View.cpp 87 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "Camera.h"
  25. #include "DebugRenderer.h"
  26. #include "Geometry.h"
  27. #include "Graphics.h"
  28. #include "Light.h"
  29. #include "Log.h"
  30. #include "Material.h"
  31. #include "OcclusionBuffer.h"
  32. #include "Octree.h"
  33. #include "OctreeQuery.h"
  34. #include "Renderer.h"
  35. #include "Profiler.h"
  36. #include "Scene.h"
  37. #include "ShaderVariation.h"
  38. #include "Technique.h"
  39. #include "Texture2D.h"
  40. #include "TextureCube.h"
  41. #include "Time.h"
  42. #include "VertexBuffer.h"
  43. #include "View.h"
  44. #include "Zone.h"
  45. #include "DebugNew.h"
  46. static const Vector3 directions[] =
  47. {
  48. Vector3::RIGHT,
  49. Vector3::LEFT,
  50. Vector3::UP,
  51. Vector3::DOWN,
  52. Vector3::FORWARD,
  53. Vector3::BACK,
  54. };
  55. OBJECTTYPESTATIC(View);
  56. View::View(Context* context) :
  57. Object(context),
  58. graphics_(GetSubsystem<Graphics>()),
  59. renderer_(GetSubsystem<Renderer>()),
  60. octree_(0),
  61. camera_(0),
  62. zone_(0),
  63. renderTarget_(0),
  64. depthStencil_(0)
  65. {
  66. frame_.camera_ = 0;
  67. }
  68. View::~View()
  69. {
  70. }
  71. bool View::Define(RenderSurface* renderTarget, const Viewport& viewport)
  72. {
  73. if ((!viewport.scene_) || (!viewport.camera_))
  74. return false;
  75. // If scene is loading asynchronously, it is incomplete and should not be rendered
  76. if (viewport.scene_->IsAsyncLoading())
  77. return false;
  78. Octree* octree = viewport.scene_->GetComponent<Octree>();
  79. if (!octree)
  80. return false;
  81. mode_ = graphics_->GetRenderMode();
  82. // In deferred mode, check for the render texture being too large
  83. if ((mode_ != RENDER_FORWARD) && (renderTarget))
  84. {
  85. if ((renderTarget->GetWidth() > graphics_->GetWidth()) || (renderTarget->GetHeight() > graphics_->GetHeight()))
  86. {
  87. // Display message only once per rendertarget, do not spam each frame
  88. if (gBufferErrorDisplayed_.Find(renderTarget) == gBufferErrorDisplayed_.End())
  89. {
  90. gBufferErrorDisplayed_.Insert(renderTarget);
  91. LOGERROR("Render texture is larger than the G-buffer, can not render");
  92. }
  93. return false;
  94. }
  95. }
  96. octree_ = octree;
  97. camera_ = viewport.camera_;
  98. renderTarget_ = renderTarget;
  99. if (!renderTarget)
  100. depthStencil_ = 0;
  101. else
  102. {
  103. // In Direct3D9 deferred rendering, always use the system depth stencil for the whole time
  104. // to ensure it is as large as the G-buffer
  105. #ifdef USE_OPENGL
  106. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  107. #else
  108. if (mode_ == RENDER_FORWARD)
  109. depthStencil_ = renderTarget->GetLinkedDepthBuffer();
  110. else
  111. depthStencil_ = 0;
  112. #endif
  113. }
  114. zone_ = renderer_->GetDefaultZone();
  115. // Validate the rect and calculate size. If zero rect, use whole render target size
  116. int rtWidth = renderTarget ? renderTarget->GetWidth() : graphics_->GetWidth();
  117. int rtHeight = renderTarget ? renderTarget->GetHeight() : graphics_->GetHeight();
  118. if (viewport.rect_ != IntRect::ZERO)
  119. {
  120. screenRect_.left_ = Clamp(viewport.rect_.left_, 0, rtWidth - 1);
  121. screenRect_.top_ = Clamp(viewport.rect_.top_, 0, rtHeight - 1);
  122. screenRect_.right_ = Clamp(viewport.rect_.right_, screenRect_.left_ + 1, rtWidth);
  123. screenRect_.bottom_ = Clamp(viewport.rect_.bottom_, screenRect_.top_ + 1, rtHeight);
  124. }
  125. else
  126. screenRect_ = IntRect(0, 0, rtWidth, rtHeight);
  127. width_ = screenRect_.right_ - screenRect_.left_;
  128. height_ = screenRect_.bottom_ - screenRect_.top_;
  129. // Set possible quality overrides from the camera
  130. drawShadows_ = renderer_->GetDrawShadows();
  131. materialQuality_ = renderer_->GetMaterialQuality();
  132. maxOccluderTriangles_ = renderer_->GetMaxOccluderTriangles();
  133. unsigned viewOverrideFlags = camera_->GetViewOverrideFlags();
  134. if (viewOverrideFlags & VOF_LOW_MATERIAL_QUALITY)
  135. materialQuality_ = QUALITY_LOW;
  136. if (viewOverrideFlags & VOF_DISABLE_SHADOWS)
  137. drawShadows_ = false;
  138. if (viewOverrideFlags & VOF_DISABLE_OCCLUSION)
  139. maxOccluderTriangles_ = 0;
  140. return true;
  141. }
  142. void View::Update(const FrameInfo& frame)
  143. {
  144. if ((!camera_) || (!octree_))
  145. return;
  146. frame_.camera_ = camera_;
  147. frame_.timeStep_ = frame.timeStep_;
  148. frame_.frameNumber_ = frame.frameNumber_;
  149. frame_.viewSize_ = IntVector2(width_, height_);
  150. // Clear old light scissor cache, geometry, light, occluder & batch lists
  151. lightScissorCache_.Clear();
  152. geometries_.Clear();
  153. geometryDepthBounds_.Clear();
  154. lights_.Clear();
  155. occluders_.Clear();
  156. shadowOccluders_.Clear();
  157. gBufferQueue_.Clear();
  158. baseQueue_.Clear();
  159. extraQueue_.Clear();
  160. transparentQueue_.Clear();
  161. noShadowLightQueue_.Clear();
  162. lightQueues_.Clear();
  163. // Set automatic aspect ratio if required
  164. if (camera_->GetAutoAspectRatio())
  165. camera_->SetAspectRatio((float)frame_.viewSize_.x_ / (float)frame_.viewSize_.y_);
  166. // Reset projection jitter if was used last frame
  167. camera_->SetProjectionOffset(Vector2::ZERO);
  168. // Reset shadow map use count; they can be reused between views as each is rendered completely at a time
  169. renderer_->ResetShadowMapUseCount();
  170. GetDrawables();
  171. GetBatches();
  172. }
  173. void View::Render()
  174. {
  175. if ((!octree_) || (!camera_))
  176. return;
  177. // Forget parameter sources from the previous view
  178. graphics_->ClearParameterSources();
  179. // If stream offset is supported, write all instance transforms to a single large buffer
  180. // Else we must lock the instance buffer for each batch group
  181. if ((renderer_->GetDynamicInstancing()) && (graphics_->GetStreamOffsetSupport()))
  182. PrepareInstancingBuffer();
  183. // It is possible, though not recommended, that the same camera is used for multiple main views. Set automatic aspect ratio
  184. // again to ensure correct projection will be used
  185. if (camera_->GetAutoAspectRatio())
  186. camera_->SetAspectRatio((float)(screenRect_.right_ - screenRect_.left_) / (float)(screenRect_.bottom_ - screenRect_.top_));
  187. // Set the "view texture" to ensure the rendertarget will not be bound as a texture during rendering
  188. if (renderTarget_)
  189. graphics_->SetViewTexture(renderTarget_->GetParentTexture());
  190. else
  191. graphics_->SetViewTexture(0);
  192. graphics_->SetFillMode(FILL_SOLID);
  193. // Calculate view-global shader parameters
  194. CalculateShaderParameters();
  195. // If not reusing shadowmaps, render all of them first
  196. if (!renderer_->reuseShadowMaps_)
  197. {
  198. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  199. {
  200. LightBatchQueue& queue = lightQueues_[i];
  201. if (queue.light_->GetShadowMap())
  202. RenderShadowMap(queue);
  203. }
  204. }
  205. if (mode_ == RENDER_FORWARD)
  206. RenderBatchesForward();
  207. else
  208. RenderBatchesDeferred();
  209. graphics_->SetViewTexture(0);
  210. // If this is a main view, draw the associated debug geometry now
  211. if (!renderTarget_)
  212. {
  213. Scene* scene = static_cast<Scene*>(octree_->GetNode());
  214. if (scene)
  215. {
  216. DebugRenderer* debug = scene->GetComponent<DebugRenderer>();
  217. if (debug)
  218. {
  219. debug->SetView(camera_);
  220. debug->Render();
  221. }
  222. }
  223. }
  224. // "Forget" the camera, octree and zone after rendering
  225. camera_ = 0;
  226. octree_ = 0;
  227. zone_ = 0;
  228. frame_.camera_ = 0;
  229. }
  230. void View::GetDrawables()
  231. {
  232. PROFILE(GetDrawables);
  233. Vector3 cameraPos = camera_->GetWorldPosition();
  234. // Get zones & find the zone camera is in
  235. PODVector<Zone*> zones;
  236. PointOctreeQuery query(reinterpret_cast<PODVector<Drawable*>& >(zones), cameraPos, DRAWABLE_ZONE);
  237. octree_->GetDrawables(query);
  238. int highestZonePriority = M_MIN_INT;
  239. for (unsigned i = 0; i < zones.Size(); ++i)
  240. {
  241. Zone* zone = zones[i];
  242. if ((zone->IsInside(cameraPos)) && (zone->GetPriority() > highestZonePriority))
  243. {
  244. zone_ = zone;
  245. highestZonePriority = zone->GetPriority();
  246. }
  247. }
  248. // If occlusion in use, get & render the occluders, then build the depth buffer hierarchy
  249. bool useOcclusion = false;
  250. OcclusionBuffer* buffer = 0;
  251. if (maxOccluderTriangles_ > 0)
  252. {
  253. FrustumOctreeQuery query(occluders_, camera_->GetFrustum(), DRAWABLE_GEOMETRY, true, false);
  254. octree_->GetDrawables(query);
  255. UpdateOccluders(occluders_, camera_);
  256. if (occluders_.Size())
  257. {
  258. buffer = renderer_->GetOrCreateOcclusionBuffer(camera_, maxOccluderTriangles_);
  259. DrawOccluders(buffer, occluders_);
  260. buffer->BuildDepthHierarchy();
  261. useOcclusion = true;
  262. }
  263. }
  264. if (!useOcclusion)
  265. {
  266. // Get geometries & lights without occlusion
  267. FrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  268. octree_->GetDrawables(query);
  269. }
  270. else
  271. {
  272. // Get geometries & lights using occlusion
  273. OccludedFrustumOctreeQuery query(tempDrawables_, camera_->GetFrustum(), buffer, DRAWABLE_GEOMETRY | DRAWABLE_LIGHT);
  274. octree_->GetDrawables(query);
  275. }
  276. // Sort into geometries & lights, and build visible scene bounding boxes in world and view space
  277. sceneBox_.min_ = sceneBox_.max_ = Vector3::ZERO;
  278. sceneBox_.defined_ = false;
  279. sceneViewBox_.min_ = sceneViewBox_.max_ = Vector3::ZERO;
  280. sceneViewBox_.defined_ = false;
  281. Matrix3x4 view(camera_->GetInverseWorldTransform());
  282. unsigned cameraViewMask = camera_->GetViewMask();
  283. for (unsigned i = 0; i < tempDrawables_.Size(); ++i)
  284. {
  285. Drawable* drawable = tempDrawables_[i];
  286. // Check view mask
  287. if (!(cameraViewMask & drawable->GetViewMask()))
  288. continue;
  289. drawable->UpdateDistance(frame_);
  290. // If draw distance non-zero, check it
  291. float maxDistance = drawable->GetDrawDistance();
  292. if ((maxDistance > 0.0f) && (drawable->GetDistance() > maxDistance))
  293. continue;
  294. unsigned flags = drawable->GetDrawableFlags();
  295. if (flags & DRAWABLE_GEOMETRY)
  296. {
  297. drawable->ClearBasePass();
  298. drawable->MarkInView(frame_);
  299. drawable->UpdateGeometry(frame_);
  300. // Expand the scene bounding boxes
  301. const BoundingBox& geomBox = drawable->GetWorldBoundingBox();
  302. BoundingBox geoview_Box = geomBox.Transformed(view);
  303. sceneBox_.Merge(geomBox);
  304. sceneViewBox_.Merge(geoview_Box);
  305. // Store depth info to speed up split directional light queries
  306. GeometryDepthBounds bounds;
  307. bounds.min_ = geoview_Box.min_.z_;
  308. bounds.max_ = geoview_Box.max_.z_;
  309. geometryDepthBounds_.Push(bounds);
  310. geometries_.Push(drawable);
  311. }
  312. else if (flags & DRAWABLE_LIGHT)
  313. {
  314. Light* light = static_cast<Light*>(drawable);
  315. // Skip if light is culled by the zone
  316. if (!(light->GetViewMask() & zone_->GetViewMask()))
  317. continue;
  318. light->MarkInView(frame_);
  319. lights_.Push(light);
  320. }
  321. }
  322. // Sort the lights to brightest/closest first
  323. for (unsigned i = 0; i < lights_.Size(); ++i)
  324. lights_[i]->SetIntensitySortValue(cameraPos);
  325. Sort(lights_.Begin(), lights_.End(), CompareDrawables);
  326. }
  327. void View::GetBatches()
  328. {
  329. HashSet<LitTransparencyCheck> litTransparencies;
  330. HashSet<Drawable*> maxLightsDrawables;
  331. Map<Light*, unsigned> lightQueueIndex;
  332. // Go through lights
  333. {
  334. PROFILE_MULTIPLE(GetLightBatches, lights_.Size());
  335. unsigned lightQueueCount = 0;
  336. for (unsigned i = 0; i < lights_.Size(); ++i)
  337. {
  338. Light* light = lights_[i];
  339. unsigned splits = ProcessLight(light);
  340. if (!splits)
  341. continue;
  342. // Prepare lit object + shadow caster queues for each split
  343. if (lightQueues_.Size() < lightQueueCount + splits)
  344. lightQueues_.Resize(lightQueueCount + splits);
  345. unsigned prevLightQueueCount = lightQueueCount;
  346. for (unsigned j = 0; j < splits; ++j)
  347. {
  348. Light* SplitLight = splitLights_[j];
  349. LightBatchQueue& lightQueue = lightQueues_[lightQueueCount];
  350. lightQueue.light_ = SplitLight;
  351. lightQueue.shadowBatches_.Clear();
  352. lightQueue.litBatches_.Clear();
  353. lightQueue.volumeBatches_.Clear();
  354. lightQueue.lastSplit_ = false;
  355. // Loop through shadow casters
  356. Camera* shadowCamera = SplitLight->GetShadowCamera();
  357. for (unsigned k = 0; k < shadowCasters_[j].Size(); ++k)
  358. {
  359. Drawable* drawable = shadowCasters_[j][k];
  360. unsigned numBatches = drawable->GetNumBatches();
  361. for (unsigned l = 0; l < numBatches; ++l)
  362. {
  363. Batch shadowBatch;
  364. drawable->GetBatch(frame_, l, shadowBatch);
  365. Technique* tech = GetTechnique(drawable, shadowBatch.material_);
  366. if ((!shadowBatch.geometry_) || (!tech))
  367. continue;
  368. Pass* pass = tech->GetPass(PASS_SHADOW);
  369. // Skip if material has no shadow pass
  370. if (!pass)
  371. continue;
  372. // Fill the rest of the batch
  373. shadowBatch.camera_ = shadowCamera;
  374. shadowBatch.distance_ = shadowCamera->GetDistance(drawable->GetWorldPosition());
  375. shadowBatch.light_ = SplitLight;
  376. shadowBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  377. renderer_->SetBatchShaders(shadowBatch, tech, pass);
  378. lightQueue.shadowBatches_.AddBatch(shadowBatch);
  379. }
  380. }
  381. // Loop through lit geometries
  382. if (litGeometries_[j].Size())
  383. {
  384. bool storeLightQueue = true;
  385. for (unsigned k = 0; k < litGeometries_[j].Size(); ++k)
  386. {
  387. Drawable* drawable = litGeometries_[j][k];
  388. // If drawable limits maximum lights, only record the light, and check maximum count / build batches later
  389. if (!drawable->GetMaxLights())
  390. GetLitBatches(drawable, light, SplitLight, &lightQueue, litTransparencies);
  391. else
  392. {
  393. drawable->AddLight(SplitLight);
  394. maxLightsDrawables.Insert(drawable);
  395. }
  396. }
  397. // Store the light queue, and light volume batch in deferred mode
  398. if (mode_ != RENDER_FORWARD)
  399. {
  400. Batch volumeBatch;
  401. volumeBatch.geometry_ = renderer_->GetLightGeometry(SplitLight);
  402. volumeBatch.worldTransform_ = &SplitLight->GetVolumeTransform(*camera_);
  403. volumeBatch.overrideView_ = SplitLight->GetLightType() == LIGHT_DIRECTIONAL;
  404. volumeBatch.camera_ = camera_;
  405. volumeBatch.light_ = SplitLight;
  406. volumeBatch.distance_ = SplitLight->GetDistance();
  407. renderer_->SetLightVolumeShaders(volumeBatch);
  408. // If light is a split point light, it must be treated as shadowed in any case for correct stencil clearing
  409. if ((SplitLight->GetShadowMap()) || (SplitLight->GetLightType() == LIGHT_SPLITPOINT))
  410. lightQueue.volumeBatches_.Push(volumeBatch);
  411. else
  412. {
  413. storeLightQueue = false;
  414. noShadowLightQueue_.AddBatch(volumeBatch, true);
  415. }
  416. }
  417. if (storeLightQueue)
  418. {
  419. lightQueueIndex[SplitLight] = lightQueueCount;
  420. ++lightQueueCount;
  421. }
  422. }
  423. }
  424. // Mark the last split
  425. if (lightQueueCount != prevLightQueueCount)
  426. lightQueues_[lightQueueCount - 1].lastSplit_ = true;
  427. }
  428. // Resize the light queue vector now that final size is known
  429. lightQueues_.Resize(lightQueueCount);
  430. }
  431. // Process drawables with limited light count
  432. if (maxLightsDrawables.Size())
  433. {
  434. PROFILE(GetMaxLightsBatches);
  435. for (HashSet<Drawable*>::Iterator i = maxLightsDrawables.Begin(); i != maxLightsDrawables.End(); ++i)
  436. {
  437. Drawable* drawable = *i;
  438. drawable->LimitLights();
  439. const PODVector<Light*>& lights = drawable->GetLights();
  440. for (unsigned i = 0; i < lights.Size(); ++i)
  441. {
  442. Light* SplitLight = lights[i];
  443. Light* light = SplitLight->GetOriginalLight();
  444. if (!light)
  445. light = SplitLight;
  446. // Find the correct light queue again
  447. LightBatchQueue* queue = 0;
  448. Map<Light*, unsigned>::Iterator j = lightQueueIndex.Find(SplitLight);
  449. if (j != lightQueueIndex.End())
  450. queue = &lightQueues_[j->second_];
  451. GetLitBatches(drawable, light, SplitLight, queue, litTransparencies);
  452. }
  453. }
  454. }
  455. // Go through geometries for base pass batches
  456. {
  457. PROFILE(GetBaseBatches);
  458. for (unsigned i = 0; i < geometries_.Size(); ++i)
  459. {
  460. Drawable* drawable = geometries_[i];
  461. unsigned numBatches = drawable->GetNumBatches();
  462. for (unsigned j = 0; j < numBatches; ++j)
  463. {
  464. Batch baseBatch;
  465. drawable->GetBatch(frame_, j, baseBatch);
  466. Technique* tech = GetTechnique(drawable, baseBatch.material_);
  467. if ((!baseBatch.geometry_) || (!tech))
  468. continue;
  469. // Check here if the material technique refers to a render target texture with camera(s) attached
  470. // Only check this for the main view (null rendertarget)
  471. if ((!renderTarget_) && (baseBatch.material_) && (baseBatch.material_->GetAuxViewFrameNumber() != frame_.frameNumber_))
  472. CheckMaterialForAuxView(baseBatch.material_);
  473. // If object already has a lit base pass, can skip the unlit base pass
  474. if (drawable->HasBasePass(j))
  475. continue;
  476. // Fill the rest of the batch
  477. baseBatch.camera_ = camera_;
  478. baseBatch.distance_ = drawable->GetDistance();
  479. Pass* pass = 0;
  480. // In deferred mode, check for a G-buffer batch first
  481. if (mode_ != RENDER_FORWARD)
  482. {
  483. pass = tech->GetPass(PASS_GBUFFER);
  484. if (pass)
  485. {
  486. renderer_->SetBatchShaders(baseBatch, tech, pass);
  487. baseBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  488. gBufferQueue_.AddBatch(baseBatch);
  489. // Check also for an additional pass (possibly for emissive)
  490. pass = tech->GetPass(PASS_EXTRA);
  491. if (pass)
  492. {
  493. renderer_->SetBatchShaders(baseBatch, tech, pass);
  494. baseQueue_.AddBatch(baseBatch);
  495. }
  496. continue;
  497. }
  498. }
  499. // Then check for forward rendering base pass
  500. pass = tech->GetPass(PASS_BASE);
  501. if (pass)
  502. {
  503. renderer_->SetBatchShaders(baseBatch, tech, pass);
  504. if (pass->GetBlendMode() == BLEND_REPLACE)
  505. {
  506. baseBatch.hasPriority_ = (!pass->GetAlphaTest()) && (!pass->GetAlphaMask());
  507. baseQueue_.AddBatch(baseBatch);
  508. }
  509. else
  510. {
  511. baseBatch.hasPriority_ = true;
  512. transparentQueue_.AddBatch(baseBatch, true);
  513. }
  514. continue;
  515. }
  516. else
  517. {
  518. // If no base pass, finally check for extra / custom pass
  519. pass = tech->GetPass(PASS_EXTRA);
  520. if (pass)
  521. {
  522. baseBatch.hasPriority_ = false;
  523. renderer_->SetBatchShaders(baseBatch, tech, pass);
  524. extraQueue_.AddBatch(baseBatch);
  525. }
  526. }
  527. }
  528. }
  529. }
  530. // All batches have been collected. Sort them now
  531. SortBatches();
  532. }
  533. void View::GetLitBatches(Drawable* drawable, Light* light, Light* SplitLight, LightBatchQueue* lightQueue,
  534. HashSet<LitTransparencyCheck>& litTransparencies)
  535. {
  536. bool splitPointLight = SplitLight->GetLightType() == LIGHT_SPLITPOINT;
  537. // Whether to allow shadows for transparencies, or for forward lit objects in deferred mode
  538. bool allowShadows = (!renderer_->reuseShadowMaps_) && (!splitPointLight);
  539. unsigned numBatches = drawable->GetNumBatches();
  540. for (unsigned i = 0; i < numBatches; ++i)
  541. {
  542. Batch litBatch;
  543. drawable->GetBatch(frame_, i, litBatch);
  544. Technique* tech = GetTechnique(drawable, litBatch.material_);
  545. if ((!litBatch.geometry_) || (!tech))
  546. continue;
  547. // If material uses opaque G-buffer rendering, skip
  548. if ((mode_ != RENDER_FORWARD) && (tech->HasPass(PASS_GBUFFER)))
  549. continue;
  550. Pass* pass = 0;
  551. bool priority = false;
  552. // For directional light, check for lit base pass
  553. if (SplitLight->GetLightType() == LIGHT_DIRECTIONAL)
  554. {
  555. if (!drawable->HasBasePass(i))
  556. {
  557. pass = tech->GetPass(PASS_LITBASE);
  558. if (pass)
  559. {
  560. priority = true;
  561. drawable->SetBasePass(i);
  562. }
  563. }
  564. }
  565. // If no first light pass, get ordinary light pass
  566. if (!pass)
  567. pass = tech->GetPass(PASS_LIGHT);
  568. // Skip if material does not receive light at all
  569. if (!pass)
  570. continue;
  571. // Fill the rest of the batch
  572. litBatch.camera_ = camera_;
  573. litBatch.distance_ = drawable->GetDistance();
  574. litBatch.light_ = SplitLight;
  575. litBatch.hasPriority_ = priority;
  576. // Check from the ambient pass whether the object is opaque
  577. Pass* ambientPass = tech->GetPass(PASS_BASE);
  578. if ((!ambientPass) || (ambientPass->GetBlendMode() == BLEND_REPLACE))
  579. {
  580. if (mode_ == RENDER_FORWARD)
  581. {
  582. if (lightQueue)
  583. {
  584. renderer_->SetBatchShaders(litBatch, tech, pass);
  585. lightQueue->litBatches_.AddBatch(litBatch);
  586. }
  587. }
  588. else
  589. {
  590. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  591. baseQueue_.AddBatch(litBatch);
  592. }
  593. }
  594. else
  595. {
  596. if (splitPointLight)
  597. {
  598. // Check if already lit
  599. LitTransparencyCheck check(light, drawable, i);
  600. if (litTransparencies.Find(check) != litTransparencies.End())
  601. continue;
  602. // Use the original light instead of the split one, to choose correct scissor
  603. litBatch.light_ = light;
  604. litTransparencies.Insert(check);
  605. }
  606. renderer_->SetBatchShaders(litBatch, tech, pass, allowShadows);
  607. transparentQueue_.AddBatch(litBatch, true);
  608. }
  609. }
  610. }
  611. void View::RenderBatchesForward()
  612. {
  613. {
  614. // Render opaque objects' base passes
  615. PROFILE(RenderBasePass);
  616. graphics_->SetColorWrite(true);
  617. graphics_->SetStencilTest(false);
  618. graphics_->SetRenderTarget(0, renderTarget_);
  619. graphics_->SetDepthStencil(depthStencil_);
  620. graphics_->SetViewport(screenRect_);
  621. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL, zone_->GetFogColor());
  622. RenderBatchQueue(baseQueue_);
  623. }
  624. {
  625. // Render shadow maps + opaque objects' shadowed additive lighting
  626. PROFILE(RenderLights);
  627. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  628. {
  629. LightBatchQueue& queue = lightQueues_[i];
  630. // If reusing shadowmaps, render each of them before the lit batches
  631. if ((renderer_->reuseShadowMaps_) && (queue.light_->GetShadowMap()))
  632. RenderShadowMap(queue);
  633. graphics_->SetRenderTarget(0, renderTarget_);
  634. graphics_->SetDepthStencil(depthStencil_);
  635. graphics_->SetViewport(screenRect_);
  636. RenderForwardLightBatchQueue(queue.litBatches_, queue.light_);
  637. // Clear the stencil buffer after the last split
  638. if (queue.lastSplit_)
  639. {
  640. LightType type = queue.light_->GetLightType();
  641. if ((type == LIGHT_SPLITPOINT) || (type == LIGHT_DIRECTIONAL))
  642. DrawSplitLightToStencil(*camera_, queue.light_, true);
  643. }
  644. }
  645. }
  646. {
  647. // Render extra / custom passes
  648. PROFILE(RenderExtraPass);
  649. graphics_->SetRenderTarget(0, renderTarget_);
  650. graphics_->SetDepthStencil(depthStencil_);
  651. graphics_->SetViewport(screenRect_);
  652. RenderBatchQueue(extraQueue_);
  653. }
  654. {
  655. // Render transparent objects last (both base passes & additive lighting)
  656. PROFILE(RenderTransparent);
  657. RenderBatchQueue(transparentQueue_, true);
  658. }
  659. }
  660. void View::RenderBatchesDeferred()
  661. {
  662. Texture2D* diffBuffer = graphics_->GetDiffBuffer();
  663. Texture2D* normalBuffer = graphics_->GetNormalBuffer();
  664. Texture2D* depthBuffer = graphics_->GetDepthBuffer();
  665. // Check for deferred antialiasing (edge filter) in deferred mode. Only use it on the main view (null rendertarget)
  666. bool edgeFilter = (!renderTarget_) && (graphics_->GetMultiSample() > 1);
  667. RenderSurface* renderBuffer = edgeFilter ? graphics_->GetScreenBuffer()->GetRenderSurface() : renderTarget_;
  668. // Calculate shader parameters needed only in deferred rendering
  669. Vector3 nearVector, farVector;
  670. camera_->GetFrustumSize(nearVector, farVector);
  671. Vector4 viewportParams(farVector.x_, farVector.y_, farVector.z_, 0.0f);
  672. float gBufferWidth = (float)diffBuffer->GetWidth();
  673. float gBufferHeight = (float)diffBuffer->GetHeight();
  674. float widthRange = 0.5f * width_ / gBufferWidth;
  675. float heightRange = 0.5f * height_ / gBufferHeight;
  676. #ifdef USE_OPENGL
  677. Vector4 bufferUVOffset(((float)screenRect_.left_) / gBufferWidth + widthRange,
  678. ((float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  679. // Hardware depth is non-linear in perspective views, so calculate the depth reconstruction parameters
  680. float farClip = camera_->GetFarClip();
  681. float nearClip = camera_->GetNearClip();
  682. Vector4 depthReconstruct = Vector4::ZERO;
  683. depthReconstruct.x_ = farClip / (farClip - nearClip);
  684. depthReconstruct.y_ = -nearClip / (farClip - nearClip);
  685. shaderParameters_[PSP_DEPTHRECONSTRUCT] = depthReconstruct;
  686. #else
  687. Vector4 bufferUVOffset((0.5f + (float)screenRect_.left_) / gBufferWidth + widthRange,
  688. (0.5f + (float)screenRect_.top_) / gBufferHeight + heightRange, widthRange, heightRange);
  689. #endif
  690. Vector4 viewportSize((float)screenRect_.left_ / gBufferWidth, (float)screenRect_.top_ / gBufferHeight,
  691. (float)screenRect_.right_ / gBufferWidth, (float)screenRect_.bottom_ / gBufferHeight);
  692. shaderParameters_[VSP_FRUSTUMSIZE] = viewportParams;
  693. shaderParameters_[VSP_GBUFFEROFFSETS] = bufferUVOffset;
  694. shaderParameters_[PSP_GBUFFEROFFSETS] = bufferUVOffset;
  695. shaderParameters_[PSP_GBUFFERVIEWPORT] = viewportSize;
  696. {
  697. // Clear and render the G-buffer
  698. PROFILE(RenderGBuffer);
  699. graphics_->SetColorWrite(true);
  700. graphics_->SetScissorTest(false);
  701. graphics_->SetStencilTest(false);
  702. #ifdef USE_OPENGL
  703. // On OpenGL, clear the diffuse and depth buffers normally
  704. graphics_->SetRenderTarget(0, diffBuffer);
  705. graphics_->SetDepthStencil(depthBuffer);
  706. graphics_->Clear(CLEAR_COLOR | CLEAR_DEPTH | CLEAR_STENCIL);
  707. graphics_->SetRenderTarget(1, normalBuffer);
  708. #else
  709. // On Direct3D9, clear only depth and stencil at first (fillrate optimization)
  710. graphics_->SetRenderTarget(0, diffBuffer);
  711. graphics_->SetRenderTarget(1, normalBuffer);
  712. graphics_->SetRenderTarget(2, depthBuffer);
  713. graphics_->SetDepthStencil(depthStencil_);
  714. graphics_->SetViewport(screenRect_);
  715. graphics_->Clear(CLEAR_DEPTH | CLEAR_STENCIL);
  716. #endif
  717. RenderBatchQueue(gBufferQueue_);
  718. graphics_->SetAlphaTest(false);
  719. graphics_->SetBlendMode(BLEND_REPLACE);
  720. #ifndef USE_OPENGL
  721. // On Direct3D9, clear now the parts of G-Buffer that were not rendered into
  722. graphics_->SetDepthTest(CMP_LESSEQUAL);
  723. graphics_->SetDepthWrite(false);
  724. graphics_->ResetRenderTarget(2);
  725. graphics_->SetRenderTarget(1, depthBuffer);
  726. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("GBufferFill"),
  727. renderer_->GetPixelShader("GBufferFill"), false, shaderParameters_);
  728. #endif
  729. }
  730. {
  731. PROFILE(RenderAmbientQuad);
  732. // Render ambient color & fog. On OpenGL the depth buffer will be copied now
  733. graphics_->SetDepthTest(CMP_ALWAYS);
  734. graphics_->SetRenderTarget(0, renderBuffer);
  735. graphics_->ResetRenderTarget(1);
  736. #ifdef USE_OPENGL
  737. graphics_->SetDepthWrite(true);
  738. #else
  739. graphics_->ResetRenderTarget(2);
  740. #endif
  741. graphics_->SetDepthStencil(depthStencil_);
  742. graphics_->SetViewport(screenRect_);
  743. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  744. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  745. String pixelShaderName = "Ambient";
  746. #ifdef USE_OPENGL
  747. if (camera_->IsOrthographic())
  748. pixelShaderName += "Ortho";
  749. // On OpenGL, set up a stencil operation to reset the stencil during ambient quad rendering
  750. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_ZERO, OP_KEEP, OP_KEEP);
  751. #endif
  752. renderer_->DrawFullScreenQuad(*camera_, renderer_->GetVertexShader("Ambient"),
  753. renderer_->GetPixelShader("Ambient"), false, shaderParameters_);
  754. #ifdef USE_OPENGL
  755. graphics_->SetStencilTest(false);
  756. #endif
  757. }
  758. {
  759. // Render lights
  760. PROFILE(RenderLights);
  761. // Shadowed lights
  762. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  763. {
  764. LightBatchQueue& queue = lightQueues_[i];
  765. // If reusing shadowmaps, render each of them before the lit batches
  766. if ((renderer_->reuseShadowMaps_) && (queue.light_->GetShadowMap()))
  767. RenderShadowMap(queue);
  768. // Light volume batches are not sorted as there should be only one of them
  769. if (queue.volumeBatches_.Size())
  770. {
  771. graphics_->SetRenderTarget(0, renderBuffer);
  772. graphics_->SetDepthStencil(depthStencil_);
  773. graphics_->SetViewport(screenRect_);
  774. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  775. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  776. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  777. for (unsigned j = 0; j < queue.volumeBatches_.Size(); ++j)
  778. {
  779. renderer_->SetupLightBatch(queue.volumeBatches_[j]);
  780. queue.volumeBatches_[j].Draw(graphics_, shaderParameters_);
  781. }
  782. // If was the last split of a split point light, clear the stencil by rendering the point light again
  783. if ((queue.lastSplit_) && (queue.light_->GetLightType() == LIGHT_SPLITPOINT))
  784. DrawSplitLightToStencil(*camera_, queue.light_, true);
  785. }
  786. }
  787. // Non-shadowed lights
  788. if (noShadowLightQueue_.sortedBatches_.Size())
  789. {
  790. graphics_->SetRenderTarget(0, renderBuffer);
  791. graphics_->SetDepthStencil(depthStencil_);
  792. graphics_->SetViewport(screenRect_);
  793. graphics_->SetTexture(TU_DIFFBUFFER, diffBuffer);
  794. graphics_->SetTexture(TU_NORMALBUFFER, normalBuffer);
  795. graphics_->SetTexture(TU_DEPTHBUFFER, depthBuffer);
  796. for (unsigned i = 0; i < noShadowLightQueue_.sortedBatches_.Size(); ++i)
  797. {
  798. renderer_->SetupLightBatch(*noShadowLightQueue_.sortedBatches_[i]);
  799. noShadowLightQueue_.sortedBatches_[i]->Draw(graphics_, shaderParameters_);
  800. }
  801. }
  802. }
  803. {
  804. // Render base passes
  805. PROFILE(RenderBasePass);
  806. graphics_->SetStencilTest(false);
  807. graphics_->SetTexture(TU_DIFFBUFFER, 0);
  808. graphics_->SetTexture(TU_NORMALBUFFER, 0);
  809. graphics_->SetTexture(TU_DEPTHBUFFER, 0);
  810. graphics_->SetRenderTarget(0, renderBuffer);
  811. graphics_->SetDepthStencil(depthStencil_);
  812. graphics_->SetViewport(screenRect_);
  813. RenderBatchQueue(baseQueue_, true);
  814. }
  815. {
  816. // Render extra / custom passes
  817. PROFILE(RenderExtraPass);
  818. RenderBatchQueue(extraQueue_);
  819. }
  820. {
  821. // Render transparent objects last (both ambient & additive lighting)
  822. PROFILE(RenderTransparent);
  823. RenderBatchQueue(transparentQueue_, true);
  824. }
  825. // Render deferred antialiasing now if enabled
  826. if (edgeFilter)
  827. {
  828. PROFILE(RenderEdgeFilter);
  829. const EdgeFilterParameters& parameters = renderer_->GetEdgeFilter();
  830. ShaderVariation* vs = renderer_->GetVertexShader("EdgeFilter");
  831. ShaderVariation* ps = renderer_->GetPixelShader("EdgeFilter");
  832. HashMap<ShaderParameter, Vector4> shaderParameters(shaderParameters_);
  833. shaderParameters[PSP_EDGEFILTERPARAMS] = Vector4(parameters.radius_, parameters.threshold_, parameters.strength_, 0.0f);
  834. shaderParameters[PSP_SAMPLEOFFSETS] = Vector4(1.0f / gBufferWidth, 1.0f / gBufferHeight, 0.0f, 0.0f);
  835. graphics_->SetAlphaTest(false);
  836. graphics_->SetBlendMode(BLEND_REPLACE);
  837. graphics_->SetDepthTest(CMP_ALWAYS),
  838. graphics_->SetStencilTest(false);
  839. graphics_->SetRenderTarget(0, renderTarget_);
  840. graphics_->SetDepthStencil(depthStencil_);
  841. graphics_->SetViewport(screenRect_);
  842. graphics_->SetTexture(TU_DIFFBUFFER, graphics_->GetScreenBuffer());
  843. renderer_->DrawFullScreenQuad(*camera_, vs, ps, false, shaderParameters);
  844. }
  845. }
  846. void View::UpdateOccluders(PODVector<Drawable*>& occluders, Camera* camera)
  847. {
  848. float occluderSizeThreshold_ = renderer_->GetOccluderSizeThreshold();
  849. float halfViewSize = camera->GetHalfViewSize();
  850. float invOrthoSize = 1.0f / camera->GetOrthoSize();
  851. Vector3 cameraPos = camera->GetWorldPosition();
  852. unsigned cameraViewMask = camera->GetViewMask();
  853. for (unsigned i = 0; i < occluders.Size(); ++i)
  854. {
  855. Drawable* occluder = occluders[i];
  856. occluder->UpdateDistance(frame_);
  857. bool erase = false;
  858. // Check view mask
  859. if (!(cameraViewMask & occluder->GetViewMask()))
  860. erase = true;
  861. // Check occluder's draw distance (in main camera view)
  862. float maxDistance = occluder->GetDrawDistance();
  863. if ((maxDistance > 0.0f) && (occluder->GetDistance() > maxDistance))
  864. erase = true;
  865. // Check that occluder is big enough on the screen
  866. const BoundingBox& box = occluder->GetWorldBoundingBox();
  867. float diagonal = (box.max_ - box.min_).LengthFast();
  868. float compare;
  869. if (!camera->IsOrthographic())
  870. compare = diagonal * halfViewSize / occluder->GetDistance();
  871. else
  872. compare = diagonal * invOrthoSize;
  873. if (compare < occluderSizeThreshold_)
  874. erase = true;
  875. if (!erase)
  876. {
  877. unsigned totalTriangles = 0;
  878. unsigned batches = occluder->GetNumBatches();
  879. Batch tempBatch;
  880. for (unsigned j = 0; j < batches; ++j)
  881. {
  882. occluder->GetBatch(frame_, j, tempBatch);
  883. if (tempBatch.geometry_)
  884. totalTriangles += tempBatch.geometry_->GetIndexCount() / 3;
  885. }
  886. // Store amount of triangles divided by screen size as a sorting key
  887. // (best occluders are big and have few triangles)
  888. occluder->SetSortValue((float)totalTriangles / compare);
  889. }
  890. else
  891. {
  892. occluders.Erase(occluders.Begin() + i);
  893. --i;
  894. }
  895. }
  896. // Sort occluders so that if triangle budget is exceeded, best occluders have been drawn
  897. if (occluders.Size())
  898. Sort(occluders.Begin(), occluders.End(), CompareDrawables);
  899. }
  900. void View::DrawOccluders(OcclusionBuffer* buffer, const PODVector<Drawable*>& occluders)
  901. {
  902. for (unsigned i = 0; i < occluders.Size(); ++i)
  903. {
  904. Drawable* occluder = occluders[i];
  905. if (i > 0)
  906. {
  907. // For subsequent occluders, do a test against the pixel-level occlusion buffer to see if rendering is necessary
  908. if (!buffer->IsVisible(occluder->GetWorldBoundingBox()))
  909. continue;
  910. }
  911. occluder->UpdateGeometry(frame_);
  912. // Check for running out of triangles
  913. if (!occluder->DrawOcclusion(buffer))
  914. return;
  915. }
  916. }
  917. unsigned View::ProcessLight(Light* light)
  918. {
  919. unsigned numLitGeometries = 0;
  920. unsigned numShadowCasters = 0;
  921. unsigned numSplits;
  922. // Check if light should be shadowed
  923. bool isShadowed = (drawShadows_) && (light->GetCastShadows());
  924. // If shadow distance non-zero, check it
  925. if ((isShadowed) && (light->GetShadowDistance() > 0.0f) && (light->GetDistance() > light->GetShadowDistance()))
  926. isShadowed = false;
  927. // If light has no ramp textures defined, set defaults
  928. if ((light->GetLightType() != LIGHT_DIRECTIONAL) && (!light->GetRampTexture()))
  929. light->SetRampTexture(renderer_->GetDefaultLightRamp());
  930. if ((light->GetLightType() == LIGHT_SPOT) && (!light->GetShapeTexture()))
  931. light->SetShapeTexture(renderer_->GetDefaultLightSpot());
  932. // Split the light if necessary
  933. if (isShadowed)
  934. numSplits = SplitLight(light);
  935. else
  936. {
  937. // No splitting, use the original light
  938. splitLights_[0] = light;
  939. numSplits = 1;
  940. }
  941. // For a shadowed directional light, get occluders once using the whole (non-split) light frustum
  942. bool useOcclusion = false;
  943. OcclusionBuffer* buffer = 0;
  944. if ((maxOccluderTriangles_ > 0) && (isShadowed) && (light->GetLightType() == LIGHT_DIRECTIONAL))
  945. {
  946. // This shadow camera is never used for actually querying shadow casters, just occluders
  947. Camera* shadowCamera = renderer_->CreateShadowCamera();
  948. light->SetShadowCamera(shadowCamera);
  949. SetupShadowCamera(light, true);
  950. // Get occluders, which must be shadow-casting themselves
  951. FrustumOctreeQuery query(shadowOccluders_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY, true, true);
  952. octree_->GetDrawables(query);
  953. UpdateOccluders(shadowOccluders_, shadowCamera);
  954. if (shadowOccluders_.Size())
  955. {
  956. // Shadow viewport is rectangular and consumes more CPU fillrate, so halve size
  957. buffer = renderer_->GetOrCreateOcclusionBuffer(shadowCamera, maxOccluderTriangles_, true);
  958. DrawOccluders(buffer, shadowOccluders_);
  959. buffer->BuildDepthHierarchy();
  960. useOcclusion = true;
  961. }
  962. }
  963. // Process each split for shadow camera update, lit geometries, and shadow casters
  964. for (unsigned i = 0; i < numSplits; ++i)
  965. {
  966. litGeometries_[i].Clear();
  967. shadowCasters_[i].Clear();
  968. }
  969. for (unsigned i = 0; i < numSplits; ++i)
  970. {
  971. Light* split = splitLights_[i];
  972. LightType type = split->GetLightType();
  973. bool isSplitShadowed = (isShadowed) && (split->GetCastShadows());
  974. Camera* shadowCamera = 0;
  975. // If shadow casting, choose the shadow map & update shadow camera
  976. if (isSplitShadowed)
  977. {
  978. shadowCamera = renderer_->CreateShadowCamera();
  979. split->SetShadowMap(renderer_->GetShadowMap(splitLights_[i]->GetShadowResolution()));
  980. // Check if managed to get a shadow map. Otherwise must convert to non-shadowed
  981. if (split->GetShadowMap())
  982. {
  983. split->SetShadowCamera(shadowCamera);
  984. SetupShadowCamera(split);
  985. }
  986. else
  987. {
  988. isSplitShadowed = false;
  989. split->SetShadowCamera(0);
  990. }
  991. }
  992. else
  993. {
  994. split->SetShadowCamera(0);
  995. split->SetShadowMap(0);
  996. }
  997. BoundingBox geometryBox;
  998. BoundingBox shadowCasterBox;
  999. switch (type)
  1000. {
  1001. case LIGHT_DIRECTIONAL:
  1002. // Loop through visible geometries and check if they belong to this split
  1003. {
  1004. float nearSplit = split->GetNearSplit() - split->GetNearFadeRange();
  1005. float farSplit = split->GetFarSplit();
  1006. // If split extends to the whole visible frustum, no depth check necessary
  1007. bool optimize = (nearSplit <= camera_->GetNearClip()) && (farSplit >= camera_->GetFarClip());
  1008. // If whole visible scene is outside the split, can reject trivially
  1009. if ((sceneViewBox_.min_.z_ > farSplit) || (sceneViewBox_.max_.z_ < nearSplit))
  1010. {
  1011. split->SetShadowMap(0);
  1012. continue;
  1013. }
  1014. bool generateBoxes = (isSplitShadowed) && (split->GetShadowFocus().focus_);
  1015. Matrix3x4 lightView;
  1016. if (shadowCamera)
  1017. lightView = shadowCamera->GetInverseWorldTransform();
  1018. if (!optimize)
  1019. {
  1020. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1021. {
  1022. Drawable* drawable = geometries_[j];
  1023. const GeometryDepthBounds& bounds = geometryDepthBounds_[j];
  1024. // Check bounds and light mask
  1025. if ((bounds.min_ <= farSplit) && (bounds.max_ >= nearSplit) && (drawable->GetLightMask() &
  1026. split->GetLightMask()))
  1027. {
  1028. litGeometries_[i].Push(drawable);
  1029. if (generateBoxes)
  1030. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1031. }
  1032. }
  1033. }
  1034. else
  1035. {
  1036. for (unsigned j = 0; j < geometries_.Size(); ++j)
  1037. {
  1038. Drawable* drawable = geometries_[j];
  1039. // Need to check light mask only
  1040. if (drawable->GetLightMask() & split->GetLightMask())
  1041. {
  1042. litGeometries_[i].Push(drawable);
  1043. if (generateBoxes)
  1044. geometryBox.Merge(drawable->GetWorldBoundingBox().Transformed(lightView));
  1045. }
  1046. }
  1047. }
  1048. }
  1049. // Then get shadow casters by shadow camera frustum query. Use occlusion because of potentially many geometries
  1050. if ((isSplitShadowed) && (litGeometries_[i].Size()))
  1051. {
  1052. Camera* shadowCamera = split->GetShadowCamera();
  1053. if (!useOcclusion)
  1054. {
  1055. // Get potential shadow casters without occlusion
  1056. FrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), DRAWABLE_GEOMETRY);
  1057. octree_->GetDrawables(query);
  1058. }
  1059. else
  1060. {
  1061. // Get potential shadow casters with occlusion
  1062. OccludedFrustumOctreeQuery query(tempDrawables_, shadowCamera->GetFrustum(), buffer,
  1063. DRAWABLE_GEOMETRY);
  1064. octree_->GetDrawables(query);
  1065. }
  1066. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, false, isSplitShadowed);
  1067. }
  1068. break;
  1069. case LIGHT_POINT:
  1070. {
  1071. SphereOctreeQuery query(tempDrawables_, Sphere(split->GetWorldPosition(), split->GetRange()), DRAWABLE_GEOMETRY);
  1072. octree_->GetDrawables(query);
  1073. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, false);
  1074. }
  1075. break;
  1076. case LIGHT_SPOT:
  1077. case LIGHT_SPLITPOINT:
  1078. {
  1079. FrustumOctreeQuery query(tempDrawables_, splitLights_[i]->GetFrustum(), DRAWABLE_GEOMETRY);
  1080. octree_->GetDrawables(query);
  1081. ProcessLightQuery(i, tempDrawables_, geometryBox, shadowCasterBox, true, isSplitShadowed);
  1082. }
  1083. break;
  1084. }
  1085. // Optimization: if a particular split has no shadow casters, render as unshadowed
  1086. if (!shadowCasters_[i].Size())
  1087. split->SetShadowMap(0);
  1088. // Focus shadow camera as applicable
  1089. if (split->GetShadowMap())
  1090. {
  1091. if (split->GetShadowFocus().focus_)
  1092. FocusShadowCamera(split, geometryBox, shadowCasterBox);
  1093. // Set a zoom factor to ensure that we do not render to the shadow map border
  1094. // (clamp addressing is necessary because border mode /w hardware shadow maps is not supported by all GPUs)
  1095. Camera* shadowCamera = split->GetShadowCamera();
  1096. Texture2D* shadowMap = split->GetShadowMap();
  1097. if (shadowCamera->GetZoom() >= 1.0f)
  1098. shadowCamera->SetZoom(shadowCamera->GetZoom() * ((float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth()));
  1099. }
  1100. // Update count of total lit geometries & shadow casters
  1101. numLitGeometries += litGeometries_[i].Size();
  1102. numShadowCasters += shadowCasters_[i].Size();
  1103. }
  1104. // If no lit geometries at all, no need to process further
  1105. if (!numLitGeometries)
  1106. numSplits = 0;
  1107. // If no shadow casters at all, concatenate lit geometries into one & return the original light
  1108. else if (!numShadowCasters)
  1109. {
  1110. if (numSplits > 1)
  1111. {
  1112. // Make sure there are no duplicates
  1113. HashSet<Drawable*> allLitGeometries;
  1114. for (unsigned i = 0; i < numSplits; ++i)
  1115. {
  1116. for (Vector<Drawable*>::Iterator j = litGeometries_[i].Begin(); j != litGeometries_[i].End(); ++j)
  1117. allLitGeometries.Insert(*j);
  1118. }
  1119. litGeometries_[0].Resize(allLitGeometries.Size());
  1120. unsigned index = 0;
  1121. for (HashSet<Drawable*>::Iterator i = allLitGeometries.Begin(); i != allLitGeometries.End(); ++i)
  1122. litGeometries_[0][index++] = *i;
  1123. }
  1124. splitLights_[0] = light;
  1125. splitLights_[0]->SetShadowMap(0);
  1126. numSplits = 1;
  1127. }
  1128. return numSplits;
  1129. }
  1130. void View::ProcessLightQuery(unsigned splitIndex, const PODVector<Drawable*>& result, BoundingBox& geometryBox,
  1131. BoundingBox& shadowCasterBox, bool getLitGeometries, bool GetShadowCasters)
  1132. {
  1133. Light* light = splitLights_[splitIndex];
  1134. Matrix3x4 lightView;
  1135. Matrix4 lightProj;
  1136. Frustum lightViewFrustum;
  1137. BoundingBox lightViewFrustumBox;
  1138. bool mergeBoxes = (light->GetLightType() != LIGHT_SPLITPOINT) && (light->GetShadowMap()) && (light->GetShadowFocus().focus_);
  1139. bool projectBoxes = false;
  1140. Camera* shadowCamera = light->GetShadowCamera();
  1141. if (shadowCamera)
  1142. {
  1143. bool projectBoxes = !shadowCamera->IsOrthographic();
  1144. lightView = shadowCamera->GetInverseWorldTransform();
  1145. lightProj = shadowCamera->GetProjection();
  1146. // Transform scene frustum into shadow camera's view space for shadow caster visibility check
  1147. // For point & spot lights, we can use the whole scene frustum. For directional lights, use the
  1148. // intersection of the scene frustum and the split frustum, so that shadow casters do not get
  1149. // rendered into unnecessary splits
  1150. if (light->GetLightType() != LIGHT_DIRECTIONAL)
  1151. lightViewFrustum = camera_->GetSplitFrustum(sceneViewBox_.min_.z_, sceneViewBox_.max_.z_).Transformed(lightView);
  1152. else
  1153. lightViewFrustum = camera_->GetSplitFrustum(Max(sceneViewBox_.min_.z_, light->GetNearSplit() - light->GetNearFadeRange()),
  1154. Min(sceneViewBox_.max_.z_, light->GetFarSplit())).Transformed(lightView);
  1155. lightViewFrustumBox.Define(lightViewFrustum);
  1156. // Check for degenerate split frustum: in that case there is no need to get shadow casters
  1157. if (lightViewFrustum.vertices_[0] == lightViewFrustum.vertices_[4])
  1158. GetShadowCasters = false;
  1159. }
  1160. else
  1161. GetShadowCasters = false;
  1162. BoundingBox lightViewBox;
  1163. BoundingBox lightProjBox;
  1164. for (unsigned i = 0; i < result.Size(); ++i)
  1165. {
  1166. Drawable* drawable = static_cast<Drawable*>(result[i]);
  1167. drawable->UpdateDistance(frame_);
  1168. bool boxGenerated = false;
  1169. // If draw distance non-zero, check it
  1170. float maxDistance = drawable->GetDrawDistance();
  1171. if ((maxDistance > 0.0f) && (drawable->GetDistance() > maxDistance))
  1172. continue;
  1173. // Check light mask
  1174. if (!(drawable->GetLightMask() & light->GetLightMask()))
  1175. continue;
  1176. // Get lit geometry only if inside main camera frustum this frame
  1177. if ((getLitGeometries) && (drawable->IsInView(frame_)))
  1178. {
  1179. if (mergeBoxes)
  1180. {
  1181. // Transform bounding box into light view space, and to projection space if needed
  1182. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1183. if (!projectBoxes)
  1184. geometryBox.Merge(lightViewBox);
  1185. else
  1186. {
  1187. lightProjBox = lightViewBox.Projected(lightProj);
  1188. geometryBox.Merge(lightProjBox);
  1189. }
  1190. boxGenerated = true;
  1191. }
  1192. litGeometries_[splitIndex].Push(drawable);
  1193. }
  1194. // Shadow caster need not be inside main camera frustum: in that case try to detect whether
  1195. // the shadow projection intersects the view
  1196. if ((GetShadowCasters) && (drawable->GetCastShadows()))
  1197. {
  1198. // If shadow distance non-zero, check it
  1199. float maxShadowDistance = drawable->GetShadowDistance();
  1200. if ((maxShadowDistance > 0.0f) && (drawable->GetDistance() > maxShadowDistance))
  1201. continue;
  1202. if (!boxGenerated)
  1203. lightViewBox = drawable->GetWorldBoundingBox().Transformed(lightView);
  1204. if (IsShadowCasterVisible(drawable, lightViewBox, shadowCamera, lightView, lightViewFrustum, lightViewFrustumBox))
  1205. {
  1206. if (mergeBoxes)
  1207. {
  1208. if (!projectBoxes)
  1209. shadowCasterBox.Merge(lightViewBox);
  1210. else
  1211. {
  1212. if (!boxGenerated)
  1213. lightProjBox = lightViewBox.Projected(lightProj);
  1214. shadowCasterBox.Merge(lightProjBox);
  1215. }
  1216. }
  1217. // Update geometry now if not updated yet
  1218. if (!drawable->IsInView(frame_))
  1219. {
  1220. drawable->MarkInShadowView(frame_);
  1221. drawable->UpdateGeometry(frame_);
  1222. }
  1223. shadowCasters_[splitIndex].Push(drawable);
  1224. }
  1225. }
  1226. }
  1227. }
  1228. bool View::IsShadowCasterVisible(Drawable* drawable, BoundingBox lightViewBox, Camera* shadowCamera, const Matrix3x4& lightView,
  1229. const Frustum& lightViewFrustum, const BoundingBox& lightViewFrustumBox)
  1230. {
  1231. // If shadow caster is also an occluder, must let it be visible, because it has potentially already culled
  1232. // away other shadow casters (could also check the actual shadow occluder vector, but that would be slower)
  1233. if (drawable->IsOccluder())
  1234. return true;
  1235. if (shadowCamera->IsOrthographic())
  1236. {
  1237. // Extrude the light space bounding box up to the far edge of the frustum's light space bounding box
  1238. lightViewBox.max_.z_ = Max(lightViewBox.max_.z_,lightViewFrustumBox.max_.z_);
  1239. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1240. }
  1241. else
  1242. {
  1243. // If light is not directional, can do a simple check: if object is visible, its shadow is too
  1244. if (drawable->IsInView(frame_))
  1245. return true;
  1246. // For perspective lights, extrusion direction depends on the position of the shadow caster
  1247. Vector3 center = lightViewBox.Center();
  1248. Ray extrusionRay(center, center.Normalized());
  1249. float extrusionDistance = shadowCamera->GetFarClip();
  1250. float originalDistance = Clamp(center.LengthFast(), M_EPSILON, extrusionDistance);
  1251. // Because of the perspective, the bounding box must also grow when it is extruded to the distance
  1252. float sizeFactor = extrusionDistance / originalDistance;
  1253. // Calculate the endpoint box and merge it to the original. Because it's axis-aligned, it will be larger
  1254. // than necessary, so the test will be conservative
  1255. Vector3 newCenter = extrusionDistance * extrusionRay.direction_;
  1256. Vector3 newHalfSize = lightViewBox.Size() * sizeFactor * 0.5f;
  1257. BoundingBox extrudedBox(newCenter - newHalfSize, newCenter + newHalfSize);
  1258. lightViewBox.Merge(extrudedBox);
  1259. return lightViewFrustum.IsInsideFast(lightViewBox) != OUTSIDE;
  1260. }
  1261. }
  1262. void View::SetupShadowCamera(Light* light, bool shadowOcclusion)
  1263. {
  1264. Camera* shadowCamera = light->GetShadowCamera();
  1265. Node* cameraNode = shadowCamera->GetNode();
  1266. const FocusParameters& parameters = light->GetShadowFocus();
  1267. // Reset zoom
  1268. shadowCamera->SetZoom(1.0f);
  1269. switch(light->GetLightType())
  1270. {
  1271. case LIGHT_DIRECTIONAL:
  1272. {
  1273. float extrusionDistance = camera_->GetFarClip();
  1274. // Calculate initial position & rotation
  1275. Vector3 lightWorldDirection = light->GetWorldRotation() * Vector3::FORWARD;
  1276. Vector3 pos = camera_->GetWorldPosition() - extrusionDistance * lightWorldDirection;
  1277. Quaternion rot(Vector3::FORWARD, lightWorldDirection);
  1278. cameraNode->SetTransform(pos, rot);
  1279. // Calculate main camera shadowed frustum in light's view space
  1280. float sceneMaxZ = camera_->GetFarClip();
  1281. // When shadow focusing is enabled, use the scene far Z to limit maximum frustum size
  1282. if ((shadowOcclusion) || (parameters.focus_))
  1283. sceneMaxZ = Min(sceneViewBox_.max_.z_, sceneMaxZ);
  1284. Matrix3x4 lightView(shadowCamera->GetInverseWorldTransform());
  1285. Frustum lightViewSplitFrustum = camera_->GetSplitFrustum(light->GetNearSplit() - light->GetNearFadeRange(),
  1286. Min(light->GetFarSplit(), sceneMaxZ)).Transformed(lightView);
  1287. // Fit the frustum inside a bounding box. If uniform size, use a sphere instead
  1288. BoundingBox shadowBox;
  1289. if ((!shadowOcclusion) && (parameters.nonUniform_))
  1290. shadowBox.Define(lightViewSplitFrustum);
  1291. else
  1292. {
  1293. Sphere shadowSphere;
  1294. shadowSphere.Define(lightViewSplitFrustum);
  1295. shadowBox.Define(shadowSphere);
  1296. }
  1297. shadowCamera->SetOrthographic(true);
  1298. shadowCamera->SetNearClip(0.0f);
  1299. shadowCamera->SetFarClip(shadowBox.max_.z_);
  1300. // Center shadow camera on the bounding box, snap to whole texels
  1301. QuantizeDirShadowCamera(light, shadowBox);
  1302. }
  1303. break;
  1304. case LIGHT_SPOT:
  1305. case LIGHT_SPLITPOINT:
  1306. {
  1307. cameraNode->SetTransform(light->GetWorldPosition(), light->GetWorldRotation());
  1308. shadowCamera->SetNearClip(light->GetShadowNearFarRatio() * light->GetRange());
  1309. shadowCamera->SetFarClip(light->GetRange());
  1310. shadowCamera->SetOrthographic(false);
  1311. shadowCamera->SetFov(light->GetFov());
  1312. shadowCamera->SetAspectRatio(light->GetAspectRatio());
  1313. // For spot lights, zoom out shadowmap if far away (reduces fillrate)
  1314. if ((light->GetLightType() == LIGHT_SPOT) && (parameters.zoomOut_))
  1315. {
  1316. // Make sure the out-zooming does not start while we are inside the spot
  1317. float distance = Max((camera_->GetInverseWorldTransform() * light->GetWorldPosition()).z_ - light->GetRange(), 1.0f);
  1318. float lightPixels = (((float)height_ * light->GetRange() * camera_->GetZoom() * 0.5f) / distance);
  1319. // Clamp pixel amount to a sufficient minimum to avoid self-shadowing artifacts due to loss of precision
  1320. if (lightPixels < SHADOW_MIN_PIXELS)
  1321. lightPixels = SHADOW_MIN_PIXELS;
  1322. float zoolevel_ = Min(lightPixels / (float)light->GetShadowMap()->GetHeight(), 1.0f);
  1323. shadowCamera->SetZoom(zoolevel_);
  1324. }
  1325. }
  1326. break;
  1327. }
  1328. }
  1329. void View::FocusShadowCamera(Light* light, const BoundingBox& geometryBox, const BoundingBox& shadowCasterBox)
  1330. {
  1331. // If either no geometries or no shadow casters, do nothing
  1332. if ((!geometryBox.defined_) || (!shadowCasterBox.defined_))
  1333. return;
  1334. Camera* shadowCamera = light->GetShadowCamera();
  1335. const FocusParameters& parameters = light->GetShadowFocus();
  1336. switch (light->GetLightType())
  1337. {
  1338. case LIGHT_DIRECTIONAL:
  1339. {
  1340. BoundingBox combinedBox;
  1341. combinedBox.max_.y_ = shadowCamera->GetOrthoSize() * 0.5f;
  1342. combinedBox.max_.x_ = shadowCamera->GetAspectRatio() * combinedBox.max_.y_;
  1343. combinedBox.min_.y_ = -combinedBox.max_.y_;
  1344. combinedBox.min_.x_ = -combinedBox.max_.x_;
  1345. combinedBox.Intersect(geometryBox);
  1346. combinedBox.Intersect(shadowCasterBox);
  1347. QuantizeDirShadowCamera(light, combinedBox);
  1348. }
  1349. break;
  1350. case LIGHT_SPOT:
  1351. // Can not move, but can zoom the shadow camera. Check for out-zooming (distant shadow map), do nothing in that case
  1352. if (shadowCamera->GetZoom() >= 1.0f)
  1353. {
  1354. BoundingBox combinedBox(-1.0f, 1.0f);
  1355. combinedBox.Intersect(geometryBox);
  1356. combinedBox.Intersect(shadowCasterBox);
  1357. float viewSizeX = Max(fabsf(combinedBox.min_.x_), fabsf(combinedBox.max_.x_));
  1358. float viewSizeY = Max(fabsf(combinedBox.min_.y_), fabsf(combinedBox.max_.y_));
  1359. float viewSize = Max(viewSizeX, viewSizeY);
  1360. // Scale the quantization parameters, because view size is in projection space (-1.0 - 1.0)
  1361. float invOrthoSize = 1.0f / shadowCamera->GetOrthoSize();
  1362. float quantize = parameters.quantize_ * invOrthoSize;
  1363. float minView = parameters.minView_ * invOrthoSize;
  1364. viewSize = Max(ceilf(viewSize / quantize) * quantize, minView);
  1365. if (viewSize < 1.0f)
  1366. shadowCamera->SetZoom(1.0f / viewSize);
  1367. }
  1368. break;
  1369. }
  1370. }
  1371. void View::QuantizeDirShadowCamera(Light* light, const BoundingBox& viewBox)
  1372. {
  1373. Camera* shadowCamera = light->GetShadowCamera();
  1374. Node* cameraNode = shadowCamera->GetNode();
  1375. const FocusParameters& parameters = light->GetShadowFocus();
  1376. float minX = viewBox.min_.x_;
  1377. float minY = viewBox.min_.y_;
  1378. float maxX = viewBox.max_.x_;
  1379. float maxY = viewBox.max_.y_;
  1380. Vector2 center((minX + maxX) * 0.5f, (minY + maxY) * 0.5f);
  1381. Vector2 viewSize(maxX - minX, maxY - minY);
  1382. // Quantize size to reduce swimming
  1383. // Note: if size is uniform and there is no focusing, quantization is unnecessary
  1384. if (parameters.nonUniform_)
  1385. {
  1386. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1387. viewSize.y_ = ceilf(sqrtf(viewSize.y_ / parameters.quantize_));
  1388. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1389. viewSize.y_ = Max(viewSize.y_ * viewSize.y_ * parameters.quantize_, parameters.minView_);
  1390. }
  1391. else if (parameters.focus_)
  1392. {
  1393. viewSize.x_ = Max(viewSize.x_, viewSize.y_);
  1394. viewSize.x_ = ceilf(sqrtf(viewSize.x_ / parameters.quantize_));
  1395. viewSize.x_ = Max(viewSize.x_ * viewSize.x_ * parameters.quantize_, parameters.minView_);
  1396. viewSize.y_ = viewSize.x_;
  1397. }
  1398. shadowCamera->SetOrthoSize(viewSize);
  1399. // Center shadow camera to the view space bounding box
  1400. Vector3 pos = shadowCamera->GetWorldPosition();
  1401. Quaternion rot = shadowCamera->GetWorldRotation();
  1402. Vector3 adjust(center.x_, center.y_, 0.0f);
  1403. cameraNode->Translate(rot * adjust);
  1404. // If there is a shadow map, snap to its whole texels
  1405. Texture2D* shadowMap = light->GetShadowMap();
  1406. if (shadowMap)
  1407. {
  1408. Vector3 viewPos(rot.Inverse() * shadowCamera->GetWorldPosition());
  1409. // Take into account that shadow map border will not be used
  1410. float invActualSize = 1.0f / (float)(shadowMap->GetWidth() - 2);
  1411. Vector2 texelSize(viewSize.x_ * invActualSize, viewSize.y_ * invActualSize);
  1412. Vector3 snap(-fmodf(viewPos.x_, texelSize.x_), -fmodf(viewPos.y_, texelSize.y_), 0.0f);
  1413. cameraNode->Translate(rot * snap);
  1414. }
  1415. }
  1416. void View::OptimizeLightByScissor(Light* light)
  1417. {
  1418. if (light)
  1419. graphics_->SetScissorTest(true, GetLightScissor(light));
  1420. else
  1421. graphics_->SetScissorTest(false);
  1422. }
  1423. const Rect& View::GetLightScissor(Light* light)
  1424. {
  1425. Map<Light*, Rect>::Iterator i = lightScissorCache_.Find(light);
  1426. if (i != lightScissorCache_.End())
  1427. return i->second_;
  1428. Matrix3x4 view(camera_->GetInverseWorldTransform());
  1429. Matrix4 projection(camera_->GetProjection());
  1430. switch (light->GetLightType())
  1431. {
  1432. case LIGHT_POINT:
  1433. {
  1434. BoundingBox viewBox = light->GetWorldBoundingBox().Transformed(view);
  1435. return lightScissorCache_[light] = viewBox.Projected(projection);
  1436. }
  1437. case LIGHT_SPOT:
  1438. case LIGHT_SPLITPOINT:
  1439. {
  1440. Frustum viewFrustum = light->GetFrustum().Transformed(view);
  1441. return lightScissorCache_[light] = viewFrustum.Projected(projection);
  1442. }
  1443. default:
  1444. return lightScissorCache_[light] = Rect::FULL;
  1445. }
  1446. }
  1447. unsigned View::SplitLight(Light* light)
  1448. {
  1449. LightType type = light->GetLightType();
  1450. if (type == LIGHT_DIRECTIONAL)
  1451. {
  1452. const CascadeParameters& cascade = light->GetShadowCascade();
  1453. unsigned splits = cascade.splits_;
  1454. if (splits > MAX_LIGHT_SPLITS - 1)
  1455. splits = MAX_LIGHT_SPLITS;
  1456. // Orthographic view actually has near clip 0, but clamp it to a theoretical minimum
  1457. float farClip = Min(cascade.shadowRange_, camera_->GetFarClip()); // Shadow range end
  1458. float nearClip = Max(camera_->GetNearClip(), M_MIN_NEARCLIP); // Shadow range start
  1459. bool CreateExtraSplit = farClip < camera_->GetFarClip();
  1460. // Practical split scheme (Zhang et al.)
  1461. unsigned i;
  1462. for (i = 0; i < splits; ++i)
  1463. {
  1464. // Set a minimum for the fade range to avoid boundary artifacts (missing lighting)
  1465. float splitFadeRange = Max(cascade.splitFadeRange_, 0.001f);
  1466. float iPerM = (float)i / (float)splits;
  1467. float log = nearClip * powf(farClip / nearClip, iPerM);
  1468. float uniform = nearClip + (farClip - nearClip) * iPerM;
  1469. float nearSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1470. float nearFadeRange = nearSplit * splitFadeRange;
  1471. iPerM = (float)(i + 1) / (float)splits;
  1472. log = nearClip * powf(farClip / nearClip, iPerM);
  1473. uniform = nearClip + (farClip - nearClip) * iPerM;
  1474. float farSplit = log * cascade.lambda_ + uniform * (1.0f - cascade.lambda_);
  1475. float farFadeRange = farSplit * splitFadeRange;
  1476. // If split is completely beyond camera far clip, we are done
  1477. if ((nearSplit - nearFadeRange) > camera_->GetFarClip())
  1478. break;
  1479. Light* SplitLight = renderer_->CreateSplitLight(light);
  1480. splitLights_[i] = SplitLight;
  1481. // Though the near clip was previously clamped, use the real near clip value for the first split,
  1482. // so that there are no unlit portions
  1483. if (i)
  1484. SplitLight->SetNearSplit(nearSplit);
  1485. else
  1486. SplitLight->SetNearSplit(camera_->GetNearClip());
  1487. SplitLight->SetNearFadeRange(nearFadeRange);
  1488. SplitLight->SetFarSplit(farSplit);
  1489. // The final split will not fade
  1490. if ((CreateExtraSplit) || (i < splits - 1))
  1491. SplitLight->SetFarFadeRange(farFadeRange);
  1492. // Create an extra unshadowed split if necessary
  1493. if ((CreateExtraSplit) && (i == splits - 1))
  1494. {
  1495. Light* SplitLight = renderer_->CreateSplitLight(light);
  1496. splitLights_[i + 1] = SplitLight;
  1497. SplitLight->SetNearSplit(farSplit);
  1498. SplitLight->SetNearFadeRange(farFadeRange);
  1499. SplitLight->SetCastShadows(false);
  1500. }
  1501. }
  1502. if (CreateExtraSplit)
  1503. return i + 1;
  1504. else
  1505. return i;
  1506. }
  1507. if (type == LIGHT_POINT)
  1508. {
  1509. for (unsigned i = 0; i < MAX_CUBEMAP_FACES; ++i)
  1510. {
  1511. Light* SplitLight = renderer_->CreateSplitLight(light);
  1512. Node* lightNode = SplitLight->GetNode();
  1513. splitLights_[i] = SplitLight;
  1514. SplitLight->SetLightType(LIGHT_SPLITPOINT);
  1515. // When making a shadowed point light, align the splits along X, Y and Z axes regardless of light rotation
  1516. lightNode->SetDirection(directions[i]);
  1517. SplitLight->SetFov(90.0f);
  1518. SplitLight->SetAspectRatio(1.0f);
  1519. }
  1520. return MAX_CUBEMAP_FACES;
  1521. }
  1522. // A spot light does not actually need splitting. However, we may be rendering several views,
  1523. // and in some the light might be unshadowed, so better create an unique copy
  1524. Light* SplitLight = renderer_->CreateSplitLight(light);
  1525. splitLights_[0] = SplitLight;
  1526. return 1;
  1527. }
  1528. Technique* View::GetTechnique(Drawable* drawable, Material*& material)
  1529. {
  1530. if (!material)
  1531. material = renderer_->GetDefaultMaterial();
  1532. if (!material)
  1533. return 0;
  1534. float lodDistance = drawable->GetLodDistance();
  1535. const Vector<TechniqueEntry>& techniques = material->GetTechniques();
  1536. if (techniques.Empty())
  1537. return 0;
  1538. // Check for suitable technique. Techniques should be ordered like this:
  1539. // Most distant & highest quality
  1540. // Most distant & lowest quality
  1541. // Second most distant & highest quality
  1542. // ...
  1543. for (unsigned i = 0; i < techniques.Size(); ++i)
  1544. {
  1545. const TechniqueEntry& entry = techniques[i];
  1546. Technique* technique = entry.technique_;
  1547. if ((!technique) || ((technique->IsSM3()) && (!graphics_->GetSM3Support())) || (materialQuality_ < entry.qualityLevel_))
  1548. continue;
  1549. if (lodDistance >= entry.lodDistance_)
  1550. return technique;
  1551. }
  1552. // If no suitable technique found, fallback to the last
  1553. return techniques.Back().technique_;
  1554. }
  1555. void View::CheckMaterialForAuxView(Material* material)
  1556. {
  1557. const Vector<SharedPtr<Texture> >& textures = material->GetTextures();
  1558. for (unsigned i = 0; i < textures.Size(); ++i)
  1559. {
  1560. // Have to check cube & 2D textures separately
  1561. Texture* texture = textures[i];
  1562. if (texture)
  1563. {
  1564. if (texture->GetType() == Texture2D::GetTypeStatic())
  1565. {
  1566. Texture2D* tex2D = static_cast<Texture2D*>(texture);
  1567. RenderSurface* target = tex2D->GetRenderSurface();
  1568. if (target)
  1569. {
  1570. const Viewport& viewport = target->GetViewport();
  1571. if ((viewport.scene_) && (viewport.camera_))
  1572. renderer_->AddView(target, viewport);
  1573. }
  1574. }
  1575. else if (texture->GetType() == TextureCube::GetTypeStatic())
  1576. {
  1577. TextureCube* texCube = static_cast<TextureCube*>(texture);
  1578. for (unsigned j = 0; j < MAX_CUBEMAP_FACES; ++j)
  1579. {
  1580. RenderSurface* target = texCube->GetRenderSurface((CubeMapFace)j);
  1581. if (target)
  1582. {
  1583. const Viewport& viewport = target->GetViewport();
  1584. if ((viewport.scene_) && (viewport.camera_))
  1585. renderer_->AddView(target, viewport);
  1586. }
  1587. }
  1588. }
  1589. }
  1590. }
  1591. // Set frame number so that we can early-out next time we come across this material on the same frame
  1592. material->MarkForAuxView(frame_.frameNumber_);
  1593. }
  1594. void View::SortBatches()
  1595. {
  1596. PROFILE(SortBatches);
  1597. if (mode_ != RENDER_FORWARD)
  1598. {
  1599. gBufferQueue_.SortFrontToBack();
  1600. noShadowLightQueue_.SortFrontToBack();
  1601. }
  1602. baseQueue_.SortFrontToBack();
  1603. extraQueue_.SortFrontToBack();
  1604. transparentQueue_.SortBackToFront();
  1605. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1606. {
  1607. lightQueues_[i].shadowBatches_.SortFrontToBack();
  1608. lightQueues_[i].litBatches_.SortFrontToBack();
  1609. }
  1610. }
  1611. void View::PrepareInstancingBuffer()
  1612. {
  1613. PROFILE(PrepareInstancingBuffer);
  1614. unsigned totalInstances = 0;
  1615. if (mode_ != RENDER_FORWARD)
  1616. totalInstances += gBufferQueue_.GetNumInstances();
  1617. totalInstances += baseQueue_.GetNumInstances();
  1618. totalInstances += extraQueue_.GetNumInstances();
  1619. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1620. {
  1621. totalInstances += lightQueues_[i].shadowBatches_.GetNumInstances();
  1622. totalInstances += lightQueues_[i].litBatches_.GetNumInstances();
  1623. }
  1624. // If fail to set buffer size, fall back to per-group locking
  1625. if ((totalInstances) && (renderer_->ResizeInstancingBuffer(totalInstances)))
  1626. {
  1627. unsigned freeIndex = 0;
  1628. void* lockedData = renderer_->instancingBuffer_->Lock(0, totalInstances, LOCK_DISCARD);
  1629. if (lockedData)
  1630. {
  1631. if (mode_ != RENDER_FORWARD)
  1632. gBufferQueue_.SetTransforms(lockedData, freeIndex);
  1633. baseQueue_.SetTransforms(lockedData, freeIndex);
  1634. extraQueue_.SetTransforms(lockedData, freeIndex);
  1635. for (unsigned i = 0; i < lightQueues_.Size(); ++i)
  1636. {
  1637. lightQueues_[i].shadowBatches_.SetTransforms(lockedData, freeIndex);
  1638. lightQueues_[i].litBatches_.SetTransforms(lockedData, freeIndex);
  1639. }
  1640. renderer_->instancingBuffer_->Unlock();
  1641. }
  1642. }
  1643. }
  1644. void View::CalculateShaderParameters()
  1645. {
  1646. Time* time = GetSubsystem<Time>();
  1647. float fogStart = zone_->GetFogStart();
  1648. float fogEnd = zone_->GetFogEnd();
  1649. float fogRange = Max(fogEnd - fogStart, M_EPSILON);
  1650. float farClip = camera_->GetFarClip();
  1651. float nearClip = camera_->GetNearClip();
  1652. Vector4 fogParams(fogStart / farClip, fogEnd / farClip, 1.0f / (fogRange / farClip), 0.0f);
  1653. Vector4 elapsedTime((time->GetTotalMSec() & 0x3fffff) / 1000.0f, 0.0f, 0.0f, 0.0f);
  1654. shaderParameters_.Clear();
  1655. shaderParameters_[VSP_ELAPSEDTIME] = elapsedTime;
  1656. shaderParameters_[PSP_AMBIENTCOLOR] = zone_->GetAmbientColor().ToVector4();
  1657. shaderParameters_[PSP_ELAPSEDTIME] = elapsedTime;
  1658. shaderParameters_[PSP_FOGCOLOR] = zone_->GetFogColor().ToVector4(),
  1659. shaderParameters_[PSP_FOGPARAMS] = fogParams;
  1660. }
  1661. void View::DrawSplitLightToStencil(Camera& camera, Light* light, bool clear)
  1662. {
  1663. Matrix3x4 view(camera.GetInverseWorldTransform());
  1664. switch (light->GetLightType())
  1665. {
  1666. case LIGHT_SPLITPOINT:
  1667. if (!clear)
  1668. {
  1669. Matrix4 projection(camera.GetProjection());
  1670. const Matrix3x4& model = light->GetVolumeTransform(camera);
  1671. float lightExtent = light->GetVolumeExtent();
  1672. float lightViewDist = (light->GetWorldPosition() - camera.GetWorldPosition()).LengthFast();
  1673. bool drawBackFaces = lightViewDist < (lightExtent + camera.GetNearClip());
  1674. graphics_->SetAlphaTest(false);
  1675. graphics_->SetColorWrite(false);
  1676. graphics_->SetDepthWrite(false);
  1677. graphics_->SetCullMode(drawBackFaces ? CULL_CW : CULL_CCW);
  1678. graphics_->SetDepthTest(drawBackFaces ? CMP_GREATER : CMP_LESS);
  1679. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1680. graphics_->SetShaderParameter(VSP_MODEL, model);
  1681. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection * view);
  1682. graphics_->ClearTransformSources();
  1683. // Draw the faces to stencil which we should draw (where no light has not been rendered yet)
  1684. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 0);
  1685. renderer_->spotLightGeometry_->Draw(graphics_);
  1686. // Draw the other faces to stencil to mark where we should not draw ("frees up" the pixels for other faces)
  1687. graphics_->SetCullMode(drawBackFaces ? CULL_CCW : CULL_CW);
  1688. graphics_->SetStencilTest(true, CMP_EQUAL, OP_DECR, OP_KEEP, OP_KEEP, 1);
  1689. renderer_->spotLightGeometry_->Draw(graphics_);
  1690. // Now set stencil test for rendering the lit geometries (also marks the pixels so that they will not be used again)
  1691. graphics_->SetStencilTest(true, CMP_EQUAL, OP_INCR, OP_KEEP, OP_KEEP, 1);
  1692. graphics_->SetColorWrite(true);
  1693. }
  1694. else
  1695. {
  1696. // Clear stencil with a scissored clear operation
  1697. OptimizeLightByScissor(light->GetOriginalLight());
  1698. graphics_->Clear(CLEAR_STENCIL);
  1699. graphics_->SetScissorTest(false);
  1700. graphics_->SetStencilTest(false);
  1701. }
  1702. break;
  1703. case LIGHT_DIRECTIONAL:
  1704. // If light encompasses whole frustum, no drawing to frustum necessary
  1705. if ((light->GetNearSplit() <= camera.GetNearClip()) && (light->GetFarSplit() >= camera.GetFarClip()))
  1706. return;
  1707. else
  1708. {
  1709. if (!clear)
  1710. {
  1711. // Get projection without jitter offset to ensure the whole screen is filled
  1712. Matrix4 projection(camera.GetProjection(false));
  1713. Matrix3x4 nearTransform(light->GetDirLightTransform(camera, true));
  1714. Matrix3x4 farTransform(light->GetDirLightTransform(camera, false));
  1715. graphics_->SetAlphaTest(false);
  1716. graphics_->SetColorWrite(false);
  1717. graphics_->SetDepthWrite(false);
  1718. graphics_->SetCullMode(CULL_NONE);
  1719. // If the split begins at the near plane (first split), draw at split far plane
  1720. if (light->GetNearSplit() <= camera.GetNearClip())
  1721. {
  1722. graphics_->SetDepthTest(CMP_GREATEREQUAL);
  1723. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1724. graphics_->SetShaderParameter(VSP_MODEL, farTransform);
  1725. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1726. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1727. }
  1728. // Otherwise draw at split near plane
  1729. else
  1730. {
  1731. graphics_->SetDepthTest(CMP_LESSEQUAL);
  1732. graphics_->SetShaders(renderer_->stencilVS_, renderer_->stencilPS_);
  1733. graphics_->SetShaderParameter(VSP_MODEL, nearTransform);
  1734. graphics_->SetShaderParameter(VSP_VIEWPROJ, projection);
  1735. graphics_->SetStencilTest(true, CMP_ALWAYS, OP_REF, OP_ZERO, OP_ZERO, 1);
  1736. }
  1737. graphics_->ClearTransformSources();
  1738. renderer_->dirLightGeometry_->Draw(graphics_);
  1739. graphics_->SetColorWrite(true);
  1740. graphics_->SetStencilTest(true, CMP_EQUAL, OP_KEEP, OP_KEEP, OP_KEEP, 1);
  1741. }
  1742. else
  1743. {
  1744. // Clear the whole stencil
  1745. graphics_->SetScissorTest(false);
  1746. graphics_->Clear(CLEAR_STENCIL);
  1747. graphics_->SetStencilTest(false);
  1748. }
  1749. }
  1750. break;
  1751. }
  1752. }
  1753. void View::RenderBatchQueue(const BatchQueue& queue, bool useScissor, bool disableScissor)
  1754. {
  1755. VertexBuffer* instancingBuffer = 0;
  1756. if (renderer_->GetDynamicInstancing())
  1757. instancingBuffer = renderer_->instancingBuffer_;
  1758. if (disableScissor)
  1759. graphics_->SetScissorTest(false);
  1760. graphics_->SetStencilTest(false);
  1761. // Priority instanced
  1762. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1763. queue.priorityBatchGroups_.End(); ++i)
  1764. {
  1765. const BatchGroup& group = i->second_;
  1766. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1767. }
  1768. // Priority non-instanced
  1769. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1770. {
  1771. Batch* batch = *i;
  1772. batch->Draw(graphics_, shaderParameters_);
  1773. }
  1774. // Non-priority instanced
  1775. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1776. queue.batchGroups_.End(); ++i)
  1777. {
  1778. const BatchGroup& group = i->second_;
  1779. if ((useScissor) && (group.light_))
  1780. OptimizeLightByScissor(group.light_);
  1781. else
  1782. graphics_->SetScissorTest(false);
  1783. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1784. }
  1785. // Non-priority non-instanced
  1786. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1787. {
  1788. Batch* batch = *i;
  1789. // For the transparent queue, both priority and non-priority batches are copied here, so check the flag
  1790. if ((useScissor) && (batch->light_) && (!batch->hasPriority_))
  1791. OptimizeLightByScissor(batch->light_);
  1792. else
  1793. graphics_->SetScissorTest(false);
  1794. batch->Draw(graphics_, shaderParameters_);
  1795. }
  1796. }
  1797. void View::RenderForwardLightBatchQueue(const BatchQueue& queue, Light* light)
  1798. {
  1799. VertexBuffer* instancingBuffer = 0;
  1800. if (renderer_->GetDynamicInstancing())
  1801. instancingBuffer = renderer_->instancingBuffer_;
  1802. graphics_->SetScissorTest(false);
  1803. graphics_->SetStencilTest(false);
  1804. // Priority instanced
  1805. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.priorityBatchGroups_.Begin(); i !=
  1806. queue.priorityBatchGroups_.End(); ++i)
  1807. {
  1808. const BatchGroup& group = i->second_;
  1809. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1810. }
  1811. // Priority non-instanced
  1812. for (PODVector<Batch*>::ConstIterator i = queue.sortedPriorityBatches_.Begin(); i != queue.sortedPriorityBatches_.End(); ++i)
  1813. {
  1814. Batch* batch = *i;
  1815. batch->Draw(graphics_, shaderParameters_);
  1816. }
  1817. // All base passes have been drawn. Optimize at this point by both scissor and stencil
  1818. if (light)
  1819. {
  1820. OptimizeLightByScissor(light);
  1821. LightType type = light->GetLightType();
  1822. if ((type == LIGHT_SPLITPOINT) || (type == LIGHT_DIRECTIONAL))
  1823. DrawSplitLightToStencil(*camera_, light);
  1824. }
  1825. // Non-priority instanced
  1826. for (Map<BatchGroupKey, BatchGroup>::ConstIterator i = queue.batchGroups_.Begin(); i !=
  1827. queue.batchGroups_.End(); ++i)
  1828. {
  1829. const BatchGroup& group = i->second_;
  1830. group.Draw(graphics_, instancingBuffer, shaderParameters_);
  1831. }
  1832. // Non-priority non-instanced
  1833. for (PODVector<Batch*>::ConstIterator i = queue.sortedBatches_.Begin(); i != queue.sortedBatches_.End(); ++i)
  1834. {
  1835. Batch* batch = *i;
  1836. batch->Draw(graphics_, shaderParameters_);
  1837. }
  1838. }
  1839. void View::RenderShadowMap(const LightBatchQueue& queue)
  1840. {
  1841. PROFILE(RenderShadowMap);
  1842. Texture2D* shadowMap = queue.light_->GetShadowMap();
  1843. graphics_->SetColorWrite(false);
  1844. graphics_->SetStencilTest(false);
  1845. graphics_->SetTexture(TU_SHADOWMAP, 0);
  1846. graphics_->SetRenderTarget(0, shadowMap->GetRenderSurface()->GetLinkedRenderTarget());
  1847. graphics_->SetDepthStencil(shadowMap);
  1848. graphics_->Clear(CLEAR_DEPTH);
  1849. // Set shadow depth bias
  1850. BiasParameters parameters = queue.light_->GetShadowBias();
  1851. graphics_->SetDepthBias(parameters.constantBias_, parameters.slopeScaledBias_);
  1852. // Set a scissor rectangle to match possible shadow map size reduction by out-zooming
  1853. // However, do not do this for point lights
  1854. if (queue.light_->GetLightType() != LIGHT_SPLITPOINT)
  1855. {
  1856. float zoom = Min(queue.light_->GetShadowCamera()->GetZoom(),
  1857. (float)(shadowMap->GetWidth() - 2) / (float)shadowMap->GetWidth());
  1858. Rect zoomRect(Vector2(-1.0f, -1.0f) * zoom, Vector2(1.0f, 1.0f) * zoom);
  1859. graphics_->SetScissorTest(true, zoomRect, false);
  1860. }
  1861. else
  1862. graphics_->SetScissorTest(false);
  1863. // Draw instanced and non-instanced shadow casters
  1864. RenderBatchQueue(queue.shadowBatches_, false, false);
  1865. graphics_->SetColorWrite(true);
  1866. graphics_->SetDepthBias(0.0f, 0.0f);
  1867. }