PhysicsWorld.cpp 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065
  1. //
  2. // Copyright (c) 2008-2016 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Mutex.h"
  25. #include "../Core/Profiler.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Graphics/Model.h"
  28. #include "../IO/Log.h"
  29. #include "../Math/Ray.h"
  30. #include "../Physics/CollisionShape.h"
  31. #include "../Physics/Constraint.h"
  32. #include "../Physics/PhysicsEvents.h"
  33. #include "../Physics/PhysicsUtils.h"
  34. #include "../Physics/PhysicsWorld.h"
  35. #include "../Physics/RigidBody.h"
  36. #include "../Scene/Scene.h"
  37. #include "../Scene/SceneEvents.h"
  38. #include <Bullet/BulletCollision/BroadphaseCollision/btDbvtBroadphase.h>
  39. #include <Bullet/BulletCollision/CollisionDispatch/btDefaultCollisionConfiguration.h>
  40. #include <Bullet/BulletCollision/CollisionDispatch/btInternalEdgeUtility.h>
  41. #include <Bullet/BulletCollision/CollisionShapes/btBoxShape.h>
  42. #include <Bullet/BulletCollision/CollisionShapes/btSphereShape.h>
  43. #include <Bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h>
  44. #include <Bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h>
  45. extern ContactAddedCallback gContactAddedCallback;
  46. namespace Urho3D
  47. {
  48. const char* PHYSICS_CATEGORY = "Physics";
  49. extern const char* SUBSYSTEM_CATEGORY;
  50. static const int MAX_SOLVER_ITERATIONS = 256;
  51. static const int DEFAULT_FPS = 60;
  52. static const Vector3 DEFAULT_GRAVITY = Vector3(0.0f, -9.81f, 0.0f);
  53. PhysicsWorldConfig PhysicsWorld::config;
  54. static bool CompareRaycastResults(const PhysicsRaycastResult& lhs, const PhysicsRaycastResult& rhs)
  55. {
  56. return lhs.distance_ < rhs.distance_;
  57. }
  58. void InternalPreTickCallback(btDynamicsWorld* world, btScalar timeStep)
  59. {
  60. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PreStep(timeStep);
  61. }
  62. void InternalTickCallback(btDynamicsWorld* world, btScalar timeStep)
  63. {
  64. static_cast<PhysicsWorld*>(world->getWorldUserInfo())->PostStep(timeStep);
  65. }
  66. static bool CustomMaterialCombinerCallback(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap, int partId0,
  67. int index0, const btCollisionObjectWrapper* colObj1Wrap, int partId1, int index1)
  68. {
  69. btAdjustInternalEdgeContacts(cp, colObj1Wrap, colObj0Wrap, partId1, index1);
  70. cp.m_combinedFriction = colObj0Wrap->getCollisionObject()->getFriction() * colObj1Wrap->getCollisionObject()->getFriction();
  71. cp.m_combinedRestitution =
  72. colObj0Wrap->getCollisionObject()->getRestitution() * colObj1Wrap->getCollisionObject()->getRestitution();
  73. return true;
  74. }
  75. /// Callback for physics world queries.
  76. struct PhysicsQueryCallback : public btCollisionWorld::ContactResultCallback
  77. {
  78. /// Construct.
  79. PhysicsQueryCallback(PODVector<RigidBody*>& result, unsigned collisionMask) :
  80. result_(result),
  81. collisionMask_(collisionMask)
  82. {
  83. }
  84. /// Add a contact result.
  85. virtual btScalar addSingleResult(btManifoldPoint&, const btCollisionObjectWrapper* colObj0Wrap, int, int,
  86. const btCollisionObjectWrapper* colObj1Wrap, int, int)
  87. {
  88. RigidBody* body = reinterpret_cast<RigidBody*>(colObj0Wrap->getCollisionObject()->getUserPointer());
  89. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  90. result_.Push(body);
  91. body = reinterpret_cast<RigidBody*>(colObj1Wrap->getCollisionObject()->getUserPointer());
  92. if (body && !result_.Contains(body) && (body->GetCollisionLayer() & collisionMask_))
  93. result_.Push(body);
  94. return 0.0f;
  95. }
  96. /// Found rigid bodies.
  97. PODVector<RigidBody*>& result_;
  98. /// Collision mask for the query.
  99. unsigned collisionMask_;
  100. };
  101. PhysicsWorld::PhysicsWorld(Context* context) :
  102. Component(context),
  103. collisionConfiguration_(0),
  104. collisionDispatcher_(0),
  105. broadphase_(0),
  106. solver_(0),
  107. world_(0),
  108. fps_(DEFAULT_FPS),
  109. maxSubSteps_(0),
  110. timeAcc_(0.0f),
  111. maxNetworkAngularVelocity_(DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY),
  112. updateEnabled_(true),
  113. interpolation_(true),
  114. internalEdge_(true),
  115. applyingTransforms_(false),
  116. simulating_(false),
  117. debugRenderer_(0),
  118. debugMode_(btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)
  119. {
  120. gContactAddedCallback = CustomMaterialCombinerCallback;
  121. if (PhysicsWorld::config.collisionConfig_)
  122. collisionConfiguration_ = PhysicsWorld::config.collisionConfig_;
  123. else
  124. collisionConfiguration_ = new btDefaultCollisionConfiguration();
  125. collisionDispatcher_ = new btCollisionDispatcher(collisionConfiguration_);
  126. broadphase_ = new btDbvtBroadphase();
  127. solver_ = new btSequentialImpulseConstraintSolver();
  128. world_ = new btDiscreteDynamicsWorld(collisionDispatcher_, broadphase_, solver_, collisionConfiguration_);
  129. world_->setGravity(ToBtVector3(DEFAULT_GRAVITY));
  130. world_->getDispatchInfo().m_useContinuous = true;
  131. world_->getSolverInfo().m_splitImpulse = false; // Disable by default for performance
  132. world_->setDebugDrawer(this);
  133. world_->setInternalTickCallback(InternalPreTickCallback, static_cast<void*>(this), true);
  134. world_->setInternalTickCallback(InternalTickCallback, static_cast<void*>(this), false);
  135. }
  136. PhysicsWorld::~PhysicsWorld()
  137. {
  138. if (scene_)
  139. {
  140. // Force all remaining constraints, rigid bodies and collision shapes to release themselves
  141. for (PODVector<Constraint*>::Iterator i = constraints_.Begin(); i != constraints_.End(); ++i)
  142. (*i)->ReleaseConstraint();
  143. for (PODVector<RigidBody*>::Iterator i = rigidBodies_.Begin(); i != rigidBodies_.End(); ++i)
  144. (*i)->ReleaseBody();
  145. for (PODVector<CollisionShape*>::Iterator i = collisionShapes_.Begin(); i != collisionShapes_.End(); ++i)
  146. (*i)->ReleaseShape();
  147. }
  148. delete world_;
  149. world_ = 0;
  150. delete solver_;
  151. solver_ = 0;
  152. delete broadphase_;
  153. broadphase_ = 0;
  154. delete collisionDispatcher_;
  155. collisionDispatcher_ = 0;
  156. // Delete configuration only if it was the default created by PhysicsWorld
  157. if (!PhysicsWorld::config.collisionConfig_)
  158. delete collisionConfiguration_;
  159. collisionConfiguration_ = 0;
  160. }
  161. void PhysicsWorld::RegisterObject(Context* context)
  162. {
  163. context->RegisterFactory<PhysicsWorld>(SUBSYSTEM_CATEGORY);
  164. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Gravity", GetGravity, SetGravity, Vector3, DEFAULT_GRAVITY, AM_DEFAULT);
  165. URHO3D_ATTRIBUTE("Physics FPS", int, fps_, DEFAULT_FPS, AM_DEFAULT);
  166. URHO3D_ATTRIBUTE("Max Substeps", int, maxSubSteps_, 0, AM_DEFAULT);
  167. URHO3D_ACCESSOR_ATTRIBUTE("Solver Iterations", GetNumIterations, SetNumIterations, int, 10, AM_DEFAULT);
  168. URHO3D_ATTRIBUTE("Net Max Angular Vel.", float, maxNetworkAngularVelocity_, DEFAULT_MAX_NETWORK_ANGULAR_VELOCITY, AM_DEFAULT);
  169. URHO3D_ATTRIBUTE("Interpolation", bool, interpolation_, true, AM_FILE);
  170. URHO3D_ATTRIBUTE("Internal Edge Utility", bool, internalEdge_, true, AM_DEFAULT);
  171. URHO3D_ACCESSOR_ATTRIBUTE("Split Impulse", GetSplitImpulse, SetSplitImpulse, bool, false, AM_DEFAULT);
  172. }
  173. bool PhysicsWorld::isVisible(const btVector3& aabbMin, const btVector3& aabbMax)
  174. {
  175. if (debugRenderer_)
  176. return debugRenderer_->IsInside(BoundingBox(ToVector3(aabbMin), ToVector3(aabbMax)));
  177. else
  178. return false;
  179. }
  180. void PhysicsWorld::drawLine(const btVector3& from, const btVector3& to, const btVector3& color)
  181. {
  182. if (debugRenderer_)
  183. debugRenderer_->AddLine(ToVector3(from), ToVector3(to), Color(color.x(), color.y(), color.z()), debugDepthTest_);
  184. }
  185. void PhysicsWorld::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  186. {
  187. if (debug)
  188. {
  189. URHO3D_PROFILE(PhysicsDrawDebug);
  190. debugRenderer_ = debug;
  191. debugDepthTest_ = depthTest;
  192. world_->debugDrawWorld();
  193. debugRenderer_ = 0;
  194. }
  195. }
  196. void PhysicsWorld::reportErrorWarning(const char* warningString)
  197. {
  198. URHO3D_LOGWARNING("Physics: " + String(warningString));
  199. }
  200. void PhysicsWorld::drawContactPoint(const btVector3& pointOnB, const btVector3& normalOnB, btScalar distance, int lifeTime,
  201. const btVector3& color)
  202. {
  203. }
  204. void PhysicsWorld::draw3dText(const btVector3& location, const char* textString)
  205. {
  206. }
  207. void PhysicsWorld::Update(float timeStep)
  208. {
  209. URHO3D_PROFILE(UpdatePhysics);
  210. float internalTimeStep = 1.0f / fps_;
  211. int maxSubSteps = (int)(timeStep * fps_) + 1;
  212. if (maxSubSteps_ < 0)
  213. {
  214. internalTimeStep = timeStep;
  215. maxSubSteps = 1;
  216. }
  217. else if (maxSubSteps_ > 0)
  218. maxSubSteps = Min(maxSubSteps, maxSubSteps_);
  219. delayedWorldTransforms_.Clear();
  220. simulating_ = true;
  221. if (interpolation_)
  222. world_->stepSimulation(timeStep, maxSubSteps, internalTimeStep);
  223. else
  224. {
  225. timeAcc_ += timeStep;
  226. while (timeAcc_ >= internalTimeStep && maxSubSteps > 0)
  227. {
  228. world_->stepSimulation(internalTimeStep, 0, internalTimeStep);
  229. timeAcc_ -= internalTimeStep;
  230. --maxSubSteps;
  231. }
  232. }
  233. simulating_ = false;
  234. // Apply delayed (parented) world transforms now
  235. while (!delayedWorldTransforms_.Empty())
  236. {
  237. for (HashMap<RigidBody*, DelayedWorldTransform>::Iterator i = delayedWorldTransforms_.Begin();
  238. i != delayedWorldTransforms_.End();)
  239. {
  240. const DelayedWorldTransform& transform = i->second_;
  241. // If parent's transform has already been assigned, can proceed
  242. if (!delayedWorldTransforms_.Contains(transform.parentRigidBody_))
  243. {
  244. transform.rigidBody_->ApplyWorldTransform(transform.worldPosition_, transform.worldRotation_);
  245. i = delayedWorldTransforms_.Erase(i);
  246. }
  247. else
  248. ++i;
  249. }
  250. }
  251. }
  252. void PhysicsWorld::UpdateCollisions()
  253. {
  254. world_->performDiscreteCollisionDetection();
  255. }
  256. void PhysicsWorld::SetFps(int fps)
  257. {
  258. fps_ = (unsigned)Clamp(fps, 1, 1000);
  259. MarkNetworkUpdate();
  260. }
  261. void PhysicsWorld::SetGravity(const Vector3& gravity)
  262. {
  263. world_->setGravity(ToBtVector3(gravity));
  264. MarkNetworkUpdate();
  265. }
  266. void PhysicsWorld::SetMaxSubSteps(int num)
  267. {
  268. maxSubSteps_ = num;
  269. MarkNetworkUpdate();
  270. }
  271. void PhysicsWorld::SetNumIterations(int num)
  272. {
  273. num = Clamp(num, 1, MAX_SOLVER_ITERATIONS);
  274. world_->getSolverInfo().m_numIterations = num;
  275. MarkNetworkUpdate();
  276. }
  277. void PhysicsWorld::SetUpdateEnabled(bool enable)
  278. {
  279. updateEnabled_ = enable;
  280. }
  281. void PhysicsWorld::SetInterpolation(bool enable)
  282. {
  283. interpolation_ = enable;
  284. }
  285. void PhysicsWorld::SetInternalEdge(bool enable)
  286. {
  287. internalEdge_ = enable;
  288. MarkNetworkUpdate();
  289. }
  290. void PhysicsWorld::SetSplitImpulse(bool enable)
  291. {
  292. world_->getSolverInfo().m_splitImpulse = enable;
  293. MarkNetworkUpdate();
  294. }
  295. void PhysicsWorld::SetMaxNetworkAngularVelocity(float velocity)
  296. {
  297. maxNetworkAngularVelocity_ = Clamp(velocity, 1.0f, 32767.0f);
  298. MarkNetworkUpdate();
  299. }
  300. void PhysicsWorld::Raycast(PODVector<PhysicsRaycastResult>& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  301. {
  302. URHO3D_PROFILE(PhysicsRaycast);
  303. if (maxDistance >= M_INFINITY)
  304. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  305. btCollisionWorld::AllHitsRayResultCallback
  306. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  307. rayCallback.m_collisionFilterGroup = (short)0xffff;
  308. rayCallback.m_collisionFilterMask = (short)collisionMask;
  309. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  310. for (int i = 0; i < rayCallback.m_collisionObjects.size(); ++i)
  311. {
  312. PhysicsRaycastResult newResult;
  313. newResult.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObjects[i]->getUserPointer());
  314. newResult.position_ = ToVector3(rayCallback.m_hitPointWorld[i]);
  315. newResult.normal_ = ToVector3(rayCallback.m_hitNormalWorld[i]);
  316. newResult.distance_ = (newResult.position_ - ray.origin_).Length();
  317. newResult.hitFraction_ = rayCallback.m_closestHitFraction;
  318. result.Push(newResult);
  319. }
  320. Sort(result.Begin(), result.End(), CompareRaycastResults);
  321. }
  322. void PhysicsWorld::RaycastSingle(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, unsigned collisionMask)
  323. {
  324. URHO3D_PROFILE(PhysicsRaycastSingle);
  325. if (maxDistance >= M_INFINITY)
  326. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  327. btCollisionWorld::ClosestRayResultCallback
  328. rayCallback(ToBtVector3(ray.origin_), ToBtVector3(ray.origin_ + maxDistance * ray.direction_));
  329. rayCallback.m_collisionFilterGroup = (short)0xffff;
  330. rayCallback.m_collisionFilterMask = (short)collisionMask;
  331. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  332. if (rayCallback.hasHit())
  333. {
  334. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  335. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  336. result.distance_ = (result.position_ - ray.origin_).Length();
  337. result.hitFraction_ = rayCallback.m_closestHitFraction;
  338. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  339. }
  340. else
  341. {
  342. result.position_ = Vector3::ZERO;
  343. result.normal_ = Vector3::ZERO;
  344. result.distance_ = M_INFINITY;
  345. result.hitFraction_ = 0.0f;
  346. result.body_ = 0;
  347. }
  348. }
  349. void PhysicsWorld::RaycastSingleSegmented(PhysicsRaycastResult& result, const Ray& ray, float maxDistance, float segmentDistance, unsigned collisionMask)
  350. {
  351. URHO3D_PROFILE(PhysicsRaycastSingleSegmented);
  352. if (maxDistance >= M_INFINITY)
  353. URHO3D_LOGWARNING("Infinite maxDistance in physics raycast is not supported");
  354. btVector3 start = ToBtVector3(ray.origin_);
  355. btVector3 end;
  356. btVector3 direction = ToBtVector3(ray.direction_);
  357. float distance;
  358. for (float remainingDistance = maxDistance; remainingDistance > 0; remainingDistance -= segmentDistance)
  359. {
  360. distance = Min(remainingDistance, segmentDistance);
  361. end = start + distance * direction;
  362. btCollisionWorld::ClosestRayResultCallback rayCallback(start, end);
  363. rayCallback.m_collisionFilterGroup = (short)0xffff;
  364. rayCallback.m_collisionFilterMask = (short)collisionMask;
  365. world_->rayTest(rayCallback.m_rayFromWorld, rayCallback.m_rayToWorld, rayCallback);
  366. if (rayCallback.hasHit())
  367. {
  368. result.position_ = ToVector3(rayCallback.m_hitPointWorld);
  369. result.normal_ = ToVector3(rayCallback.m_hitNormalWorld);
  370. result.distance_ = (result.position_ - ray.origin_).Length();
  371. result.hitFraction_ = rayCallback.m_closestHitFraction;
  372. result.body_ = static_cast<RigidBody*>(rayCallback.m_collisionObject->getUserPointer());
  373. // No need to cast the rest of the segments
  374. return;
  375. }
  376. // Use the end position as the new start position
  377. start = end;
  378. }
  379. // Didn't hit anything
  380. result.position_ = Vector3::ZERO;
  381. result.normal_ = Vector3::ZERO;
  382. result.distance_ = M_INFINITY;
  383. result.hitFraction_ = 0.0f;
  384. result.body_ = 0;
  385. }
  386. void PhysicsWorld::SphereCast(PhysicsRaycastResult& result, const Ray& ray, float radius, float maxDistance, unsigned collisionMask)
  387. {
  388. URHO3D_PROFILE(PhysicsSphereCast);
  389. if (maxDistance >= M_INFINITY)
  390. URHO3D_LOGWARNING("Infinite maxDistance in physics sphere cast is not supported");
  391. btSphereShape shape(radius);
  392. Vector3 endPos = ray.origin_ + maxDistance * ray.direction_;
  393. btCollisionWorld::ClosestConvexResultCallback
  394. convexCallback(ToBtVector3(ray.origin_), ToBtVector3(endPos));
  395. convexCallback.m_collisionFilterGroup = (short)0xffff;
  396. convexCallback.m_collisionFilterMask = (short)collisionMask;
  397. world_->convexSweepTest(&shape, btTransform(btQuaternion::getIdentity(), convexCallback.m_convexFromWorld),
  398. btTransform(btQuaternion::getIdentity(), convexCallback.m_convexToWorld), convexCallback);
  399. if (convexCallback.hasHit())
  400. {
  401. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  402. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  403. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  404. result.distance_ = convexCallback.m_closestHitFraction * (endPos - ray.origin_).Length();
  405. result.hitFraction_ = convexCallback.m_closestHitFraction;
  406. }
  407. else
  408. {
  409. result.body_ = 0;
  410. result.position_ = Vector3::ZERO;
  411. result.normal_ = Vector3::ZERO;
  412. result.distance_ = M_INFINITY;
  413. result.hitFraction_ = 0.0f;
  414. }
  415. }
  416. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, CollisionShape* shape, const Vector3& startPos,
  417. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  418. {
  419. if (!shape || !shape->GetCollisionShape())
  420. {
  421. URHO3D_LOGERROR("Null collision shape for convex cast");
  422. result.body_ = 0;
  423. result.position_ = Vector3::ZERO;
  424. result.normal_ = Vector3::ZERO;
  425. result.distance_ = M_INFINITY;
  426. result.hitFraction_ = 0.0f;
  427. return;
  428. }
  429. // If shape is attached in a rigidbody, set its collision group temporarily to 0 to make sure it is not returned in the sweep result
  430. RigidBody* bodyComp = shape->GetComponent<RigidBody>();
  431. btRigidBody* body = bodyComp ? bodyComp->GetBody() : (btRigidBody*)0;
  432. btBroadphaseProxy* proxy = body ? body->getBroadphaseProxy() : (btBroadphaseProxy*)0;
  433. short group = 0;
  434. if (proxy)
  435. {
  436. group = proxy->m_collisionFilterGroup;
  437. proxy->m_collisionFilterGroup = 0;
  438. }
  439. // Take the shape's offset position & rotation into account
  440. Node* shapeNode = shape->GetNode();
  441. Matrix3x4 startTransform(startPos, startRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  442. Matrix3x4 endTransform(endPos, endRot, shapeNode ? shapeNode->GetWorldScale() : Vector3::ONE);
  443. Vector3 effectiveStartPos = startTransform * shape->GetPosition();
  444. Vector3 effectiveEndPos = endTransform * shape->GetPosition();
  445. Quaternion effectiveStartRot = startRot * shape->GetRotation();
  446. Quaternion effectiveEndRot = endRot * shape->GetRotation();
  447. ConvexCast(result, shape->GetCollisionShape(), effectiveStartPos, effectiveStartRot, effectiveEndPos, effectiveEndRot, collisionMask);
  448. // Restore the collision group
  449. if (proxy)
  450. proxy->m_collisionFilterGroup = group;
  451. }
  452. void PhysicsWorld::ConvexCast(PhysicsRaycastResult& result, btCollisionShape* shape, const Vector3& startPos,
  453. const Quaternion& startRot, const Vector3& endPos, const Quaternion& endRot, unsigned collisionMask)
  454. {
  455. if (!shape)
  456. {
  457. URHO3D_LOGERROR("Null collision shape for convex cast");
  458. result.body_ = 0;
  459. result.position_ = Vector3::ZERO;
  460. result.normal_ = Vector3::ZERO;
  461. result.distance_ = M_INFINITY;
  462. result.hitFraction_ = 0.0f;
  463. return;
  464. }
  465. if (!shape->isConvex())
  466. {
  467. URHO3D_LOGERROR("Can not use non-convex collision shape for convex cast");
  468. result.body_ = 0;
  469. result.position_ = Vector3::ZERO;
  470. result.normal_ = Vector3::ZERO;
  471. result.distance_ = M_INFINITY;
  472. result.hitFraction_ = 0.0f;
  473. return;
  474. }
  475. URHO3D_PROFILE(PhysicsConvexCast);
  476. btCollisionWorld::ClosestConvexResultCallback convexCallback(ToBtVector3(startPos), ToBtVector3(endPos));
  477. convexCallback.m_collisionFilterGroup = (short)0xffff;
  478. convexCallback.m_collisionFilterMask = (short)collisionMask;
  479. world_->convexSweepTest(static_cast<btConvexShape*>(shape), btTransform(ToBtQuaternion(startRot),
  480. convexCallback.m_convexFromWorld), btTransform(ToBtQuaternion(endRot), convexCallback.m_convexToWorld),
  481. convexCallback);
  482. if (convexCallback.hasHit())
  483. {
  484. result.body_ = static_cast<RigidBody*>(convexCallback.m_hitCollisionObject->getUserPointer());
  485. result.position_ = ToVector3(convexCallback.m_hitPointWorld);
  486. result.normal_ = ToVector3(convexCallback.m_hitNormalWorld);
  487. result.distance_ = convexCallback.m_closestHitFraction * (endPos - startPos).Length();
  488. result.hitFraction_ = convexCallback.m_closestHitFraction;
  489. }
  490. else
  491. {
  492. result.body_ = 0;
  493. result.position_ = Vector3::ZERO;
  494. result.normal_ = Vector3::ZERO;
  495. result.distance_ = M_INFINITY;
  496. result.hitFraction_ = 0.0f;
  497. }
  498. }
  499. void PhysicsWorld::RemoveCachedGeometry(Model* model)
  500. {
  501. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  502. i != triMeshCache_.End();)
  503. {
  504. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  505. if (current->first_.first_ == model)
  506. triMeshCache_.Erase(current);
  507. }
  508. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  509. i != convexCache_.End();)
  510. {
  511. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  512. if (current->first_.first_ == model)
  513. convexCache_.Erase(current);
  514. }
  515. }
  516. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const Sphere& sphere, unsigned collisionMask)
  517. {
  518. URHO3D_PROFILE(PhysicsSphereQuery);
  519. result.Clear();
  520. btSphereShape sphereShape(sphere.radius_);
  521. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &sphereShape);
  522. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(sphere.center_)));
  523. // Need to activate the temporary rigid body to get reliable results from static, sleeping objects
  524. tempRigidBody->activate();
  525. world_->addRigidBody(tempRigidBody);
  526. PhysicsQueryCallback callback(result, collisionMask);
  527. world_->contactTest(tempRigidBody, callback);
  528. world_->removeRigidBody(tempRigidBody);
  529. delete tempRigidBody;
  530. }
  531. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const BoundingBox& box, unsigned collisionMask)
  532. {
  533. URHO3D_PROFILE(PhysicsBoxQuery);
  534. result.Clear();
  535. btBoxShape boxShape(ToBtVector3(box.HalfSize()));
  536. btRigidBody* tempRigidBody = new btRigidBody(1.0f, 0, &boxShape);
  537. tempRigidBody->setWorldTransform(btTransform(btQuaternion::getIdentity(), ToBtVector3(box.Center())));
  538. tempRigidBody->activate();
  539. world_->addRigidBody(tempRigidBody);
  540. PhysicsQueryCallback callback(result, collisionMask);
  541. world_->contactTest(tempRigidBody, callback);
  542. world_->removeRigidBody(tempRigidBody);
  543. delete tempRigidBody;
  544. }
  545. void PhysicsWorld::GetRigidBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  546. {
  547. URHO3D_PROFILE(PhysicsBodyQuery);
  548. result.Clear();
  549. if (!body || !body->GetBody())
  550. return;
  551. PhysicsQueryCallback callback(result, body->GetCollisionMask());
  552. world_->contactTest(body->GetBody(), callback);
  553. // Remove the body itself from the returned list
  554. for (unsigned i = 0; i < result.Size(); i++)
  555. {
  556. if (result[i] == body)
  557. {
  558. result.Erase(i);
  559. break;
  560. }
  561. }
  562. }
  563. void PhysicsWorld::GetCollidingBodies(PODVector<RigidBody*>& result, const RigidBody* body)
  564. {
  565. URHO3D_PROFILE(GetCollidingBodies);
  566. result.Clear();
  567. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  568. i != currentCollisions_.End(); ++i)
  569. {
  570. if (i->first_.first_ == body)
  571. {
  572. if (i->first_.second_)
  573. result.Push(i->first_.second_);
  574. }
  575. else if (i->first_.second_ == body)
  576. {
  577. if (i->first_.first_)
  578. result.Push(i->first_.first_);
  579. }
  580. }
  581. }
  582. Vector3 PhysicsWorld::GetGravity() const
  583. {
  584. return ToVector3(world_->getGravity());
  585. }
  586. int PhysicsWorld::GetNumIterations() const
  587. {
  588. return world_->getSolverInfo().m_numIterations;
  589. }
  590. bool PhysicsWorld::GetSplitImpulse() const
  591. {
  592. return world_->getSolverInfo().m_splitImpulse != 0;
  593. }
  594. void PhysicsWorld::AddRigidBody(RigidBody* body)
  595. {
  596. rigidBodies_.Push(body);
  597. }
  598. void PhysicsWorld::RemoveRigidBody(RigidBody* body)
  599. {
  600. rigidBodies_.Remove(body);
  601. // Remove possible dangling pointer from the delayedWorldTransforms structure
  602. delayedWorldTransforms_.Erase(body);
  603. }
  604. void PhysicsWorld::AddCollisionShape(CollisionShape* shape)
  605. {
  606. collisionShapes_.Push(shape);
  607. }
  608. void PhysicsWorld::RemoveCollisionShape(CollisionShape* shape)
  609. {
  610. collisionShapes_.Remove(shape);
  611. }
  612. void PhysicsWorld::AddConstraint(Constraint* constraint)
  613. {
  614. constraints_.Push(constraint);
  615. }
  616. void PhysicsWorld::RemoveConstraint(Constraint* constraint)
  617. {
  618. constraints_.Remove(constraint);
  619. }
  620. void PhysicsWorld::AddDelayedWorldTransform(const DelayedWorldTransform& transform)
  621. {
  622. delayedWorldTransforms_[transform.rigidBody_] = transform;
  623. }
  624. void PhysicsWorld::DrawDebugGeometry(bool depthTest)
  625. {
  626. DebugRenderer* debug = GetComponent<DebugRenderer>();
  627. DrawDebugGeometry(debug, depthTest);
  628. }
  629. void PhysicsWorld::SetDebugRenderer(DebugRenderer* debug)
  630. {
  631. debugRenderer_ = debug;
  632. }
  633. void PhysicsWorld::SetDebugDepthTest(bool enable)
  634. {
  635. debugDepthTest_ = enable;
  636. }
  637. void PhysicsWorld::CleanupGeometryCache()
  638. {
  639. // Remove cached shapes whose only reference is the cache itself
  640. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = triMeshCache_.Begin();
  641. i != triMeshCache_.End();)
  642. {
  643. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  644. if (current->second_.Refs() == 1)
  645. triMeshCache_.Erase(current);
  646. }
  647. for (HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator i = convexCache_.Begin();
  648. i != convexCache_.End();)
  649. {
  650. HashMap<Pair<Model*, unsigned>, SharedPtr<CollisionGeometryData> >::Iterator current = i++;
  651. if (current->second_.Refs() == 1)
  652. convexCache_.Erase(current);
  653. }
  654. }
  655. void PhysicsWorld::OnSceneSet(Scene* scene)
  656. {
  657. // Subscribe to the scene subsystem update, which will trigger the physics simulation step
  658. if (scene)
  659. {
  660. scene_ = GetScene();
  661. SubscribeToEvent(scene_, E_SCENESUBSYSTEMUPDATE, URHO3D_HANDLER(PhysicsWorld, HandleSceneSubsystemUpdate));
  662. }
  663. else
  664. UnsubscribeFromEvent(E_SCENESUBSYSTEMUPDATE);
  665. }
  666. void PhysicsWorld::HandleSceneSubsystemUpdate(StringHash eventType, VariantMap& eventData)
  667. {
  668. if (!updateEnabled_)
  669. return;
  670. using namespace SceneSubsystemUpdate;
  671. Update(eventData[P_TIMESTEP].GetFloat());
  672. }
  673. void PhysicsWorld::PreStep(float timeStep)
  674. {
  675. // Send pre-step event
  676. using namespace PhysicsPreStep;
  677. VariantMap& eventData = GetEventDataMap();
  678. eventData[P_WORLD] = this;
  679. eventData[P_TIMESTEP] = timeStep;
  680. SendEvent(E_PHYSICSPRESTEP, eventData);
  681. // Start profiling block for the actual simulation step
  682. #ifdef URHO3D_PROFILING
  683. Profiler* profiler = GetSubsystem<Profiler>();
  684. if (profiler)
  685. profiler->BeginBlock("StepSimulation");
  686. #endif
  687. }
  688. void PhysicsWorld::PostStep(float timeStep)
  689. {
  690. #ifdef URHO3D_PROFILING
  691. Profiler* profiler = GetSubsystem<Profiler>();
  692. if (profiler)
  693. profiler->EndBlock();
  694. #endif
  695. SendCollisionEvents();
  696. // Send post-step event
  697. using namespace PhysicsPostStep;
  698. VariantMap& eventData = GetEventDataMap();
  699. eventData[P_WORLD] = this;
  700. eventData[P_TIMESTEP] = timeStep;
  701. SendEvent(E_PHYSICSPOSTSTEP, eventData);
  702. }
  703. void PhysicsWorld::SendCollisionEvents()
  704. {
  705. URHO3D_PROFILE(SendCollisionEvents);
  706. currentCollisions_.Clear();
  707. physicsCollisionData_.Clear();
  708. nodeCollisionData_.Clear();
  709. int numManifolds = collisionDispatcher_->getNumManifolds();
  710. if (numManifolds)
  711. {
  712. physicsCollisionData_[PhysicsCollision::P_WORLD] = this;
  713. for (int i = 0; i < numManifolds; ++i)
  714. {
  715. btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
  716. // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
  717. if (!contactManifold->getNumContacts())
  718. continue;
  719. const btCollisionObject* objectA = contactManifold->getBody0();
  720. const btCollisionObject* objectB = contactManifold->getBody1();
  721. RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
  722. RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
  723. // If it's not a rigidbody, maybe a ghost object
  724. if (!bodyA || !bodyB)
  725. continue;
  726. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  727. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  728. continue;
  729. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  730. continue;
  731. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  732. !bodyA->IsActive() && !bodyB->IsActive())
  733. continue;
  734. WeakPtr<RigidBody> bodyWeakA(bodyA);
  735. WeakPtr<RigidBody> bodyWeakB(bodyB);
  736. Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
  737. if (bodyA < bodyB)
  738. bodyPair = MakePair(bodyWeakA, bodyWeakB);
  739. else
  740. bodyPair = MakePair(bodyWeakB, bodyWeakA);
  741. // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
  742. // objects during collision event handling
  743. currentCollisions_[bodyPair] = contactManifold;
  744. }
  745. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator i = currentCollisions_.Begin();
  746. i != currentCollisions_.End(); ++i)
  747. {
  748. RigidBody* bodyA = i->first_.first_;
  749. RigidBody* bodyB = i->first_.second_;
  750. if (!bodyA || !bodyB)
  751. continue;
  752. btPersistentManifold* contactManifold = i->second_;
  753. Node* nodeA = bodyA->GetNode();
  754. Node* nodeB = bodyB->GetNode();
  755. WeakPtr<Node> nodeWeakA(nodeA);
  756. WeakPtr<Node> nodeWeakB(nodeB);
  757. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  758. bool newCollision = !previousCollisions_.Contains(i->first_);
  759. physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
  760. physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
  761. physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
  762. physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
  763. physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;
  764. contacts_.Clear();
  765. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  766. {
  767. btManifoldPoint& point = contactManifold->getContactPoint(j);
  768. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  769. contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
  770. contacts_.WriteFloat(point.m_distance1);
  771. contacts_.WriteFloat(point.m_appliedImpulse);
  772. }
  773. physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();
  774. // Send separate collision start event if collision is new
  775. if (newCollision)
  776. {
  777. SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
  778. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  779. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  780. continue;
  781. }
  782. // Then send the ongoing collision event
  783. SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
  784. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  785. continue;
  786. nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
  787. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
  788. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
  789. nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
  790. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  791. if (newCollision)
  792. {
  793. nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  794. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  795. continue;
  796. }
  797. nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  798. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  799. continue;
  800. contacts_.Clear();
  801. for (int j = 0; j < contactManifold->getNumContacts(); ++j)
  802. {
  803. btManifoldPoint& point = contactManifold->getContactPoint(j);
  804. contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
  805. contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
  806. contacts_.WriteFloat(point.m_distance1);
  807. contacts_.WriteFloat(point.m_appliedImpulse);
  808. }
  809. nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
  810. nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
  811. nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
  812. nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();
  813. if (newCollision)
  814. {
  815. nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
  816. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  817. continue;
  818. }
  819. nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
  820. }
  821. }
  822. // Send collision end events as applicable
  823. {
  824. physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;
  825. for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, btPersistentManifold*>::Iterator
  826. i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
  827. {
  828. if (!currentCollisions_.Contains(i->first_))
  829. {
  830. RigidBody* bodyA = i->first_.first_;
  831. RigidBody* bodyB = i->first_.second_;
  832. if (!bodyA || !bodyB)
  833. continue;
  834. bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
  835. // Skip collision event signaling if both objects are static, or if collision event mode does not match
  836. if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
  837. continue;
  838. if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
  839. continue;
  840. if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
  841. !bodyA->IsActive() && !bodyB->IsActive())
  842. continue;
  843. Node* nodeA = bodyA->GetNode();
  844. Node* nodeB = bodyB->GetNode();
  845. WeakPtr<Node> nodeWeakA(nodeA);
  846. WeakPtr<Node> nodeWeakB(nodeB);
  847. physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
  848. physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
  849. physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
  850. physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
  851. physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;
  852. SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
  853. // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
  854. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  855. continue;
  856. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
  857. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
  858. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
  859. nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;
  860. nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  861. if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
  862. continue;
  863. nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
  864. nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
  865. nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;
  866. nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
  867. }
  868. }
  869. }
  870. previousCollisions_ = currentCollisions_;
  871. }
  872. void RegisterPhysicsLibrary(Context* context)
  873. {
  874. CollisionShape::RegisterObject(context);
  875. RigidBody::RegisterObject(context);
  876. Constraint::RegisterObject(context);
  877. PhysicsWorld::RegisterObject(context);
  878. }
  879. }