Light.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657
  1. //
  2. // Copyright (c) 2008-2017 the Urho3D project.
  3. //
  4. // Permission is hereby granted, free of charge, to any person obtaining a copy
  5. // of this software and associated documentation files (the "Software"), to deal
  6. // in the Software without restriction, including without limitation the rights
  7. // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
  8. // copies of the Software, and to permit persons to whom the Software is
  9. // furnished to do so, subject to the following conditions:
  10. //
  11. // The above copyright notice and this permission notice shall be included in
  12. // all copies or substantial portions of the Software.
  13. //
  14. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15. // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16. // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  17. // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  18. // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  19. // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
  20. // THE SOFTWARE.
  21. //
  22. #include "../Precompiled.h"
  23. #include "../Core/Context.h"
  24. #include "../Core/Profiler.h"
  25. #include "../Graphics/Camera.h"
  26. #include "../Graphics/DebugRenderer.h"
  27. #include "../Graphics/Graphics.h"
  28. #include "../Graphics/Light.h"
  29. #include "../Graphics/OctreeQuery.h"
  30. #include "../Graphics/Texture2D.h"
  31. #include "../Graphics/TextureCube.h"
  32. #include "../IO/Log.h"
  33. #include "../Resource/ResourceCache.h"
  34. #include "../Scene/Node.h"
  35. #include "../DebugNew.h"
  36. namespace Urho3D
  37. {
  38. extern const char* SCENE_CATEGORY;
  39. static const LightType DEFAULT_LIGHTTYPE = LIGHT_POINT;
  40. static const float DEFAULT_RANGE = 10.0f;
  41. static const float DEFAULT_LIGHT_FOV = 30.0f;
  42. static const float DEFAULT_SPECULARINTENSITY = 1.0f;
  43. static const float DEFAULT_BRIGHTNESS = 1.0f;
  44. static const float DEFAULT_CONSTANTBIAS = 0.0002f;
  45. static const float DEFAULT_SLOPESCALEDBIAS = 0.5f;
  46. static const float DEFAULT_NORMALOFFSET = 0.0f;
  47. static const float DEFAULT_BIASAUTOADJUST = 1.0f;
  48. static const float DEFAULT_SHADOWFADESTART = 0.8f;
  49. static const float DEFAULT_SHADOWQUANTIZE = 0.5f;
  50. static const float DEFAULT_SHADOWMINVIEW = 3.0f;
  51. static const float DEFAULT_SHADOWNEARFARRATIO = 0.002f;
  52. static const float DEFAULT_SHADOWMAXEXTRUSION = 1000.0f;
  53. static const float DEFAULT_SHADOWSPLIT = 1000.0f;
  54. static const float DEFAULT_TEMPERATURE = 6590.0f;
  55. static const float DEFAULT_RADIUS = 0.0f;
  56. static const float DEFAULT_LENGTH = 0.0f;
  57. static const char* typeNames[] =
  58. {
  59. "Directional",
  60. "Spot",
  61. "Point",
  62. nullptr
  63. };
  64. void BiasParameters::Validate()
  65. {
  66. constantBias_ = Clamp(constantBias_, -1.0f, 1.0f);
  67. slopeScaledBias_ = Clamp(slopeScaledBias_, -16.0f, 16.0f);
  68. normalOffset_ = Max(normalOffset_, 0.0f);
  69. }
  70. void CascadeParameters::Validate()
  71. {
  72. for (unsigned i = 0; i < MAX_CASCADE_SPLITS; ++i)
  73. splits_[i] = Max(splits_[i], 0.0f);
  74. fadeStart_ = Clamp(fadeStart_, M_EPSILON, 1.0f);
  75. }
  76. void FocusParameters::Validate()
  77. {
  78. quantize_ = Max(quantize_, SHADOW_MIN_QUANTIZE);
  79. minView_ = Max(minView_, SHADOW_MIN_VIEW);
  80. }
  81. Light::Light(Context* context) :
  82. Drawable(context, DRAWABLE_LIGHT),
  83. lightType_(DEFAULT_LIGHTTYPE),
  84. shadowBias_(BiasParameters(DEFAULT_CONSTANTBIAS, DEFAULT_SLOPESCALEDBIAS)),
  85. shadowCascade_(CascadeParameters(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f, DEFAULT_SHADOWFADESTART)),
  86. shadowFocus_(FocusParameters(true, true, true, DEFAULT_SHADOWQUANTIZE, DEFAULT_SHADOWMINVIEW)),
  87. lightQueue_(nullptr),
  88. temperature_(DEFAULT_TEMPERATURE),
  89. lightRad_(DEFAULT_RADIUS),
  90. lightLength_(DEFAULT_LENGTH),
  91. specularIntensity_(DEFAULT_SPECULARINTENSITY),
  92. brightness_(DEFAULT_BRIGHTNESS),
  93. range_(DEFAULT_RANGE),
  94. fov_(DEFAULT_LIGHT_FOV),
  95. aspectRatio_(1.0f),
  96. fadeDistance_(0.0f),
  97. shadowFadeDistance_(0.0f),
  98. shadowIntensity_(0.0f),
  99. shadowResolution_(1.0f),
  100. shadowNearFarRatio_(DEFAULT_SHADOWNEARFARRATIO),
  101. shadowMaxExtrusion_(DEFAULT_SHADOWMAXEXTRUSION),
  102. perVertex_(false),
  103. usePhysicalValues_(false)
  104. {
  105. }
  106. Light::~Light()
  107. {
  108. }
  109. void Light::RegisterObject(Context* context)
  110. {
  111. context->RegisterFactory<Light>(SCENE_CATEGORY);
  112. URHO3D_ACCESSOR_ATTRIBUTE("Is Enabled", IsEnabled, SetEnabled, bool, true, AM_DEFAULT);
  113. URHO3D_ENUM_ACCESSOR_ATTRIBUTE("Light Type", GetLightType, SetLightType, LightType, typeNames, DEFAULT_LIGHTTYPE, AM_DEFAULT);
  114. URHO3D_ACCESSOR_ATTRIBUTE("Color", GetColor, SetColor, Color, Color::WHITE, AM_DEFAULT);
  115. URHO3D_ACCESSOR_ATTRIBUTE("Specular Intensity", GetSpecularIntensity, SetSpecularIntensity, float, DEFAULT_SPECULARINTENSITY,
  116. AM_DEFAULT);
  117. URHO3D_ACCESSOR_ATTRIBUTE("Brightness Multiplier", GetBrightness, SetBrightness, float, DEFAULT_BRIGHTNESS, AM_DEFAULT);
  118. URHO3D_ACCESSOR_ATTRIBUTE("Temperature", GetTemperature, SetTemperature, float, DEFAULT_TEMPERATURE, AM_DEFAULT);
  119. URHO3D_ATTRIBUTE("Use Physical Values", bool, usePhysicalValues_, false, AM_DEFAULT);
  120. URHO3D_ACCESSOR_ATTRIBUTE("Radius", GetRadius, SetRadius, float, DEFAULT_RADIUS, AM_DEFAULT);
  121. URHO3D_ACCESSOR_ATTRIBUTE("Length", GetLength, SetLength, float, DEFAULT_LENGTH, AM_DEFAULT);
  122. URHO3D_ACCESSOR_ATTRIBUTE("Range", GetRange, SetRange, float, DEFAULT_RANGE, AM_DEFAULT);
  123. URHO3D_ACCESSOR_ATTRIBUTE("Spot FOV", GetFov, SetFov, float, DEFAULT_LIGHT_FOV, AM_DEFAULT);
  124. URHO3D_ACCESSOR_ATTRIBUTE("Spot Aspect Ratio", GetAspectRatio, SetAspectRatio, float, 1.0f, AM_DEFAULT);
  125. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Attenuation Texture", GetRampTextureAttr, SetRampTextureAttr, ResourceRef,
  126. ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  127. URHO3D_MIXED_ACCESSOR_ATTRIBUTE("Light Shape Texture", GetShapeTextureAttr, SetShapeTextureAttr, ResourceRef,
  128. ResourceRef(Texture2D::GetTypeStatic()), AM_DEFAULT);
  129. URHO3D_ACCESSOR_ATTRIBUTE("Can Be Occluded", IsOccludee, SetOccludee, bool, true, AM_DEFAULT);
  130. URHO3D_ATTRIBUTE("Cast Shadows", bool, castShadows_, false, AM_DEFAULT);
  131. URHO3D_ATTRIBUTE("Per Vertex", bool, perVertex_, false, AM_DEFAULT);
  132. URHO3D_ACCESSOR_ATTRIBUTE("Draw Distance", GetDrawDistance, SetDrawDistance, float, 0.0f, AM_DEFAULT);
  133. URHO3D_ACCESSOR_ATTRIBUTE("Fade Distance", GetFadeDistance, SetFadeDistance, float, 0.0f, AM_DEFAULT);
  134. URHO3D_ACCESSOR_ATTRIBUTE("Shadow Distance", GetShadowDistance, SetShadowDistance, float, 0.0f, AM_DEFAULT);
  135. URHO3D_ACCESSOR_ATTRIBUTE("Shadow Fade Distance", GetShadowFadeDistance, SetShadowFadeDistance, float, 0.0f, AM_DEFAULT);
  136. URHO3D_ACCESSOR_ATTRIBUTE("Shadow Intensity", GetShadowIntensity, SetShadowIntensity, float, 0.0f, AM_DEFAULT);
  137. URHO3D_ACCESSOR_ATTRIBUTE("Shadow Resolution", GetShadowResolution, SetShadowResolution, float, 1.0f, AM_DEFAULT);
  138. URHO3D_ATTRIBUTE_EX("Focus To Scene", bool, shadowFocus_.focus_, ValidateShadowFocus, true, AM_DEFAULT);
  139. URHO3D_ATTRIBUTE_EX("Non-uniform View", bool, shadowFocus_.nonUniform_, ValidateShadowFocus, true, AM_DEFAULT);
  140. URHO3D_ATTRIBUTE_EX("Auto-Reduce Size", bool, shadowFocus_.autoSize_, ValidateShadowFocus, true, AM_DEFAULT);
  141. URHO3D_ATTRIBUTE_EX("CSM Splits", Vector4, shadowCascade_.splits_, ValidateShadowCascade, Vector4(DEFAULT_SHADOWSPLIT, 0.0f, 0.0f, 0.0f), AM_DEFAULT);
  142. URHO3D_ATTRIBUTE_EX("CSM Fade Start", float, shadowCascade_.fadeStart_, ValidateShadowCascade, DEFAULT_SHADOWFADESTART, AM_DEFAULT);
  143. URHO3D_ATTRIBUTE_EX("CSM Bias Auto Adjust", float, shadowCascade_.biasAutoAdjust_, ValidateShadowCascade, DEFAULT_BIASAUTOADJUST, AM_DEFAULT);
  144. URHO3D_ATTRIBUTE_EX("View Size Quantize", float, shadowFocus_.quantize_, ValidateShadowFocus, DEFAULT_SHADOWQUANTIZE, AM_DEFAULT);
  145. URHO3D_ATTRIBUTE_EX("View Size Minimum", float, shadowFocus_.minView_, ValidateShadowFocus, DEFAULT_SHADOWMINVIEW, AM_DEFAULT);
  146. URHO3D_ATTRIBUTE_EX("Depth Constant Bias", float, shadowBias_.constantBias_, ValidateShadowBias, DEFAULT_CONSTANTBIAS, AM_DEFAULT);
  147. URHO3D_ATTRIBUTE_EX("Depth Slope Bias", float, shadowBias_.slopeScaledBias_, ValidateShadowBias, DEFAULT_SLOPESCALEDBIAS, AM_DEFAULT);
  148. URHO3D_ATTRIBUTE_EX("Normal Offset", float, shadowBias_.normalOffset_, ValidateShadowBias, DEFAULT_NORMALOFFSET, AM_DEFAULT);
  149. URHO3D_ATTRIBUTE("Near/Farclip Ratio", float, shadowNearFarRatio_, DEFAULT_SHADOWNEARFARRATIO, AM_DEFAULT);
  150. URHO3D_ACCESSOR_ATTRIBUTE("Max Extrusion", GetShadowMaxExtrusion, SetShadowMaxExtrusion, float, DEFAULT_SHADOWMAXEXTRUSION, AM_DEFAULT);
  151. URHO3D_ATTRIBUTE("View Mask", int, viewMask_, DEFAULT_VIEWMASK, AM_DEFAULT);
  152. URHO3D_ATTRIBUTE("Light Mask", int, lightMask_, DEFAULT_LIGHTMASK, AM_DEFAULT);
  153. }
  154. void Light::ProcessRayQuery(const RayOctreeQuery& query, PODVector<RayQueryResult>& results)
  155. {
  156. // Do not record a raycast result for a directional light, as it would block all other results
  157. if (lightType_ == LIGHT_DIRECTIONAL)
  158. return;
  159. float distance = query.maxDistance_;
  160. switch (query.level_)
  161. {
  162. case RAY_AABB:
  163. Drawable::ProcessRayQuery(query, results);
  164. return;
  165. case RAY_OBB:
  166. {
  167. Matrix3x4 inverse(node_->GetWorldTransform().Inverse());
  168. Ray localRay = query.ray_.Transformed(inverse);
  169. distance = localRay.HitDistance(GetWorldBoundingBox().Transformed(inverse));
  170. if (distance >= query.maxDistance_)
  171. return;
  172. }
  173. break;
  174. case RAY_TRIANGLE:
  175. if (lightType_ == LIGHT_SPOT)
  176. {
  177. distance = query.ray_.HitDistance(GetFrustum());
  178. if (distance >= query.maxDistance_)
  179. return;
  180. }
  181. else
  182. {
  183. distance = query.ray_.HitDistance(Sphere(node_->GetWorldPosition(), range_));
  184. if (distance >= query.maxDistance_)
  185. return;
  186. }
  187. break;
  188. case RAY_TRIANGLE_UV:
  189. URHO3D_LOGWARNING("RAY_TRIANGLE_UV query level is not supported for Light component");
  190. return;
  191. }
  192. // If the code reaches here then we have a hit
  193. RayQueryResult result;
  194. result.position_ = query.ray_.origin_ + distance * query.ray_.direction_;
  195. result.normal_ = -query.ray_.direction_;
  196. result.distance_ = distance;
  197. result.drawable_ = this;
  198. result.node_ = node_;
  199. result.subObject_ = M_MAX_UNSIGNED;
  200. results.Push(result);
  201. }
  202. void Light::UpdateBatches(const FrameInfo& frame)
  203. {
  204. switch (lightType_)
  205. {
  206. case LIGHT_DIRECTIONAL:
  207. // Directional light affects the whole scene, so it is always "closest"
  208. distance_ = 0.0f;
  209. break;
  210. default:
  211. distance_ = frame.camera_->GetDistance(node_->GetWorldPosition());
  212. break;
  213. }
  214. }
  215. void Light::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
  216. {
  217. Color color = GetEffectiveColor();
  218. if (debug && IsEnabledEffective())
  219. {
  220. switch (lightType_)
  221. {
  222. case LIGHT_DIRECTIONAL:
  223. {
  224. Vector3 start = node_->GetWorldPosition();
  225. Vector3 end = start + node_->GetWorldDirection() * 10.f;
  226. for (int i = -1; i < 2; ++i)
  227. {
  228. for (int j = -1; j < 2; ++j)
  229. {
  230. Vector3 offset = Vector3::UP * (5.f * i) + Vector3::RIGHT * (5.f * j);
  231. debug->AddSphere(Sphere(start + offset, 0.1f), color, depthTest);
  232. debug->AddLine(start + offset, end + offset, color, depthTest);
  233. }
  234. }
  235. }
  236. break;
  237. case LIGHT_SPOT:
  238. debug->AddFrustum(GetFrustum(), color, depthTest);
  239. break;
  240. case LIGHT_POINT:
  241. debug->AddSphere(Sphere(node_->GetWorldPosition(), range_), color, depthTest);
  242. break;
  243. }
  244. }
  245. }
  246. void Light::SetLightType(LightType type)
  247. {
  248. lightType_ = type;
  249. OnMarkedDirty(node_);
  250. MarkNetworkUpdate();
  251. }
  252. void Light::SetPerVertex(bool enable)
  253. {
  254. perVertex_ = enable;
  255. MarkNetworkUpdate();
  256. }
  257. void Light::SetColor(const Color& color)
  258. {
  259. color_ = Color(color.r_, color.g_, color.b_, 1.0f);
  260. MarkNetworkUpdate();
  261. }
  262. void Light::SetTemperature(float temperature)
  263. {
  264. temperature_ = Clamp(temperature, 1000.0f, 10000.0f);
  265. MarkNetworkUpdate();
  266. }
  267. void Light::SetRadius(float radius)
  268. {
  269. lightRad_ = radius;
  270. MarkNetworkUpdate();
  271. }
  272. void Light::SetLength(float length)
  273. {
  274. lightLength_ = length;
  275. MarkNetworkUpdate();
  276. }
  277. void Light::SetUsePhysicalValues(bool enable)
  278. {
  279. usePhysicalValues_ = enable;
  280. MarkNetworkUpdate();
  281. }
  282. void Light::SetSpecularIntensity(float intensity)
  283. {
  284. specularIntensity_ = Max(intensity, 0.0f);
  285. MarkNetworkUpdate();
  286. }
  287. void Light::SetBrightness(float brightness)
  288. {
  289. brightness_ = brightness;
  290. MarkNetworkUpdate();
  291. }
  292. void Light::SetRange(float range)
  293. {
  294. range_ = Max(range, 0.0f);
  295. OnMarkedDirty(node_);
  296. MarkNetworkUpdate();
  297. }
  298. void Light::SetFov(float fov)
  299. {
  300. fov_ = Clamp(fov, 0.0f, M_MAX_FOV);
  301. OnMarkedDirty(node_);
  302. MarkNetworkUpdate();
  303. }
  304. void Light::SetAspectRatio(float aspectRatio)
  305. {
  306. aspectRatio_ = Max(aspectRatio, M_EPSILON);
  307. OnMarkedDirty(node_);
  308. MarkNetworkUpdate();
  309. }
  310. void Light::SetShadowNearFarRatio(float nearFarRatio)
  311. {
  312. shadowNearFarRatio_ = Clamp(nearFarRatio, 0.0f, 0.5f);
  313. MarkNetworkUpdate();
  314. }
  315. void Light::SetShadowMaxExtrusion(float extrusion)
  316. {
  317. shadowMaxExtrusion_ = Max(extrusion, 0.0f);
  318. MarkNetworkUpdate();
  319. }
  320. void Light::SetFadeDistance(float distance)
  321. {
  322. fadeDistance_ = Max(distance, 0.0f);
  323. MarkNetworkUpdate();
  324. }
  325. void Light::SetShadowBias(const BiasParameters& parameters)
  326. {
  327. shadowBias_ = parameters;
  328. shadowBias_.Validate();
  329. MarkNetworkUpdate();
  330. }
  331. void Light::SetShadowCascade(const CascadeParameters& parameters)
  332. {
  333. shadowCascade_ = parameters;
  334. shadowCascade_.Validate();
  335. MarkNetworkUpdate();
  336. }
  337. void Light::SetShadowFocus(const FocusParameters& parameters)
  338. {
  339. shadowFocus_ = parameters;
  340. shadowFocus_.Validate();
  341. MarkNetworkUpdate();
  342. }
  343. void Light::SetShadowFadeDistance(float distance)
  344. {
  345. shadowFadeDistance_ = Max(distance, 0.0f);
  346. MarkNetworkUpdate();
  347. }
  348. void Light::SetShadowIntensity(float intensity)
  349. {
  350. shadowIntensity_ = Clamp(intensity, 0.0f, 1.0f);
  351. MarkNetworkUpdate();
  352. }
  353. void Light::SetShadowResolution(float resolution)
  354. {
  355. shadowResolution_ = Clamp(resolution, 0.125f, 1.0f);
  356. MarkNetworkUpdate();
  357. }
  358. void Light::SetRampTexture(Texture* texture)
  359. {
  360. rampTexture_ = texture;
  361. MarkNetworkUpdate();
  362. }
  363. void Light::SetShapeTexture(Texture* texture)
  364. {
  365. shapeTexture_ = texture;
  366. MarkNetworkUpdate();
  367. }
  368. Color Light::GetColorFromTemperature() const
  369. {
  370. // Approximate Planckian locus in CIE 1960 UCS
  371. float u = (0.860117757f + 1.54118254e-4f * temperature_ + 1.28641212e-7f * temperature_ * temperature_) /
  372. (1.0f + 8.42420235e-4f * temperature_ + 7.08145163e-7f * temperature_ * temperature_);
  373. float v = (0.317398726f + 4.22806245e-5f * temperature_ + 4.20481691e-8f * temperature_ * temperature_) /
  374. (1.0f - 2.89741816e-5f * temperature_ + 1.61456053e-7f * temperature_ * temperature_);
  375. float x = 3.0f * u / (2.0f * u - 8.0f * v + 4.0f);
  376. float y = 2.0f * v / (2.0f * u - 8.0f * v + 4.0f);
  377. float z = 1.0f - x - y;
  378. float y_ = 1.0f;
  379. float x_ = y_ / y * x;
  380. float z_ = y_ / y * z;
  381. float red = 3.2404542f * x_ + -1.5371385f * y_ + -0.4985314f * z_;
  382. float green = -0.9692660f * x_ + 1.8760108f * y_ + 0.0415560f * z_;
  383. float blue = 0.0556434f * x_ + -0.2040259f * y_ + 1.0572252f * z_;
  384. return Color(red, green, blue);
  385. }
  386. Color Light::GetEffectiveColor() const
  387. {
  388. if (usePhysicalValues_)
  389. {
  390. // Light color in kelvin.
  391. Color tempColor = GetColorFromTemperature();
  392. // Light brightness in lumens
  393. float energy = (brightness_ * 4.0f * M_PI) * 16.0f / (100.0f * 100.0f) / M_PI;
  394. return Color(tempColor.r_ * color_.r_ * energy, tempColor.g_ * color_.g_ * energy, tempColor.b_ * color_.b_ * energy, 1.0f);
  395. }
  396. else
  397. {
  398. return Color(color_ * brightness_, 1.0f);
  399. }
  400. }
  401. Frustum Light::GetFrustum() const
  402. {
  403. // Note: frustum is unaffected by node or parent scale
  404. Matrix3x4 frustumTransform(node_ ? Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), 1.0f) :
  405. Matrix3x4::IDENTITY);
  406. Frustum ret;
  407. ret.Define(fov_, aspectRatio_, 1.0f, M_MIN_NEARCLIP, range_, frustumTransform);
  408. return ret;
  409. }
  410. Frustum Light::GetViewSpaceFrustum(const Matrix3x4& view) const
  411. {
  412. // Note: frustum is unaffected by node or parent scale
  413. Matrix3x4 frustumTransform(node_ ? Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), 1.0f) :
  414. Matrix3x4::IDENTITY);
  415. Frustum ret;
  416. ret.Define(fov_, aspectRatio_, 1.0f, M_MIN_NEARCLIP, range_, view * frustumTransform);
  417. return ret;
  418. }
  419. int Light::GetNumShadowSplits() const
  420. {
  421. unsigned ret = 1;
  422. if (shadowCascade_.splits_[1] > shadowCascade_.splits_[0])
  423. {
  424. ++ret;
  425. if (shadowCascade_.splits_[2] > shadowCascade_.splits_[1])
  426. {
  427. ++ret;
  428. if (shadowCascade_.splits_[3] > shadowCascade_.splits_[2])
  429. ++ret;
  430. }
  431. }
  432. return (int)Min(ret, MAX_CASCADE_SPLITS);
  433. }
  434. const Matrix3x4& Light::GetVolumeTransform(Camera* camera)
  435. {
  436. if (!node_)
  437. return Matrix3x4::IDENTITY;
  438. switch (lightType_)
  439. {
  440. case LIGHT_DIRECTIONAL:
  441. volumeTransform_ = GetFullscreenQuadTransform(camera);
  442. break;
  443. case LIGHT_SPOT:
  444. {
  445. float yScale = tanf(fov_ * M_DEGTORAD * 0.5f) * range_;
  446. float xScale = aspectRatio_ * yScale;
  447. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), node_->GetWorldRotation(), Vector3(xScale, yScale, range_));
  448. }
  449. break;
  450. case LIGHT_POINT:
  451. volumeTransform_ = Matrix3x4(node_->GetWorldPosition(), Quaternion::IDENTITY, range_);
  452. break;
  453. }
  454. return volumeTransform_;
  455. }
  456. void Light::SetRampTextureAttr(const ResourceRef& value)
  457. {
  458. ResourceCache* cache = GetSubsystem<ResourceCache>();
  459. rampTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  460. }
  461. void Light::SetShapeTextureAttr(const ResourceRef& value)
  462. {
  463. ResourceCache* cache = GetSubsystem<ResourceCache>();
  464. shapeTexture_ = static_cast<Texture*>(cache->GetResource(value.type_, value.name_));
  465. }
  466. ResourceRef Light::GetRampTextureAttr() const
  467. {
  468. return GetResourceRef(rampTexture_, Texture2D::GetTypeStatic());
  469. }
  470. ResourceRef Light::GetShapeTextureAttr() const
  471. {
  472. return GetResourceRef(shapeTexture_, lightType_ == LIGHT_POINT ? TextureCube::GetTypeStatic() : Texture2D::GetTypeStatic());
  473. }
  474. void Light::OnWorldBoundingBoxUpdate()
  475. {
  476. switch (lightType_)
  477. {
  478. case LIGHT_DIRECTIONAL:
  479. // Directional light always sets humongous bounding box not affected by transform
  480. worldBoundingBox_.Define(-M_LARGE_VALUE, M_LARGE_VALUE);
  481. break;
  482. case LIGHT_SPOT:
  483. // Frustum is already transformed into world space
  484. worldBoundingBox_.Define(GetFrustum());
  485. break;
  486. case LIGHT_POINT:
  487. {
  488. const Vector3& center = node_->GetWorldPosition();
  489. Vector3 edge(range_, range_, range_);
  490. worldBoundingBox_.Define(center - edge, center + edge);
  491. }
  492. break;
  493. }
  494. }
  495. void Light::SetIntensitySortValue(float distance)
  496. {
  497. // When sorting lights globally, give priority to directional lights so that they will be combined into the ambient pass
  498. if (!IsNegative())
  499. {
  500. if (lightType_ != LIGHT_DIRECTIONAL)
  501. sortValue_ = Max(distance, M_MIN_NEARCLIP) / GetIntensityDivisor();
  502. else
  503. sortValue_ = M_EPSILON / GetIntensityDivisor();
  504. }
  505. else
  506. {
  507. // Give extra priority to negative lights in the global sorting order so that they're handled first, right after ambient.
  508. // Positive lights are added after them
  509. if (lightType_ != LIGHT_DIRECTIONAL)
  510. sortValue_ = -Max(distance, M_MIN_NEARCLIP) * GetIntensityDivisor();
  511. else
  512. sortValue_ = -M_LARGE_VALUE * GetIntensityDivisor();
  513. }
  514. }
  515. void Light::SetIntensitySortValue(const BoundingBox& box)
  516. {
  517. // When sorting lights for object's maximum light cap, give priority based on attenuation and intensity
  518. switch (lightType_)
  519. {
  520. case LIGHT_DIRECTIONAL:
  521. sortValue_ = 1.0f / GetIntensityDivisor();
  522. break;
  523. case LIGHT_SPOT:
  524. {
  525. Vector3 centerPos = box.Center();
  526. Vector3 lightPos = node_->GetWorldPosition();
  527. Vector3 lightDir = node_->GetWorldDirection();
  528. Ray lightRay(lightPos, lightDir);
  529. Vector3 centerProj = lightRay.Project(centerPos);
  530. float centerDistance = (centerProj - lightPos).Length();
  531. Ray centerRay(centerProj, centerPos - centerProj);
  532. float centerAngle = centerRay.HitDistance(box) / centerDistance;
  533. // Check if a corner of the bounding box is closer to the light ray than the center, use its angle in that case
  534. Vector3 cornerPos = centerPos + box.HalfSize() * Vector3(centerPos.x_ < centerProj.x_ ? 1.0f : -1.0f,
  535. centerPos.y_ < centerProj.y_ ? 1.0f : -1.0f, centerPos.z_ < centerProj.z_ ? 1.0f : -1.0f);
  536. Vector3 cornerProj = lightRay.Project(cornerPos);
  537. float cornerDistance = (cornerProj - lightPos).Length();
  538. float cornerAngle = (cornerPos - cornerProj).Length() / cornerDistance;
  539. float spotAngle = Min(centerAngle, cornerAngle);
  540. float maxAngle = tanf(fov_ * M_DEGTORAD * 0.5f);
  541. float spotFactor = Min(spotAngle / maxAngle, 1.0f);
  542. // We do not know the actual range attenuation ramp, so take only spot attenuation into account
  543. float att = Max(1.0f - spotFactor * spotFactor, M_EPSILON);
  544. sortValue_ = 1.0f / GetIntensityDivisor(att);
  545. }
  546. break;
  547. case LIGHT_POINT:
  548. {
  549. Vector3 centerPos = box.Center();
  550. Vector3 lightPos = node_->GetWorldPosition();
  551. Vector3 lightDir = (centerPos - lightPos).Normalized();
  552. Ray lightRay(lightPos, lightDir);
  553. float distance = lightRay.HitDistance(box);
  554. float normDistance = distance / range_;
  555. float att = Max(1.0f - normDistance * normDistance, M_EPSILON);
  556. sortValue_ = 1.0f / GetIntensityDivisor(att);
  557. }
  558. break;
  559. }
  560. }
  561. void Light::SetLightQueue(LightBatchQueue* queue)
  562. {
  563. lightQueue_ = queue;
  564. }
  565. Matrix3x4 Light::GetFullscreenQuadTransform(Camera* camera)
  566. {
  567. Matrix3x4 quadTransform;
  568. Vector3 near, far;
  569. // Position the directional light quad in halfway between far & near planes to prevent depth clipping
  570. camera->GetFrustumSize(near, far);
  571. quadTransform.SetTranslation(Vector3(0.0f, 0.0f, (camera->GetNearClip() + camera->GetFarClip()) * 0.5f));
  572. quadTransform.SetScale(Vector3(far.x_, far.y_, 1.0f)); // Will be oversized, but doesn't matter (gets frustum clipped)
  573. return camera->GetEffectiveWorldTransform() * quadTransform;
  574. }
  575. }