. if (rect.right_ < 0 || rect.bottom_ < 0)
  302. return true;
  303. if (rect.left_ >= width_ || rect.top_ >= height_)
  304. return true;
  305. // Clipping of rect
  306. if (rect.left_ < 0)
  307. rect.left_ = 0;
  308. if (rect.top_ < 0)
  309. rect.top_ = 0;
  310. if (rect.right_ >= width_)
  311. rect.right_ = width_ - 1;
  312. if (rect.bottom_ >= height_)
  313. rect.bottom_ = height_ - 1;
  314. // Convert depth to integer and apply final bias
  315. int z = (int)(minZ + 0.5f) - OCCLUSION_FIXED_BIAS;
  316. if (!depthHierarchyDirty_)
  317. {
  318. // Start from lowest mip level and check if a conclusive result can be found
  319. for (int i = mipBuffers_.Size() - 1; i >= 0; --i)
  320. {
  321. int shift = i + 1;
  322. int width = width_ >> shift;
  323. int left = rect.left_ >> shift;
  324. int right = rect.right_ >> shift;
  325. DepthValue* buffer = mipBuffers_[i].Get();
  326. DepthValue* row = buffer + (rect.top_ >> shift) * width;
  327. DepthValue* endRow = buffer + (rect.bottom_ >> shift) * width;
  328. bool allOccluded = true;
  329. while (row <= endRow)
  330. {
  331. DepthValue* src = row + left;
  332. DepthValue* end = row + right;
  333. while (src <= end)
  334. {
  335. if (z <= src->min_)
  336. return true;
  337. if (z <= src->max_)
  338. allOccluded = false;
  339. ++src;
  340. }
  341. row += width;
  342. }
  343. if (allOccluded)
  344. return false;
  345. }
  346. }
  347. // If no conclusive result, finally check the pixel-level data
  348. int* row = buffer_ + rect.top_ * width_;
  349. int* endRow = buffer_ + rect.bottom_ * width_;
  350. while (row <= endRow)
  351. {
  352. int* src = row + rect.left_;
  353. int* end = row + rect.right_;
  354. while (src <= end)
  355. {
  356. if (z <= *src)
  357. return true;
  358. ++src;
  359. }
  360. row += width_;
  361. }
  362. return false;
  363. }
  364. unsigned OcclusionBuffer::GetUseTimer()
  365. {
  366. return useTimer_.GetMSec(false);
  367. }
  368. inline Vector4 OcclusionBuffer::ModelTransform(const Matrix4& transform, const Vector3& vertex) const
  369. {
  370. return Vector4(
  371. transform.m00_ * vertex.x_ + transform.m01_ * vertex.y_ + transform.m02_ * vertex.z_ + transform.m03_,
  372. transform.m10_ * vertex.x_ + transform.m11_ * vertex.y_ + transform.m12_ * vertex.z_ + transform.m13_,
  373. transform.m20_ * vertex.x_ + transform.m21_ * vertex.y_ + transform.m22_ * vertex.z_ + transform.m23_,
  374. transform.m30_ * vertex.x_ + transform.m31_ * vertex.y_ + transform.m32_ * vertex.z_ + transform.m33_
  375. );
  376. }
  377. inline Vector3 OcclusionBuffer::ViewportTransform(const Vector4& vertex) const
  378. {
  379. float invW = 1.0f / vertex.w_;
  380. return Vector3(
  381. invW * vertex.x_ * scaleX_ + offsetX_,
  382. invW * vertex.y_ * scaleY_ + offsetY_,
  383. invW * vertex.z_ * OCCLUSION_Z_SCALE
  384. );
  385. }
  386. inline Vector4 OcclusionBuffer::ClipEdge(const Vector4& v0, const Vector4& v1, float d0, float d1) const
  387. {
  388. float t = d0 / (d0 - d1);
  389. return v0 + t * (v1 - v0);
  390. }
  391. inline bool OcclusionBuffer::CheckFacing(const Vector3& v0, const Vector3& v1, const Vector3& v2) const
  392. {
  393. if (cullMode_ == CULL_NONE)
  394. return true;
  395. float aX = v0.x_ - v1.x_;
  396. float aY = v0.y_ - v1.y_;
  397. float bX = v2.x_ - v1.x_;
  398. float bY = v2.y_ - v1.y_;
  399. float signedArea = aX * bY - aY * bX;
  400. if (cullMode_ == CULL_CCW)
  401. return signedArea < 0.0f;
  402. else
  403. return signedArea > 0.0f;
  404. }
  405. void OcclusionBuffer::CalculateViewport()
  406. {
  407. // Add half pixel offset due to 3D frustum culling
  408. scaleX_ = 0.5f * width_;
  409. scaleY_ = -0.5f * height_;
  410. offsetX_ = 0.5f * width_ + 0.5f;
  411. offsetY_ = 0.5f * height_ + 0.5f;
  412. projOffsetScaleX_ = projection_.m00_ * scaleX_;
  413. projOffsetScaleY_ = projection_.m11_ * scaleY_;
  414. }
  415. void OcclusionBuffer::DrawTriangle(Vector4* vertices)
  416. {
  417. unsigned clipMask = 0;
  418. unsigned andClipMask = 0;
  419. Vector3 projected[3];
  420. // Build the clip plane mask for the triangle
  421. for (unsigned i = 0; i < 3; ++i)
  422. {
  423. unsigned vertexClipMask = 0;
  424. if (vertices[i].x_ > vertices[i].w_)
  425. vertexClipMask |= CLIPMASK_X_POS;
  426. if (vertices[i].x_ < -vertices[i].w_)
  427. vertexClipMask |= CLIPMASK_X_NEG;
  428. if (vertices[i].y_ > vertices[i].w_)
  429. vertexClipMask |= CLIPMASK_Y_POS;
  430. if (vertices[i].y_ < -vertices[i].w_)
  431. vertexClipMask |= CLIPMASK_Y_NEG;
  432. if (vertices[i].z_ > vertices[i].w_)
  433. vertexClipMask |= CLIPMASK_Z_POS;
  434. if (vertices[i].z_ < 0.0f)
  435. vertexClipMask |= CLIPMASK_Z_NEG;
  436. clipMask |= vertexClipMask;
  437. if (!i)
  438. andClipMask = vertexClipMask;
  439. else
  440. andClipMask &= vertexClipMask;
  441. }
  442. // If triangle is fully behind any clip plane, can reject quickly
  443. if (andClipMask)
  444. return;
  445. // Check if triangle is fully inside
  446. if (!clipMask)
  447. {
  448. projected[0] = ViewportTransform(vertices[0]);
  449. projected[1] = ViewportTransform(vertices[1]);
  450. projected[2] = ViewportTransform(vertices[2]);
  451. if (CheckFacing(projected[0], projected[1], projected[2]))
  452. DrawTriangle2D(projected);
  453. }
  454. else
  455. {
  456. bool triangles[64];
  457. // Initial triangle
  458. triangles[0] = true;
  459. unsigned numTriangles = 1;
  460. if (clipMask & CLIPMASK_X_POS)
  461. ClipVertices(Vector4(-1.0f, 0.0f, 0.0f, 1.0f), vertices, triangles, numTriangles);
  462. if (clipMask & CLIPMASK_X_NEG)
  463. ClipVertices(Vector4(1.0f, 0.0f, 0.0f, 1.0f), vertices, triangles, numTriangles);
  464. if (clipMask & CLIPMASK_Y_POS)
  465. ClipVertices(Vector4(0.0f, -1.0f, 0.0f, 1.0f), vertices, triangles, numTriangles);
  466. if (clipMask & CLIPMASK_Y_NEG)
  467. ClipVertices(Vector4(0.0f, 1.0f, 0.0f, 1.0f), vertices, triangles, numTriangles);
  468. if (clipMask & CLIPMASK_Z_POS)
  469. ClipVertices(Vector4(0.0f, 0.0f, -1.0f, 1.0f), vertices, triangles, numTriangles);
  470. if (clipMask & CLIPMASK_Z_NEG)
  471. ClipVertices(Vector4(0.0f, 0.0f, 1.0f, 0.0f), vertices, triangles, numTriangles);
  472. // Draw each accepted triangle
  473. for (unsigned i = 0; i < numTriangles; ++i)
  474. {
  475. if (triangles[i])
  476. {
  477. unsigned index = i * 3;
  478. projected[0] = ViewportTransform(vertices[index]);
  479. projected[1] = ViewportTransform(vertices[index + 1]);
  480. projected[2] = ViewportTransform(vertices[index + 2]);
  481. if (CheckFacing(projected[0], projected[1], projected[2]))
  482. DrawTriangle2D(projected);
  483. }
  484. }
  485. }
  486. }
  487. void OcclusionBuffer::ClipVertices(const Vector4& plane, Vector4* vertices, bool* triangles, unsigned& numTriangles)
  488. {
  489. unsigned num = numTriangles;
  490. for (unsigned i = 0; i < num; ++i)
  491. {
  492. if (triangles[i])
  493. {
  494. unsigned index = i * 3;
  495. float d0 = plane.DotProduct(vertices[index]);
  496. float d1 = plane.DotProduct(vertices[index + 1]);
  497. float d2 = plane.DotProduct(vertices[index + 2]);
  498. // If all vertices behind the plane, reject triangle
  499. if (d0 < 0.0f && d1 < 0.0f && d2 < 0.0f)
  500. {
  501. triangles[i] = false;
  502. continue;
  503. }
  504. // If 2 vertices behind the plane, create a new triangle in-place
  505. else if (d0 < 0.0f && d1 < 0.0f)
  506. {
  507. vertices[index] = ClipEdge(vertices[index], vertices[index + 2], d0, d2);
  508. vertices[index + 1] = ClipEdge(vertices[index + 1], vertices[index + 2], d1, d2);
  509. }
  510. else if (d0 < 0.0f && d2 < 0.0f)
  511. {
  512. vertices[index] = ClipEdge(vertices[index], vertices[index + 1], d0, d1);
  513. vertices[index + 2] = ClipEdge(vertices[index + 2], vertices[index + 1], d2, d1);
  514. }
  515. else if (d1 < 0.0f && d2 < 0.0f)
  516. {
  517. vertices[index + 1] = ClipEdge(vertices[index + 1], vertices[index], d1, d0);
  518. vertices[index + 2] = ClipEdge(vertices[index + 2], vertices[index], d2, d0);
  519. }
  520. // 1 vertex behind the plane: create one new triangle, and modify one in-place
  521. else if (d0 < 0.0f)
  522. {
  523. unsigned newIdx = numTriangles * 3;
  524. triangles[numTriangles] = true;
  525. ++numTriangles;
  526. vertices[newIdx] = ClipEdge(vertices[index], vertices[index + 1], d0, d1);
  527. vertices[newIdx + 1] = vertices[index + 1];
  528. vertices[newIdx + 2] = vertices[index] = ClipEdge(vertices[index], vertices[index + 2], d0, d2);
  529. }
  530. else if (d1 < 0.0f)
  531. {
  532. unsigned newIdx = numTriangles * 3;
  533. triangles[numTriangles] = true;
  534. ++numTriangles;
  535. vertices[newIdx + 1] = ClipEdge(vertices[index + 1], vertices[index + 2], d1, d2);
  536. vertices[newIdx + 2] = vertices[index + 2];
  537. vertices[newIdx] = vertices[index + 1] = ClipEdge(vertices[index + 1], vertices[index], d1, d0);
  538. }
  539. else if (d2 < 0.0f)
  540. {
  541. unsigned newIdx = numTriangles * 3;
  542. triangles[numTriangles] = true;
  543. ++numTriangles;
  544. vertices[newIdx + 2] = ClipEdge(vertices[index + 2], vertices[index], d2, d0);
  545. vertices[newIdx] = vertices[index];
  546. vertices[newIdx + 1] = vertices[index + 2] = ClipEdge(vertices[index + 2], vertices[index + 1], d2, d1);
  547. }
  548. }
  549. }
  550. }
  551. // Code based on Chris Hecker's Perspective Texture Mapping series in the Game Developer magazine
  552. // Also available online at http://chrishecker.com/Miscellaneous_Technical_Articles
  553. /// %Gradients of a software rasterized triangle.
  554. struct Gradients
  555. {
  556. /// Construct from vertices.
  557. Gradients(const Vector3* vertices)
  558. {
  559. float invdX = 1.0f / (((vertices[1].x_ - vertices[2].x_) *
  560. (vertices[0].y_ - vertices[2].y_)) -
  561. ((vertices[0].x_ - vertices[2].x_) *
  562. (vertices[1].y_ - vertices[2].y_)));
  563. float invdY = -invdX;
  564. dInvZdX_ = invdX * (((vertices[1].z_ - vertices[2].z_) * (vertices[0].y_ - vertices[2].y_)) -
  565. ((vertices[0].z_ - vertices[2].z_) * (vertices[1].y_ - vertices[2].y_)));
  566. dInvZdY_ = invdY * (((vertices[1].z_ - vertices[2].z_) * (vertices[0].x_ - vertices[2].x_)) -
  567. ((vertices[0].z_ - vertices[2].z_) * (vertices[1].x_ - vertices[2].x_)));
  568. dInvZdXInt_ = (int)dInvZdX_;
  569. }
  570. /// Integer horizontal gradient.
  571. int dInvZdXInt_;
  572. /// Horizontal gradient.
  573. float dInvZdX_;
  574. /// Vertical gradient.
  575. float dInvZdY_;
  576. };
  577. /// %Edge of a software rasterized triangle.
  578. struct Edge
  579. {
  580. /// Construct from gradients and top & bottom vertices.
  581. Edge(const Gradients& gradients, const Vector3& top, const Vector3& bottom, int topY)
  582. {
  583. float slope = (bottom.x_ - top.x_) / (bottom.y_ - top.y_);
  584. float yPreStep = (float)(topY + 1) - top.y_;
  585. float xPreStep = slope * yPreStep;
  586. x_ = (int)((xPreStep + top.x_) * OCCLUSION_X_SCALE + 0.5f);
  587. xStep_ = (int)(slope * OCCLUSION_X_SCALE + 0.5f);
  588. invZ_ = (int)(top.z_ + xPreStep * gradients.dInvZdX_ + yPreStep * gradients.dInvZdY_ + 0.5f);
  589. invZStep_ = (int)(slope * gradients.dInvZdX_ + gradients.dInvZdY_ + 0.5f);
  590. }
  591. /// X coordinate.
  592. int x_;
  593. /// X coordinate step.
  594. int xStep_;
  595. /// Inverse Z.
  596. int invZ_;
  597. /// Inverse Z step.
  598. int invZStep_;
  599. };
  600. void OcclusionBuffer::DrawTriangle2D(const Vector3* vertices)
  601. {
  602. int top, middle, bottom;
  603. bool middleIsRight;
  604. numTriangles_++;
  605. // Sort vertices in Y-direction
  606. if (vertices[0].y_ < vertices[1].y_)
  607. {
  608. if (vertices[2].y_ < vertices[0].y_)
  609. {
  610. top = 2; middle = 0; bottom = 1;
  611. middleIsRight = true;
  612. }
  613. else
  614. {
  615. top = 0;
  616. if (vertices[1].y_ < vertices[2].y_)
  617. {
  618. middle = 1; bottom = 2;
  619. middleIsRight = true;
  620. }
  621. else
  622. {
  623. middle = 2; bottom = 1;
  624. middleIsRight = false;
  625. }
  626. }
  627. }
  628. else
  629. {
  630. if (vertices[2].y_ < vertices[1].y_)
  631. {
  632. top = 2; middle = 1; bottom = 0;
  633. middleIsRight = false;
  634. }
  635. else
  636. {
  637. top = 1;
  638. if (vertices[0].y_ < vertices[2].y_)
  639. {
  640. middle = 0; bottom = 2;
  641. middleIsRight = false;
  642. }
  643. else
  644. {
  645. middle = 2; bottom = 0;
  646. middleIsRight = true;
  647. }
  648. }
  649. }
  650. int topY = (int)vertices[top].y_;
  651. int middleY = (int)vertices[middle].y_;
  652. int bottomY = (int)vertices[bottom].y_;
  653. // Check for degenerate triangle
  654. if (topY == bottomY)
  655. return;
  656. Gradients gradients(vertices);
  657. Edge topToMiddle(gradients, vertices[top], vertices[middle], topY);
  658. Edge topToBottom(gradients, vertices[top], vertices[bottom], topY);
  659. Edge middleToBottom(gradients, vertices[middle], vertices[bottom], middleY);
  660. // The triangle is clockwise, so if bottom > middle then middle is right
  661. if (middleIsRight)
  662. {
  663. // Top half
  664. int* row = buffer_ + topY * width_;
  665. int* endRow = buffer_ + middleY * width_;
  666. while (row < endRow)
  667. {
  668. int invZ = topToBottom.invZ_;
  669. int* dest = row + (topToBottom.x_ >> 16);
  670. int* end = row + (topToMiddle.x_ >> 16);
  671. while (dest < end)
  672. {
  673. if (invZ < *dest)
  674. *dest = invZ;
  675. invZ += gradients.dInvZdXInt_;
  676. ++dest;
  677. }
  678. topToBottom.x_ += topToBottom.xStep_;
  679. topToBottom.invZ_ += topToBottom.invZStep_;
  680. topToMiddle.x_ += topToMiddle.xStep_;
  681. row += width_;
  682. }
  683. // Bottom half
  684. row = buffer_ + middleY * width_;
  685. endRow = buffer_ + bottomY * width_;
  686. while (row < endRow)
  687. {
  688. int invZ = topToBottom.invZ_;
  689. int* dest = row + (topToBottom.x_ >> 16);
  690. int* end = row + (middleToBottom.x_ >> 16);
  691. while (dest < end)
  692. {
  693. if (invZ < *dest)
  694. *dest = invZ;
  695. invZ += gradients.dInvZdXInt_;
  696. ++dest;
  697. }
  698. topToBottom.x_ += topToBottom.xStep_;
  699. topToBottom.invZ_ += topToBottom.invZStep_;
  700. middleToBottom.x_ += middleToBottom.xStep_;
  701. row += width_;
  702. }
  703. }
  704. else
  705. {
  706. // Top half
  707. int* row = buffer_ + topY * width_;
  708. int* endRow = buffer_ + middleY * width_;
  709. while (row < endRow)
  710. {
  711. int invZ = topToMiddle.invZ_;
  712. int* dest = row + (topToMiddle.x_ >> 16);
  713. int* end = row + (topToBottom.x_ >> 16);
  714. while (dest < end)
  715. {
  716. if (invZ < *dest)
  717. *dest = invZ;
  718. invZ += gradients.dInvZdXInt_;
  719. ++dest;
  720. }
  721. topToMiddle.x_ += topToMiddle.xStep_;
  722. topToMiddle.invZ_ += topToMiddle.invZStep_;
  723. topToBottom.x_ += topToBottom.xStep_;
  724. row += width_;
  725. }
  726. // Bottom half
  727. row = buffer_ + middleY * width_;
  728. endRow = buffer_ + bottomY * width_;
  729. while (row < endRow)
  730. {
  731. int invZ = middleToBottom.invZ_;
  732. int* dest = row + (middleToBottom.x_ >> 16);
  733. int* end = row + (topToBottom.x_ >> 16);
  734. while (dest < end)
  735. {
  736. if (invZ < *dest)
  737. *dest = invZ;
  738. invZ += gradients.dInvZdXInt_;
  739. ++dest;
  740. }
  741. middleToBottom.x_ += middleToBottom.xStep_;
  742. middleToBottom.invZ_ += middleToBottom.invZStep_;
  743. topToBottom.x_ += topToBottom.xStep_;
  744. row += width_;
  745. }
  746. }
  747. }