PhysicsWorld.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680
  1. //
  2. // Urho3D Engine
  3. // Copyright (c) 2008-2011 Lasse Öörni
  4. //
  5. // Permission is hereby granted, free of charge, to any person obtaining a copy
  6. // of this software and associated documentation files (the "Software"), to deal
  7. // in the Software without restriction, including without limitation the rights
  8. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  9. // copies of the Software, and to permit persons to whom the Software is
  10. // furnished to do so, subject to the following conditions:
  11. //
  12. // The above copyright notice and this permission notice shall be included in
  13. // all copies or substantial portions of the Software.
  14. //
  15. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  18. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  20. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  21. // THE SOFTWARE.
  22. //
  23. #include "Precompiled.h"
  24. #include "CollisionShape.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Joint.h"
  28. #include "Log.h"
  29. #include "Mutex.h"
  30. #include "PhysicsEvents.h"
  31. #include "PhysicsWorld.h"
  32. #include "ProcessUtils.h"
  33. #include "Profiler.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include <ode/ode.h>
  38. #include "Sort.h"
  39. #include "DebugNew.h"
  40. static const int DEFAULT_FPS = 60;
  41. static const int DEFAULT_MAX_CONTACTS = 20;
  42. static const float DEFAULT_BOUNCE_THRESHOLD = 0.1f;
  43. static unsigned numInstances = 0;
  44. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  45. {
  46. return lhs.distance_ < rhs.distance_;
  47. }
  48. OBJECTTYPESTATIC(PhysicsWorld);
  49. PhysicsWorld::PhysicsWorld(Context* context) :
  50. Component(context),
  51. physicsWorld_(0),
  52. space_(0),
  53. rayGeometry_(0),
  54. contactJoints_(0),
  55. fps_(DEFAULT_FPS),
  56. maxContacts_(DEFAULT_MAX_CONTACTS),
  57. bounceThreshold_(DEFAULT_BOUNCE_THRESHOLD),
  58. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  59. timeAcc_(0.0f),
  60. randomSeed_(0)
  61. {
  62. {
  63. MutexLock lock(GetStaticMutex());
  64. if (!numInstances)
  65. dInitODE();
  66. ++numInstances;
  67. }
  68. // Create the world, the collision space, and contact joint group
  69. physicsWorld_ = dWorldCreate();
  70. space_ = dHashSpaceCreate(0);
  71. contactJoints_ = dJointGroupCreate(0);
  72. // Create ray geometry for physics world raycasts
  73. rayGeometry_ = dCreateRay(0, 0.0f);
  74. // Enable automatic resting of rigid bodies
  75. dWorldSetAutoDisableFlag(physicsWorld_, 1);
  76. contacts_ = new PODVector<dContact>(maxContacts_);
  77. }
  78. PhysicsWorld::~PhysicsWorld()
  79. {
  80. if (scene_)
  81. {
  82. // Force all remaining joints, rigidbodies and collisionshapes to release themselves
  83. PODVector<Node*> nodes;
  84. PODVector<Joint*> joints;
  85. PODVector<CollisionShape*> collisionShapes;
  86. scene_->GetChildrenWithComponent(nodes, Joint::GetTypeStatic(), true);
  87. for (PODVector<Node*>::Iterator i = nodes.Begin(); i != nodes.End(); ++i)
  88. {
  89. (*i)->GetComponents<Joint>(joints);
  90. for (PODVector<Joint*>::Iterator j = joints.Begin(); j != joints.End(); ++j)
  91. (*j)->Clear();
  92. }
  93. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  94. (*i)->ReleaseBody();
  95. scene_->GetChildrenWithComponent(nodes, CollisionShape::GetTypeStatic(), true);
  96. for (PODVector<Node*>::Iterator i = nodes.Begin(); i != nodes.End(); ++i)
  97. {
  98. (*i)->GetComponents<CollisionShape>(collisionShapes);
  99. for (PODVector<CollisionShape*>::Iterator j = collisionShapes.Begin(); j != collisionShapes.End(); ++j)
  100. (*j)->Clear();
  101. }
  102. }
  103. // Remove any cached geometries that still remain
  104. triangleMeshCache_.Clear();
  105. heightfieldCache_.Clear();
  106. // Destroy the global ODE objects
  107. if (contactJoints_)
  108. {
  109. dJointGroupDestroy(contactJoints_);
  110. contactJoints_ = 0;
  111. }
  112. if (rayGeometry_)
  113. {
  114. dGeomDestroy(rayGeometry_);
  115. rayGeometry_ = 0;
  116. }
  117. if (space_)
  118. {
  119. dSpaceDestroy(space_);
  120. space_ = 0;
  121. }
  122. if (contacts_)
  123. {
  124. PODVector<dContact>* contacts = static_cast<PODVector<dContact>*>(contacts_);
  125. delete contacts;
  126. contacts = 0;
  127. }
  128. if (physicsWorld_)
  129. {
  130. dWorldDestroy(physicsWorld_);
  131. physicsWorld_ = 0;
  132. }
  133. // Finally shut down ODE if this was the last instance
  134. {
  135. MutexLock lock(GetStaticMutex());
  136. --numInstances;
  137. if (!numInstances)
  138. dCloseODE();
  139. }
  140. }
  141. void PhysicsWorld::RegisterObject(Context* context)
  142. {
  143. context->RegisterFactory<PhysicsWorld>();
  144. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, Vector3::ZERO, AM_DEFAULT);
  145. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  146. ATTRIBUTE(PhysicsWorld, VAR_INT, "Max Contacts", maxContacts_, DEFAULT_MAX_CONTACTS, AM_DEFAULT);
  147. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Bounce Threshold", bounceThreshold_, DEFAULT_BOUNCE_THRESHOLD, AM_DEFAULT);
  148. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Network Max Ang Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  149. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Lin Rest Threshold", GetLinearRestThreshold, SetLinearRestThreshold, float, 0.01f, AM_DEFAULT);
  150. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Lin Damp Threshold", GetLinearDampingThreshold, SetLinearDampingThreshold, float, 0.01f, AM_DEFAULT);
  151. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Lin Damp Scale", GetLinearDampingScale, SetLinearDampingScale, float, 0.0f, AM_DEFAULT);
  152. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Ang Rest Threshold", GetAngularRestThreshold, SetAngularRestThreshold, float, 0.01f, AM_DEFAULT);
  153. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Ang Damp Threshold", GetAngularDampingThreshold, SetAngularDampingThreshold, float, 0.01f, AM_DEFAULT);
  154. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Ang Damp Scale", GetAngularDampingScale, SetAngularDampingScale, float, 0.0f, AM_DEFAULT);
  155. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "ERP Parameter", GetERP, SetERP, float, 0.2f, AM_DEFAULT);
  156. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "CFM Parameter", GetCFM, SetCFM, float, 0.00001f, AM_DEFAULT);
  157. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Contact Surface Layer", GetContactSurfaceLayer, SetContactSurfaceLayer, float, 0.0f, AM_DEFAULT);
  158. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Time Accumulator", timeAcc_, 0.0f, AM_FILE | AM_NOEDIT);
  159. ATTRIBUTE(PhysicsWorld, VAR_INT, "Random Seed", randomSeed_, 0, AM_FILE | AM_NOEDIT);
  160. }
  161. void PhysicsWorld::Update(float timeStep)
  162. {
  163. PROFILE(UpdatePhysics);
  164. float internalTimeStep = 1.0f / fps_;
  165. while (timeStep > 0.0f)
  166. {
  167. float currentStep = Min(timeStep, internalTimeStep);
  168. timeAcc_ += currentStep;
  169. timeStep -= currentStep;
  170. if (timeAcc_ >= internalTimeStep)
  171. {
  172. timeAcc_ -= internalTimeStep;
  173. // Send pre-step event
  174. using namespace PhysicsPreStep;
  175. VariantMap eventData;
  176. eventData[P_WORLD] = (void*)this;
  177. eventData[P_TIMESTEP] = internalTimeStep;
  178. SendEvent(E_PHYSICSPRESTEP, eventData);
  179. // Store the previous transforms of the physics objects
  180. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  181. (*i)->PreStep();
  182. /// \todo ODE random number generation is not threadsafe
  183. dRandSetSeed(randomSeed_);
  184. // Collide, step the world, and clear contact joints
  185. {
  186. PROFILE(CheckCollisions);
  187. dSpaceCollide(space_, this, NearCallback);
  188. }
  189. {
  190. PROFILE(StepPhysics);
  191. dWorldQuickStep(physicsWorld_, internalTimeStep);
  192. dJointGroupEmpty(contactJoints_);
  193. previousCollisions_ = currentCollisions_;
  194. currentCollisions_.Clear();
  195. }
  196. randomSeed_ = dRandGetSeed();
  197. // Send accumulated collision events
  198. SendCollisionEvents();
  199. // Interpolate transforms of physics objects
  200. processedBodies_.Clear();
  201. float t = Clamp(timeAcc_ / internalTimeStep, 0.0f, 1.0f);
  202. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  203. (*i)->PostStep(t, processedBodies_);
  204. // Send post-step event
  205. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  206. }
  207. }
  208. }
  209. void PhysicsWorld::SetFps(int fps)
  210. {
  211. fps_ = Max(fps, 1);
  212. }
  213. void PhysicsWorld::SetMaxContacts(unsigned num)
  214. {
  215. maxContacts_ = Max(num, 1);
  216. PODVector<dContact>* contacts = static_cast<PODVector<dContact>*>(contacts_);
  217. contacts->Resize(maxContacts_);
  218. }
  219. void PhysicsWorld::SetGravity(Vector3 gravity)
  220. {
  221. dWorldSetGravity(physicsWorld_, gravity.x_, gravity.y_, gravity.z_);
  222. }
  223. void PhysicsWorld::SetLinearRestThreshold(float threshold)
  224. {
  225. dWorldSetAutoDisableLinearThreshold(physicsWorld_, Max(threshold, 0.0f));
  226. }
  227. void PhysicsWorld::SetLinearDampingThreshold(float threshold)
  228. {
  229. dWorldSetLinearDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  230. }
  231. void PhysicsWorld::SetLinearDampingScale(float scale)
  232. {
  233. dWorldSetLinearDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  234. }
  235. void PhysicsWorld::SetAngularRestThreshold(float threshold)
  236. {
  237. dWorldSetAutoDisableAngularThreshold(physicsWorld_, threshold);
  238. }
  239. void PhysicsWorld::SetAngularDampingThreshold(float threshold)
  240. {
  241. dWorldSetAngularDampingThreshold(physicsWorld_, Max(threshold, 0.0f));
  242. }
  243. void PhysicsWorld::SetAngularDampingScale(float scale)
  244. {
  245. dWorldSetAngularDamping(physicsWorld_, Clamp(scale, 0.0f, 1.0f));
  246. }
  247. void PhysicsWorld::SetBounceThreshold(float threshold)
  248. {
  249. bounceThreshold_ = Max(threshold, 0.0f);
  250. }
  251. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  252. {
  253. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  254. }
  255. void PhysicsWorld::SetERP(float erp)
  256. {
  257. dWorldSetERP(physicsWorld_, erp);
  258. }
  259. void PhysicsWorld::SetCFM(float cfm)
  260. {
  261. dWorldSetCFM(physicsWorld_, cfm);
  262. }
  263. void PhysicsWorld::SetContactSurfaceLayer(float depth)
  264. {
  265. dWorldSetContactSurfaceLayer(physicsWorld_, depth);
  266. }
  267. void PhysicsWorld::SetTimeAccumulator(float time)
  268. {
  269. timeAcc_ = time;
  270. }
  271. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  272. {
  273. PROFILE(PhysicsRaycast);
  274. result.Clear();
  275. dGeomRaySetLength(rayGeometry_, maxDistance);
  276. dGeomRaySet(rayGeometry_, ray.origin_.x_, ray.origin_.y_, ray.origin_.z_, ray.direction_.x_, ray.direction_.y_, ray.direction_.z_);
  277. dGeomSetCollideBits(rayGeometry_, collisionMask);
  278. dSpaceCollide2(rayGeometry_, (dGeomID)space_, &result, RaycastCallback);
  279. Sort(result.Begin(), result.End(), CompareRaycastResults);
  280. }
  281. Vector3 PhysicsWorld::GetGravity() const
  282. {
  283. dVector3 g;
  284. dWorldGetGravity(physicsWorld_, g);
  285. return Vector3(g[0], g[1], g[2]);
  286. }
  287. float PhysicsWorld::GetLinearRestThreshold() const
  288. {
  289. return dWorldGetAutoDisableLinearThreshold(physicsWorld_);
  290. }
  291. float PhysicsWorld::GetLinearDampingThreshold() const
  292. {
  293. return dWorldGetLinearDampingThreshold(physicsWorld_);
  294. }
  295. float PhysicsWorld::GetLinearDampingScale() const
  296. {
  297. return dWorldGetLinearDamping(physicsWorld_);
  298. }
  299. float PhysicsWorld::GetAngularRestThreshold() const
  300. {
  301. return dWorldGetAutoDisableAngularThreshold(physicsWorld_);
  302. }
  303. float PhysicsWorld::GetAngularDampingThreshold() const
  304. {
  305. return dWorldGetAngularDampingThreshold(physicsWorld_);
  306. }
  307. float PhysicsWorld::GetAngularDampingScale() const
  308. {
  309. return dWorldGetAngularDamping(physicsWorld_);
  310. }
  311. float PhysicsWorld::GetERP() const
  312. {
  313. return dWorldGetERP(physicsWorld_);
  314. }
  315. float PhysicsWorld::GetCFM() const
  316. {
  317. return dWorldGetCFM(physicsWorld_);
  318. }
  319. float PhysicsWorld::GetContactSurfaceLayer() const
  320. {
  321. return dWorldGetContactSurfaceLayer(physicsWorld_);
  322. }
  323. void PhysicsWorld::AddRigidBody(RigidBody* body)
  324. {
  325. rigidBodies_.Push(body);
  326. }
  327. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  328. {
  329. PODVector<RigidBody*>::Iterator i = rigidBodies_.Find(body);
  330. if (i != rigidBodies_.End())
  331. rigidBodies_.Erase(i);
  332. }
  333. void PhysicsWorld::SendCollisionEvents()
  334. {
  335. PROFILE(SendCollisionEvents);
  336. VariantMap physicsCollisionData;
  337. VariantMap nodeCollisionData;
  338. VectorBuffer contacts;
  339. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  340. for (Vector<PhysicsCollisionInfo>::ConstIterator i = collisionInfos_.Begin(); i != collisionInfos_.End(); ++i)
  341. {
  342. // Skip if either of the nodes has been removed
  343. if (!i->nodeA_ || !i->nodeB_)
  344. continue;
  345. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)i->nodeA_;
  346. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)i->nodeB_;
  347. physicsCollisionData[PhysicsCollision::P_SHAPEA] = (void*)i->shapeA_;
  348. physicsCollisionData[PhysicsCollision::P_SHAPEB] = (void*)i->shapeB_;
  349. physicsCollisionData[PhysicsCollision::P_NEWCOLLISION] = i->newCollision_;
  350. contacts.Clear();
  351. for (unsigned j = 0; j < i->contacts_.Size(); ++j)
  352. {
  353. contacts.WriteVector3(i->contacts_[j].position_);
  354. contacts.WriteVector3(i->contacts_[j].normal_);
  355. contacts.WriteFloat(i->contacts_[j].depth_);
  356. contacts.WriteFloat(i->contacts_[j].velocity_);
  357. }
  358. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  359. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  360. // Skip if either of the nodes is null, or has been removed as a response to the event
  361. if (!i->nodeA_ || !i->nodeB_)
  362. continue;
  363. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeA_;
  364. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeB_;
  365. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeB_;
  366. nodeCollisionData[NodeCollision::P_NEWCOLLISION] = i->newCollision_;
  367. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  368. SendEvent(i->nodeA_, E_NODECOLLISION, nodeCollisionData);
  369. // Skip if either of the nodes has been removed as a response to the event
  370. if (!i->nodeA_ || !i->nodeB_)
  371. continue;
  372. contacts.Clear();
  373. for (unsigned j = 0; j < i->contacts_.Size(); ++j)
  374. {
  375. contacts.WriteVector3(i->contacts_[j].position_);
  376. contacts.WriteVector3(-i->contacts_[j].normal_);
  377. contacts.WriteFloat(i->contacts_[j].depth_);
  378. contacts.WriteFloat(i->contacts_[j].velocity_);
  379. }
  380. nodeCollisionData[NodeCollision::P_SHAPE] = (void*)i->shapeB_;
  381. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)i->nodeA_;
  382. nodeCollisionData[NodeCollision::P_OTHERSHAPE] = (void*)i->shapeA_;
  383. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  384. SendEvent(i->nodeB_, E_NODECOLLISION, nodeCollisionData);
  385. }
  386. collisionInfos_.Clear();
  387. }
  388. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  389. {
  390. PROFILE(PhysicsDrawDebug);
  391. DebugRenderer* debug = GetComponent<DebugRenderer>();
  392. if (!debug)
  393. return;
  394. // Get all geometries, also those that have no rigid bodies
  395. PODVector<Node*> nodes;
  396. PODVector<CollisionShape*> shapes;
  397. node_->GetChildrenWithComponent<CollisionShape>(nodes, true);
  398. for (PODVector<Node*>::Iterator i = nodes.Begin(); i != nodes.End(); ++i)
  399. {
  400. (*i)->GetComponents<CollisionShape>(shapes);
  401. for (Vector<CollisionShape*>::Iterator j = shapes.Begin(); j != shapes.End(); ++j)
  402. (*j)->DrawDebugGeometry(debug, depthTest);
  403. }
  404. }
  405. void PhysicsWorld::CleanupGeometryCache()
  406. {
  407. // Remove cached shapes whose only reference is the cache itself
  408. for (Map<String, SharedPtr<TriangleMeshData> >::Iterator i = triangleMeshCache_.Begin();
  409. i != triangleMeshCache_.End();)
  410. {
  411. Map<String, SharedPtr<TriangleMeshData> >::Iterator current = i++;
  412. if (current->second_.Refs() == 1)
  413. triangleMeshCache_.Erase(current);
  414. }
  415. for (Map<String, SharedPtr<HeightfieldData> >::Iterator i = heightfieldCache_.Begin();
  416. i != heightfieldCache_.End();)
  417. {
  418. Map<String, SharedPtr<HeightfieldData> >::Iterator current = i++;
  419. if (current->second_.Refs() == 1)
  420. heightfieldCache_.Erase(current);
  421. }
  422. }
  423. void PhysicsWorld::OnNodeSet(Node* node)
  424. {
  425. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  426. if (node)
  427. {
  428. scene_ = node->GetScene();
  429. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  430. }
  431. }
  432. void PhysicsWorld::NearCallback(void *userData, dGeomID geomA, dGeomID geomB)
  433. {
  434. dBodyID bodyA = dGeomGetBody(geomA);
  435. dBodyID bodyB = dGeomGetBody(geomB);
  436. // If both geometries are static, no collision
  437. if (!bodyA && !bodyB)
  438. return;
  439. // If the geometries belong to the same body, no collision
  440. if (bodyA == bodyB)
  441. return;
  442. // If the bodies are already connected via other joints, no collision
  443. if (bodyA && bodyB && dAreConnectedExcluding(bodyA, bodyB, dJointTypeContact))
  444. return;
  445. // If both bodies are inactive, no collision
  446. RigidBody* rigidBodyA = bodyA ? static_cast<RigidBody*>(dBodyGetData(bodyA)) : 0;
  447. RigidBody* rigidBodyB = bodyB ? static_cast<RigidBody*>(dBodyGetData(bodyB)) : 0;
  448. if (rigidBodyA && !rigidBodyA->IsActive() && rigidBodyB && !rigidBodyB->IsActive())
  449. return;
  450. PhysicsWorld* world = static_cast<PhysicsWorld*>(userData);
  451. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  452. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  453. Node* nodeA = shapeA->GetNode();
  454. Node* nodeB = shapeB->GetNode();
  455. // Calculate average friction & bounce (physically incorrect)
  456. float friction = (shapeA->GetFriction() + shapeB->GetFriction()) * 0.5f;
  457. float bounce = (shapeA->GetBounce() + shapeB->GetBounce()) * 0.5f;
  458. PODVector<dContact>& contacts = *(static_cast<PODVector<dContact>*>(world->contacts_));
  459. for (unsigned i = 0; i < world->maxContacts_; ++i)
  460. {
  461. contacts[i].surface.mode = dContactApprox1;
  462. contacts[i].surface.mu = friction;
  463. if (bounce > 0.0f)
  464. {
  465. contacts[i].surface.mode |= dContactBounce;
  466. contacts[i].surface.bounce = bounce;
  467. contacts[i].surface.bounce_vel = world->bounceThreshold_;
  468. }
  469. }
  470. unsigned numContacts = dCollide(geomA, geomB, world->maxContacts_, &contacts[0].geom, sizeof(dContact));
  471. if (!numContacts)
  472. return;
  473. Pair<RigidBody*, RigidBody*> bodyPair;
  474. if (rigidBodyA < rigidBodyB)
  475. bodyPair = MakePair(rigidBodyA, rigidBodyB);
  476. else
  477. bodyPair = MakePair(rigidBodyB, rigidBodyA);
  478. PhysicsCollisionInfo collisionInfo;
  479. collisionInfo.nodeA_ = nodeA;
  480. collisionInfo.nodeB_ = nodeB;
  481. collisionInfo.shapeA_ = shapeA;
  482. collisionInfo.shapeB_ = shapeB;
  483. collisionInfo.newCollision_ = world->previousCollisions_.Find(bodyPair) == world->previousCollisions_.End();
  484. collisionInfo.contacts_.Clear();
  485. world->currentCollisions_.Insert(bodyPair);
  486. for (unsigned i = 0; i < numContacts; ++i)
  487. {
  488. // Calculate isotropic friction direction from relative tangent velocity between bodies
  489. // Adapted from http://www.ode.org/old_list_archives/2005-May/015836.html
  490. dVector3 velA;
  491. if (bodyA)
  492. dBodyGetPointVel(bodyA, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velA);
  493. else
  494. velA[0] = velA[1] = velA[2] = 0.0f;
  495. if (bodyB)
  496. {
  497. dVector3 velB;
  498. dBodyGetPointVel(bodyB, contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2], velB);
  499. velA[0] -= velB[0];
  500. velA[1] -= velB[1];
  501. velA[2] -= velB[2];
  502. }
  503. // Normalize & only use our calculated friction if it has enough precision
  504. float length = sqrtf(velA[0] * velA[0] + velA[1] * velA[1] + velA[2] * velA[2]);
  505. if (length > M_EPSILON)
  506. {
  507. float invLen = 1.0f / length;
  508. velA[0] *= invLen;
  509. velA[1] *= invLen;
  510. velA[2] *= invLen;
  511. // Make sure friction is also perpendicular to normal
  512. dCROSS(contacts[i].fdir1, =, velA, contacts[i].geom.normal);
  513. contacts[i].surface.mode |= dContactFDir1;
  514. }
  515. // If neither of the shapes are phantom, create contact joint
  516. if (!shapeA->IsPhantom() && !shapeB->IsPhantom())
  517. {
  518. dJointID contact = dJointCreateContact(world->physicsWorld_, world->contactJoints_, &contacts[i]);
  519. dJointAttach(contact, bodyA, bodyB);
  520. }
  521. // Store contact info
  522. PhysicsContactInfo contactInfo;
  523. contactInfo.position_ = Vector3(contacts[i].geom.pos[0], contacts[i].geom.pos[1], contacts[i].geom.pos[2]);
  524. contactInfo.normal_ = Vector3(contacts[i].geom.normal[0], contacts[i].geom.normal[1], contacts[i].geom.normal[2]);
  525. contactInfo.depth_ = contacts[i].geom.depth;
  526. contactInfo.velocity_ = length;
  527. collisionInfo.contacts_.Push(contactInfo);
  528. }
  529. // Store collision info to be sent later
  530. world->collisionInfos_.Push(collisionInfo);
  531. }
  532. void PhysicsWorld::RaycastCallback(void *userData, dGeomID geomA, dGeomID geomB)
  533. {
  534. dContact contact;
  535. unsigned numContacts = dCollide(geomA, geomB, 1, &contact.geom, sizeof(dContact));
  536. if (numContacts > 0)
  537. {
  538. PODVector<PhysicsRaycastResult>* result = static_cast<PODVector<PhysicsRaycastResult>*>(userData);
  539. PhysicsRaycastResult newResult;
  540. CollisionShape* shapeA = static_cast<CollisionShape*>(dGeomGetData(geomA));
  541. CollisionShape* shapeB = static_cast<CollisionShape*>(dGeomGetData(geomB));
  542. // Check which of the geometries is the raycast ray
  543. if (shapeA)
  544. newResult.collisionShape_ = shapeA;
  545. else if (shapeB)
  546. newResult.collisionShape_ = shapeB;
  547. else
  548. return;
  549. newResult.distance_ = contact.geom.depth;
  550. newResult.position_ = Vector3(contact.geom.pos[0], contact.geom.pos[1], contact.geom.pos[2]);
  551. newResult.normal_ = Vector3(contact.geom.normal[0], contact.geom.normal[1], contact.geom.normal[2]);
  552. result->Push(newResult);
  553. }
  554. }
  555. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  556. {
  557. using namespace SceneSubsystemUpdate;
  558. Update(eventData[P_TIMESTEP].GetFloat());
  559. }
  560. void RegisterPhysicsLibrary(Context* context)
  561. {
  562. CollisionShape::RegisterObject(context);
  563. Joint::RegisterObject(context);
  564. RigidBody::RegisterObject(context);
  565. PhysicsWorld::RegisterObject(context);
  566. }