PhysicsWorld.cpp 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739
  1. //
  2. // Copyright (c) 2008-2013 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "Precompiled.h"
  23. #include "CollisionShape.h"
  24. #include "Constraint.h"
  25. #include "Context.h"
  26. #include "DebugRenderer.h"
  27. #include "Log.h"
  28. #include "Mutex.h"
  29. #include "PhysicsEvents.h"
  30. #include "PhysicsUtils.h"
  31. #include "PhysicsWorld.h"
  32. #include "Profiler.h"
  33. #include "Ray.h"
  34. #include "RigidBody.h"
  35. #include "Scene.h"
  36. #include "SceneEvents.h"
  37. #include "Sort.h"
  38. #include <BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <BulletCollision/CollisionShapes/btBoxShape.h>
  41. #include <BulletCollision/CollisionShapes/btSphereShape.h>
  42. #include <BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  43. #include <BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  44. namespace Urho3D
  45. {
  46. static const int DEFAULT_FPS = 60;
  47. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  48. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  49. {
  50. return lhs.distance_ < rhs.distance_;
  51. }
  52. void InternalPreTickCallback(btDynamicsWorld *world, btScalar timeStep)
  53. {
  54. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  55. }
  56. void InternalTickCallback(btDynamicsWorld *world, btScalar timeStep)
  57. {
  58. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  59. }
  60. /// Callback for physics world queries.
  61. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  62. {
  63. /// Construct.
  64. PhysicsQueryCallback(PODVector<RigidBody*>& result) : result_(result)
  65. {
  66. }
  67. /// Add a contact result.
  68. virtual btScalar addSingleResult(btManifoldPoint &, const btCollisionObject *colObj0, int, int, const btCollisionObject *colObj1, int, int)
  69. {
  70. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0->getUserPointer());
  71. if (body && !result_.Contains(body))
  72. result_.Push(body);
  73. body = reinterpret_cast<RigidBody*>(colObj1->getUserPointer());
  74. if (body && !result_.Contains(body))
  75. result_.Push(body);
  76. return 0.0f;
  77. }
  78. /// Found rigid bodies.
  79. PODVector<RigidBody*>& result_;
  80. };
  81. OBJECTTYPESTATIC(PhysicsWorld);
  82. PhysicsWorld::PhysicsWorld(Context* context) :
  83. Component(context),
  84. collisionConfiguration_(0),
  85. collisionDispatcher_(0),
  86. broadphase_(0),
  87. solver_(0),
  88. world_(0),
  89. fps_(DEFAULT_FPS),
  90. timeAcc_(0.0f),
  91. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  92. interpolation_(true),
  93. applyingTransforms_(false),
  94. debugRenderer_(0),
  95. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  96. {
  97. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  98. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  99. broadphase_ = new btDbvtBroadphase();
  100. solver_ = new btSequentialImpulseConstraintSolver();
  101. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  102. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  103. world_->getDispatchInfo().m_useContinuous = true;
  104. world_->setDebugDrawer(this);
  105. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  106. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  107. }
  108. PhysicsWorld::~PhysicsWorld()
  109. {
  110. if (scene_)
  111. {
  112. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  113. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  114. (*i)->ReleaseConstraint();
  115. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  116. (*i)->ReleaseBody();
  117. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  118. (*i)->ReleaseShape();
  119. }
  120. delete world_;
  121. world_ = 0;
  122. delete solver_;
  123. solver_ = 0;
  124. delete broadphase_;
  125. broadphase_ = 0;
  126. delete collisionDispatcher_;
  127. collisionDispatcher_ = 0;
  128. delete collisionConfiguration_;
  129. collisionConfiguration_ = 0;
  130. }
  131. void PhysicsWorld::RegisterObject(Context* context)
  132. {
  133. context->RegisterFactory<PhysicsWorld>();
  134. ACCESSOR_ATTRIBUTE(PhysicsWorld, VAR_VECTOR3, "Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  135. ATTRIBUTE(PhysicsWorld, VAR_INT, "Physics FPS", fps_, DEFAULT_FPS, AM_DEFAULT);
  136. ATTRIBUTE(PhysicsWorld, VAR_FLOAT, "Net Max Angular Vel.", maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  137. ATTRIBUTE(PhysicsWorld, VAR_BOOL, "Interpolation", interpolation_, true, AM_FILE);
  138. }
  139. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  140. {
  141. if (debugRenderer_)
  142. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  143. else
  144. return false;
  145. }
  146. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  147. {
  148. if (debugRenderer_)
  149. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  150. }
  151. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  152. {
  153. if (debug)
  154. {
  155. PROFILE(PhysicsDrawDebug);
  156. debugRenderer_ = debug;
  157. debugDepthTest_ = depthTest;
  158. world_->debugDrawWorld();
  159. debugRenderer_ = 0;
  160. }
  161. }
  162. void PhysicsWorld::reportErrorWarning(const char* warningString)
  163. {
  164. LOGWARNING("Physics: " + String(warningString));
  165. }
  166. void PhysicsWorld::Update(float timeStep)
  167. {
  168. PROFILE(UpdatePhysics);
  169. float internalTimeStep = 1.0f / fps_;
  170. delayedWorldTransforms_.Clear();
  171. if (interpolation_)
  172. {
  173. int maxSubSteps = (int)(timeStep * fps_) + 1;
  174. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  175. }
  176. else
  177. {
  178. timeAcc_ += timeStep;
  179. while (timeAcc_ >= internalTimeStep)
  180. {
  181. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  182. timeAcc_ -= internalTimeStep;
  183. }
  184. }
  185. // Apply delayed (parented) world transforms now
  186. while (!delayedWorldTransforms_.Empty())
  187. {
  188. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  189. i != delayedWorldTransforms_.End(); ++i)
  190. {
  191. const DelayedWorldTransform& transform = i->second_;
  192. // If parent's transform has already been assigned, can proceed
  193. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  194. {
  195. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  196. delayedWorldTransforms_.Erase(i);
  197. }
  198. }
  199. }
  200. }
  201. void PhysicsWorld::UpdateCollisions()
  202. {
  203. world_->performDiscreteCollisionDetection();
  204. }
  205. void PhysicsWorld::SetFps(int fps)
  206. {
  207. fps_ = Clamp(fps, 1, 1000);
  208. }
  209. void PhysicsWorld::SetGravity(Vector3 gravity)
  210. {
  211. world_->setGravity(ToBtVector3(gravity));
  212. }
  213. void PhysicsWorld::SetInterpolation(bool enable)
  214. {
  215. interpolation_ = enable;
  216. }
  217. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  218. {
  219. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  220. }
  221. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  222. {
  223. PROFILE(PhysicsRaycast);
  224. btCollisionWorld::AllHitsRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  225. maxDistance * ray.direction_));
  226. rayCallback.m_collisionFilterGroup = (short)0xffff;
  227. rayCallback.m_collisionFilterMask = collisionMask;
  228. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  229. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  230. {
  231. PhysicsRaycastResult newResult;
  232. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  233. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  234. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  235. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  236. result.Push(newResult);
  237. }
  238. Sort(result.Begin(), result.End(), CompareRaycastResults);
  239. }
  240. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  241. {
  242. PROFILE(PhysicsRaycastSingle);
  243. btCollisionWorld::ClosestRayResultCallback rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  244. maxDistance * ray.direction_));
  245. rayCallback.m_collisionFilterGroup = (short)0xffff;
  246. rayCallback.m_collisionFilterMask = collisionMask;
  247. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  248. if (rayCallback.hasHit())
  249. {
  250. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  251. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  252. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  253. result.distance_ = (result.position_ - ray.origin_).Length();
  254. }
  255. else
  256. {
  257. result.body_ = 0;
  258. result.position_ = Vector3::ZERO;
  259. result.normal_ = Vector3::ZERO;
  260. result.distance_ = M_INFINITY;
  261. }
  262. }
  263. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  264. {
  265. PROFILE(PhysicsSphereCast);
  266. btSphereShape shape(radius);
  267. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ +
  268. maxDistance * ray.direction_));
  269. convexCallback.m_collisionFilterGroup = (short)0xffff;
  270. convexCallback.m_collisionFilterMask = collisionMask;
  271. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  272. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  273. if (convexCallback.hasHit())
  274. {
  275. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  276. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  277. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  278. result.distance_ = (result.position_ - ray.origin_).Length();
  279. }
  280. else
  281. {
  282. result.body_ = 0;
  283. result.position_ = Vector3::ZERO;
  284. result.normal_ = Vector3::ZERO;
  285. result.distance_ = M_INFINITY;
  286. }
  287. }
  288. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  289. {
  290. PROFILE(PhysicsSphereQuery);
  291. result.Clear();
  292. btSphereShape sphereShape(sphere.radius_);
  293. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  294. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  295. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  296. tempRigidBody->activate();
  297. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  298. PhysicsQueryCallback callback(result);
  299. world_->contactTest(tempRigidBody, callback);
  300. world_->removeRigidBody(tempRigidBody);
  301. delete tempRigidBody;
  302. }
  303. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  304. {
  305. PROFILE(PhysicsBoxQuery);
  306. result.Clear();
  307. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  308. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  309. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  310. tempRigidBody->activate();
  311. world_->addRigidBody(tempRigidBody, (short)0xffff, (short)collisionMask);
  312. PhysicsQueryCallback callback(result);
  313. world_->contactTest(tempRigidBody, callback);
  314. world_->removeRigidBody(tempRigidBody);
  315. delete tempRigidBody;
  316. }
  317. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  318. {
  319. PROFILE(GetCollidingBodies);
  320. result.Clear();
  321. for (HashSet<Pair<RigidBody*, RigidBody*> >::Iterator i = currentCollisions_.Begin(); i != currentCollisions_.End(); ++i)
  322. {
  323. if (i->first_ == body)
  324. result.Push(i->second_);
  325. else if (i->second_ == body)
  326. result.Push(i->first_);
  327. }
  328. }
  329. Vector3 PhysicsWorld::GetGravity() const
  330. {
  331. return ToVector3(world_->getGravity());
  332. }
  333. void PhysicsWorld::AddRigidBody(RigidBody* body)
  334. {
  335. rigidBodies_.Push(body);
  336. }
  337. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  338. {
  339. rigidBodies_.Remove(body);
  340. // Erase from collision pairs so that they can be used to safely find overlapping bodies
  341. for (HashSet<Pair<RigidBody*, RigidBody*> >::Iterator i = currentCollisions_.Begin(); i != currentCollisions_.End();)
  342. {
  343. if (i->first_ == body || i->second_ == body)
  344. i = currentCollisions_.Erase(i);
  345. else
  346. ++i;
  347. }
  348. for (HashSet<Pair<RigidBody*, RigidBody*> >::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End();)
  349. {
  350. if (i->first_ == body || i->second_ == body)
  351. i = previousCollisions_.Erase(i);
  352. else
  353. ++i;
  354. }
  355. }
  356. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  357. {
  358. collisionShapes_.Push(shape);
  359. }
  360. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  361. {
  362. collisionShapes_.Remove(shape);
  363. }
  364. void PhysicsWorld::AddConstraint(Constraint* constraint)
  365. {
  366. constraints_.Push(constraint);
  367. }
  368. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  369. {
  370. constraints_.Remove(constraint);
  371. }
  372. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  373. {
  374. delayedWorldTransforms_[transform.rigidBody_] = transform;
  375. }
  376. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  377. {
  378. DebugRenderer* debug = GetComponent<DebugRenderer>();
  379. DrawDebugGeometry(debug, depthTest);
  380. }
  381. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  382. {
  383. debugRenderer_ = debug;
  384. }
  385. void PhysicsWorld::SetDebugDepthTest(bool enable)
  386. {
  387. debugDepthTest_ = enable;
  388. }
  389. void PhysicsWorld::CleanupGeometryCache()
  390. {
  391. // Remove cached shapes whose only reference is the cache itself
  392. for (HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator i = geometryCache_.Begin();
  393. i != geometryCache_.End();)
  394. {
  395. HashMap<String, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  396. if (current->second_.Refs() == 1)
  397. geometryCache_.Erase(current);
  398. }
  399. }
  400. void PhysicsWorld::OnNodeSet(Node* node)
  401. {
  402. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  403. if (node)
  404. {
  405. scene_ = GetScene();
  406. SubscribeToEvent(node, E_SCENESUBSYSTEMUPDATE, HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  407. }
  408. }
  409. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  410. {
  411. using namespace SceneSubsystemUpdate;
  412. Update(eventData[P_TIMESTEP].GetFloat());
  413. }
  414. void PhysicsWorld::PreStep(float timeStep)
  415. {
  416. // Send pre-step event
  417. using namespace PhysicsPreStep;
  418. VariantMap eventData;
  419. eventData[P_WORLD] = (void*)this;
  420. eventData[P_TIMESTEP] = timeStep;
  421. SendEvent(E_PHYSICSPRESTEP, eventData);
  422. // Start profiling block for the actual simulation step
  423. #ifdef ENABLE_PROFILING
  424. Profiler* profiler = GetSubsystem<Profiler>();
  425. if (profiler)
  426. profiler->BeginBlock("StepSimulation");
  427. #endif
  428. }
  429. void PhysicsWorld::PostStep(float timeStep)
  430. {
  431. #ifdef ENABLE_PROFILING
  432. Profiler* profiler = GetSubsystem<Profiler>();
  433. if (profiler)
  434. profiler->EndBlock();
  435. #endif
  436. SendCollisionEvents();
  437. // Send post-step event
  438. using namespace PhysicsPreStep;
  439. VariantMap eventData;
  440. eventData[P_WORLD] = (void*)this;
  441. eventData[P_TIMESTEP] = timeStep;
  442. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  443. }
  444. void PhysicsWorld::SendCollisionEvents()
  445. {
  446. PROFILE(SendCollisionEvents);
  447. currentCollisions_.Clear();
  448. int numManifolds = collisionDispatcher_->getNumManifolds();
  449. if (numManifolds)
  450. {
  451. VariantMap physicsCollisionData;
  452. VariantMap nodeCollisionData;
  453. VectorBuffer contacts;
  454. physicsCollisionData[PhysicsCollision::P_WORLD] = (void*)this;
  455. for (int i = 0; i < numManifolds; ++i)
  456. {
  457. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  458. int numContacts = contactManifold->getNumContacts();
  459. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  460. if (!numContacts)
  461. continue;
  462. btCollisionObject* objectA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  463. btCollisionObject* objectB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  464. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  465. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  466. // If it's not a rigidbody, maybe a ghost object
  467. if (!bodyA || !bodyB)
  468. continue;
  469. WeakPtr<RigidBody> bodyWeakA(bodyA);
  470. WeakPtr<RigidBody> bodyWeakB(bodyB);
  471. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  472. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  473. continue;
  474. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  475. continue;
  476. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  477. !bodyA->IsActive() && !bodyB->IsActive())
  478. continue;
  479. Node* nodeA = bodyA->GetNode();
  480. Node* nodeB = bodyB->GetNode();
  481. WeakPtr<Node> nodeWeakA(nodeA);
  482. WeakPtr<Node> nodeWeakB(nodeB);
  483. Pair<RigidBody*, RigidBody*> bodyPair;
  484. if (bodyA < bodyB)
  485. bodyPair = MakePair(bodyA, bodyB);
  486. else
  487. bodyPair = MakePair(bodyB, bodyA);
  488. currentCollisions_.Insert(bodyPair);
  489. bool newCollision = !previousCollisions_.Contains(bodyPair);
  490. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  491. physicsCollisionData[PhysicsCollision::P_NODEA] = (void*)nodeA;
  492. physicsCollisionData[PhysicsCollision::P_NODEB] = (void*)nodeB;
  493. physicsCollisionData[PhysicsCollision::P_BODYA] = (void*)bodyA;
  494. physicsCollisionData[PhysicsCollision::P_BODYB] = (void*)bodyB;
  495. physicsCollisionData[PhysicsCollision::P_PHANTOM] = phantom;
  496. contacts.Clear();
  497. for (int j = 0; j < numContacts; ++j)
  498. {
  499. btManifoldPoint& point = contactManifold->getContactPoint(j);
  500. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  501. contacts.WriteVector3(ToVector3(point.m_normalWorldOnB));
  502. contacts.WriteFloat(point.m_distance1);
  503. contacts.WriteFloat(point.m_appliedImpulse);
  504. }
  505. physicsCollisionData[PhysicsCollision::P_CONTACTS] = contacts.GetBuffer();
  506. // Send separate collision start event if collision is new
  507. if (newCollision)
  508. {
  509. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData);
  510. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  511. if (!nodeWeakA || !nodeWeakB || !bodyWeakA || !bodyWeakB)
  512. continue;
  513. }
  514. // Then send the ongoing collision event
  515. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData);
  516. if (!nodeWeakA || !nodeWeakB || !bodyWeakA || !bodyWeakB)
  517. continue;
  518. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyA;
  519. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeB;
  520. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyB;
  521. nodeCollisionData[NodeCollision::P_PHANTOM] = phantom;
  522. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  523. if (newCollision)
  524. {
  525. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  526. if (!nodeWeakA || !nodeWeakB || !bodyWeakA || !bodyWeakB)
  527. continue;
  528. }
  529. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData);
  530. if (!nodeWeakA || !nodeWeakB || !bodyWeakA || !bodyWeakB)
  531. continue;
  532. contacts.Clear();
  533. for (int j = 0; j < numContacts; ++j)
  534. {
  535. btManifoldPoint& point = contactManifold->getContactPoint(j);
  536. contacts.WriteVector3(ToVector3(point.m_positionWorldOnB));
  537. contacts.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  538. contacts.WriteFloat(point.m_distance1);
  539. contacts.WriteFloat(point.m_appliedImpulse);
  540. }
  541. nodeCollisionData[NodeCollision::P_BODY] = (void*)bodyB;
  542. nodeCollisionData[NodeCollision::P_OTHERNODE] = (void*)nodeA;
  543. nodeCollisionData[NodeCollision::P_OTHERBODY] = (void*)bodyA;
  544. nodeCollisionData[NodeCollision::P_CONTACTS] = contacts.GetBuffer();
  545. if (newCollision)
  546. {
  547. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData);
  548. if (!nodeWeakA || !nodeWeakB || !bodyWeakA || !bodyWeakB)
  549. continue;
  550. }
  551. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData);
  552. }
  553. }
  554. // Send collision end events as applicable
  555. {
  556. VariantMap physicsCollisionData;
  557. VariantMap nodeCollisionData;
  558. physicsCollisionData[PhysicsCollisionEnd::P_WORLD] = (void*)this;
  559. for (HashSet<Pair<RigidBody*, RigidBody*> >::Iterator i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  560. {
  561. if (!currentCollisions_.Contains(*i))
  562. {
  563. RigidBody* bodyA = i->first_;
  564. RigidBody* bodyB = i->second_;
  565. WeakPtr<RigidBody> bodyWeakA(bodyA);
  566. WeakPtr<RigidBody> bodyWeakB(bodyB);
  567. bool phantom = bodyA->IsPhantom() || bodyB->IsPhantom();
  568. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  569. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  570. continue;
  571. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  572. continue;
  573. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  574. !bodyA->IsActive() && !bodyB->IsActive())
  575. continue;
  576. Node* nodeA = bodyA->GetNode();
  577. Node* nodeB = bodyB->GetNode();
  578. WeakPtr<Node> nodeWeakA(nodeA);
  579. WeakPtr<Node> nodeWeakB(nodeB);
  580. physicsCollisionData[PhysicsCollisionEnd::P_BODYA] = (void*)bodyA;
  581. physicsCollisionData[PhysicsCollisionEnd::P_BODYB] = (void*)bodyB;
  582. physicsCollisionData[PhysicsCollisionEnd::P_NODEA] = (void*)nodeA;
  583. physicsCollisionData[PhysicsCollisionEnd::P_NODEB] = (void*)nodeB;
  584. physicsCollisionData[PhysicsCollisionEnd::P_PHANTOM] = phantom;
  585. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData);
  586. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  587. if (!nodeWeakA || !nodeWeakB || !bodyWeakA || !bodyWeakB)
  588. continue;
  589. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyA;
  590. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeB;
  591. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyB;
  592. nodeCollisionData[NodeCollisionEnd::P_PHANTOM] = phantom;
  593. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  594. if (!nodeWeakA || !nodeWeakB || !bodyWeakA || !bodyWeakB)
  595. continue;
  596. nodeCollisionData[NodeCollisionEnd::P_BODY] = (void*)bodyB;
  597. nodeCollisionData[NodeCollisionEnd::P_OTHERNODE] = (void*)nodeA;
  598. nodeCollisionData[NodeCollisionEnd::P_OTHERBODY] = (void*)bodyA;
  599. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData);
  600. }
  601. }
  602. }
  603. previousCollisions_ = currentCollisions_;
  604. }
  605. void RegisterPhysicsLibrary(Context* context)
  606. {
  607. CollisionShape::RegisterObject(context);
  608. RigidBody::RegisterObject(context);
  609. Constraint::RegisterObject(context);
  610. PhysicsWorld::RegisterObject(context);
  611. }
  612. }